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Rheumatoid arthritis (RA) is a polygenic autoimmune disease primarily affecting the synovial joints. Numerous animal models
show similarities to RA in humans; some of them not only mimic the clinical phenotypes but also demonstrate the involvement
of homologous genomic regions in RA. This paper compares corresponding non-MHC genomic regions identified in rodent and
human genome-wide association studies (GWAS). To date, over 30 non-MHC RA-associated loci have been identified in humans,
and over 100 arthritis-associated loci have been identified in rodent models of RA. The genomic regions associated with the disease
are designated by the name(s) of the gene having the most frequent and consistent RA-associated SNPs or a function suggesting
their involvement in inflammatory or autoimmune processes. Animal studies on rats and mice preferentially have used single
sequence length polymorphism (SSLP) markers to identify disease-associated qualitative and quantitative trait loci (QTLs) in the
genome of F2 hybrids of arthritis-susceptible and arthritis-resistant rodent strains. Mouse GWAS appear to be far ahead of rat
studies, and significantly more mouse QTLs correspond to human RA risk alleles.

1. Introduction

Rheumatoid arthritis (RA) is a polygenic systemic autoim-
mune disease that mainly affects the synovial joints, causing
chronic inflammation and profound tissue destruction in
affected patients. The pathological features of RA include
leukocyte infiltration of the synovial tissue (mainly T cells
and macrophages), autoantibody production (e.g., against
immunoglobulins, citrullinated peptides, or tissue-restricted
antigens), the accumulation of inflammatory cells (mainly
neutrophils) in the joint fluid, the proliferation of synovial
fibroblasts, and the formation of pannus; collectively, these
features result in the destruction of articular cartilage
and bone erosion. The identification of genetic alterations
and variations in RA (involving either the major histo-
compatibility complex (MHC) or non-MHC genes) and
an understanding of their functional consequences may

impact the diagnosis, therapy, and prevention of RA [1], an
autoimmune disease that affects approximately 1% of the
human population. No other autoimmune disease appears
in so many different clinical forms or is characterised by such
heterogeneous and diverse clinical symptoms and laboratory
tests. As a consequence, there are many experimental animal
models attempting to mimic the multiple clinical symptoms
of RA.

Animal studies may help to fill the gaps in human
genome-wide association studies (GWAS) by allowing for
gene mapping and functional studies, which cannot be per-
formed in human patients and may yield greater insights into
the mechanisms of autoimmune T and B cell responses in
RA [2–4]. While the various animal models are tremendously
helpful for investigating certain aspects of the human disease,
none of these models recreates the full spectrum of diseases
collectively called RA. Notably, thousands of investigators
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and pharmaceutical companies use animal models of RA,
perhaps without understanding the differences among the
different subtypes of this disease and the corresponding
animal models [2–5]. Based upon the clinical, immunolog-
ical, and genetic components, the most appropriate animal
models for RA seem to be (i) those that use genetically
controlled systemic autoimmune joint diseases, (ii) those in
which the MHC (class II molecules) plays a crucial role,
(iii) those in which both T and B cells are involved, and
(iv) those that apply (auto)antigenic molecules of cartilage
or joint tissues for provoking (“targeting”) synovial joint
inflammation.

Among the animal models of RA that fulfil the above
listed criteria from a genetic point of view and that are char-
acterised by the presence of the most valuable biomarkers,
such as rheumatoid factor (RF) and anticitrullinated peptide
antibodies (anti-CCP or ACPA), the closest genetic, and
clinical models of RA appear to be cartilage proteoglycan
(PG) aggrecan-induced arthritis (PGIA) [6, 7] and cartilage
type II collagen- (CII-) induced arthritis (CIA) [3, 8–11].

2. Progresses and Limitations of
Human and Animal GWAS

In addition to certain MHC (or human leukocyte antigen
(HLA) in humans) class-II alleles on human chromosome
6 that are most commonly (over 40%) associated with a
genetic risk for RA [1, 12–16], currently there are 31 non-
MHC RA risk alleles that have been confirmed by GWAS
and meta-analyses [17, 18]. Many of these risk alleles are
weak and are frequently “specific” for different ethnic groups
or subpopulations, but there are at least 25 strong RA risk
alleles within 23 non-MHC loci in the human genome
that control disease susceptibility or severity [19]. These
human RA risk alleles were identified and confirmed using
hundreds of thousands of single nucleotide polymorphisms
(SNPs) and designated by the name of the gene in which
the SNP occurred most frequently. However, except for very
few cases, none of the genetic risk loci identified to date
represent the disease-causing or disease-promoting gene,
in which mutations have occurred. SNPs, similar to postal
ZIP codes, define only certain regions where a number of
genes or noncoding elements (streets in the analogy) are
located, but they do not define exact addresses. These risk
loci or alleles defined by various numbers and frequencies of
SNPs indicate only a chromosome region (carrying dozens
to hundreds of genes) expected to have one or a few
functionally defective genes involved in the pathomechanism
of RA [20]. In fact, these RA-associated SNP risk alleles may
indicate a risk for RA or a number of other autoimmune
diseases [1, 19, 21–29], or their combination may be used as
“predictive” markers for effective therapy selection. Due to
extreme heterogeneity in the human population, the highly
motivated and exciting early-stage studies have led to the
current frustration, and only confirmatory or treatment-
related meta-analysis studies have been published during the
past couple of years.

In contrast to human studies using heterogeneous popu-
lations, there is a chance to use the combination of various

arthritis-susceptible and arthritis-resistant inbred strains for
GWAS and to identify disease-associated QTLs. There are
over a hundred non-MHC genetic risk alleles identified in
the rat and mouse models of RA. However, a surprisingly
small number of these rodent QTLs (especially in rat arthritis
models) correspond to the RA risk alleles or corresponding
area in the syntenic human genomic area. Many of these
rodent QTLs are listed as new discoveries and were never
coordinated as the human studies were, and thus, they are
frequently represented by duplicate or triplicate names when
described by different research groups. Another limitation
of these animal studies is that the different QTLs may
represent different, probably over a dozen, phenotypes (e.g.,
onset, susceptibility, severity, tissue destruction, etc.) in
combination with the presence or level of various biomark-
ers, such as autoantibodies or cytokines either in sera or
in vitro stimulated spleen or lymph node cultures. The
PCR-based method (single sequence length polymorphism,
SSLP) used for the identification of QTLs in either mice
or rats is a different technique from SNP microarray-based
screening of the human genome, but the principal of the
final linkage analysis is based on the same concept. Therefore,
as it happened in human SNP-based studies where different
sizes and types of arrays, populations, clinical phenotypes,
disease durations, environmental factors, and responsiveness
to treatment types create a heterogeneous picture of risk
alleles, similar heterogeneity in genotype, phenotype, and
biomarker distribution exists in animal studies.

3. Significance of Animal Models of RA

Human genetic studies are expected to be fast but fairly less
reliable because either the function of the SNP-identified
gene or intergenic region is unknown or the consequence
of the mutation found in a gene (e.g., transcription factor
binding site) is very rarely known in humans. Animal
studies are slow and laborious, but using appropriate genetic
combinations (selected combinations of intercrosses and
GWAS of F2 hybrids, congenic/subcongenic, and interval-
specific congenic (IVSC) processes, and genomic sequences
of the target inbred region) they can find disease-promoting
genes, even with a relatively weak disease-modulating effect.
Moreover, animal models allow us to investigate the role of
a single gene and the mechanisms of the disease, allowing
development of more effective and appropriate treatments.
These animal studies, however, are valuable only if they
focus on the disease-affecting/causing gene(s) in humans.
Human genetics often arrives at a dead end because the
disease-affecting genes are unknown [20]. Furthermore, due
to the enormous heterogeneity of the human population,
it is not feasible to sequence large genomic areas of
thousands of people before careful selection of a relatively
homogeneous subpopulation of RA patients. This selec-
tion requires extensive bioinformatics analysis comparing
hundreds or thousands of disease-associated SNPs and RA
patients to identify homogeneous (identical, or close to
identical) SNP combinations and allele frequency for the
selected RA-associated locus in affected patients. In a recent
study, we compared a few hundred seropositive RA patients
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(all carrying the PTPN22 risk allele) but found only a dozen
patients with the same SNP combinations. We expect that
after high-throughput sequencing, there may be only a few
(2–4) RA patients who show high genomic similarity within
a small genomic region using bioinformatics analysis, but the
appropriate programs and appropriate functional tests are
not available at the moment.

Although there are limitations surrounding both human
and animal genome-wide screening studies, in the future, the
two lines of research may support similar findings and be
consolidated to provide additional insight. There are a few
animal models of RA that have identified highly significant
disease-associated loci. Induced autoimmune models of RA
usually represent an accelerated form of RA. For example,
both CIA and PGIA are known to involve MHC class-II-
restricted antigen presentation and generation of T cells and
autoantibodies that cross-react with self (mouse) antigens
such as mouse CII or PG [3, 6, 8, 10, 30, 31]. In addition
to MHC, which controls at least 40–50% of the genomic
susceptibility to RA, both models require an arthritis-prone
non-MHC genetic background. Nonobese diabetic (NOD)
mice are resistant to both CIA and PGIA. However, when
KRN T cell receptor (TCR) transgenic mice were intercrossed
with NOD mice, it resulted in the K/BxN model, which
develops spontaneous arthritis. The KRN TCR is specific for
the bovine pancreas ribonuclease and apparently cross-reacts
with glucose-6-phosphate isomerase (GPI) [32–34]. How-
ever, the spontaneous K/BxN model is irrelevant for genomic
studies. It has no MHC linkage, a ubiquitous (auto)antigenic
component exists (which is present in all mammalian cells
[35]), and anti-GPI antibodies can rarely be detected in RA
patients [36–38]. The sera of these spontaneously arthritic
mice can transfer arthritis to any strain of mice (serum-
transfer arthritis); thus, the genetic components of either
the K/BxN or serum-transfer arthritis models are vague
and unclear. However, a genome-wide screening of serum-
transfer-induced arthritis in heterogeneous stock (HS) mice
resulted in very interesting results [39]. QTLs identified
on six chromosomes matched two human RA risk alleles
(TRAF1/C5 and PADI4 loci), of which the Traf1/Hc locus on
mouse chromosome 2 (mChr2) is a dominant QTL in both
CIA (mCia2 and mCia4) and PGIA (Pgia2) (Table 1).

SKG mice develop arthritis due to a spontaneous
mutation in the SH2 domain of Zap70 [40]. Because the
Zap70-mutation causes defective TCR signalling, it has
been postulated that autoreactive T cells escape thymic
deletion and accumulate in the periphery of SKG mice
[40]. Altered thymic selection in SKG mice leads to the
survival of otherwise negatively selected T cell clones that
then spontaneously differentiate into Th17 cells in the
periphery and attack the joints. In contrast, interleukin 1
(IL-1) receptor antagonist protein (IRAP) knock-out mice
develop spontaneous arthritis due to increased production
of proinflammatory cytokines (IL-1β, IL-6, IL-17, and
tumour necrosis factor-alpha, TNFα) and autoantibodies in
the absence of negative regulation of IL-1 signalling [41,
42]. In addition, human TNFα-expressing transgenic mice
develop spontaneous chronic erosive arthritis due to their
continuous production of TNFα [43]. This arthritis appears

to be a highly simplified proinflammatory cytokine-induced
arthritis; thus, it is similar to the serum transfer-induced
arthritis (using anti-GPI antibody-containing sera from
arthritic K/BxN mice) [44] and the collagen monoclonal
antibody cocktail or LPS-induced arthritis (CAIA) [45–47].

All of these models, directly or indirectly, have con-
tributed insights into the complex mechanisms behind RA
and have facilitated the development of current therapeutics
and biologics. It is important to note that all the previously
mentioned experimental animal models of arthritis develop
at a relatively young age (beginning at ∼4–6-weeks), except
PGIA [48], and that arthritis develops in SKG and IRAP-
deficient mice only in the BALB/c genetic background [40–
42]. This arthritis-prone BALB/c genetic background has
also been shown to predispose mice to PGIA [7], human
G1 domain-induced arthritis (GIA) [49], link protein [50]
or human cartilage HC-gp39 protein [51]. The incidence of
spontaneous arthritis in retired, breeder, wild-type BALB/c
females is estimated at 0.5–1.0% (TTG, unpublished data),
which is close to the ratio observed in the human population.
Additionally, BALB/c mice carrying the HLA-DR4 transgene
[52] or expressing a PG (5/4E8 epitope)-specific TCR [53,
54] develop arthritis spontaneously but only at an advanced
age [55]. Although there are a number of other animal
models of RA, we have listed only those that may have
conceptual relevance to this paper. However, except for a
relatively few studies [39, 56–58], GWAS in mice has almost
exclusively been performed in PGIA and CIA; thus, we
compare QTLs identified mostly in these two models with
human GWAS and their subsequent meta-analyses (Table 1).
Therefore, we summarise only those genomic regions (QTLs)
of animal studies that correspond to the human chromosome
region where risk alleles were identified in RA, and thus, may
help to accelerate human studies. Interval-specific congenic
(IVSC) mice representing human RA-associated regions
present a high potential for sequencing homogeneous
genomic regions, and any genes with potentially pathogenic
variants (either in exons, introns or intergenic regions and in
disease-promoting or disease-suppressive areas) may guide
future human studies in terms of selecting appropriate
patient populations for more detailed genetic and epigenetic
analysis.

4. Tissue-Restricted (Cartilage)
Antigens Can Provoke Arthritis in
Genetically Susceptible Mice and May
Contribute to the Severity of RA

Cartilage is one of the few immune-privileged tissues in
the body in that it is essentially avascular and therefore
not subjected to close “internal” immunological surveillance
[59]. An incomplete central tolerance is most likely the
dominant component of this special immune condition,
a tolerance that can be breached when transgenes are
expressed in cartilage and the cartilage-specific overexpres-
sion is “leaky,” especially in the embryo. Several lines of
evidence support this hypothesis. For example, cartilage link
protein [60] or otherwise arthritogenic human G1 domain
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(unpublished data) expression in mice, driven by the rat
type II collagen promoter and enhancer, may be detected
in cartilage tissue, but the transcript and protein could
also be detected in other embryonic tissues. Additionally,
when cartilage PG (or CII) is degraded by various matrix
metalloproteinases, the newly generated neoepitopes may
provoke an autoimmune reaction [61]. Further evidence is
provided by posttranslational events (e.g., citrullination), as
molecules unrelated to cartilage (e.g., filaggrin [62–64]) are
first citrullinated far before the onset of joint inflamma-
tion. Subsequently, additional molecules (e.g., fibrinogen,
vimentin, type II collagen, PG aggrecan, α-enolase, and a few
virus proteins) also undergo posttranslational modifications
(citrullination), and the cumulative effect of (auto)immune
reactions may breach the immune tolerance in genetically
susceptible human individuals.

Although immunity to the cartilage PG aggrecan has
been less extensively studied than immunity to type II
collagen (CII), cartilage PG is also considered to be a causal
factor in rheumatoid joint diseases [65–67]. Either humoral
or cellular immunity, or both, to human cartilage PGs have
been detected in patients with RA [65–79], and the two most
recent studies reported that the citrullinated version of a
dominant arthritogenic (5/4E8) peptide of human cartilage
PG [80, 81] induced substantial cytokine (IL-17, IL-22, IL-
6, TNFα, IFNγ) production by T cells from the majority
of RA patients [78, 79]. T cells from the same RA patients
responded poorly to the native (noncitrullinated) peptide
in both studies, and T cells from healthy subjects did not
respond [78] or responded only to the citrullinated peptide
by producing IL-6 [79]. Although the majority of RA patients
tested were positive for anti-citrullinated cyclic peptide (anti-
CCP) antibodies (ACPA), T-cell response to the citrullinated
PG peptide was also noted in some ACPA patients [78, 79].

5. Overlapping Genomic Loci of RA and
Autoimmune Mouse Models of RA

In this paper, we collected results from GWAS in mice
and rats (over 100 QTLs) and compared the QTL locali-
sations to those identified in human studies (over 30 RA-
associated loci). It is technically impossible and scientifically
unnecessary to cite all these studies; rather, we tried to
select those that represent syntenic regions in humans and
mice (and rats if available). We cite the most appropriate
publications in Table 1 or in the text rather than indicating
SNP codes (rsXXXX). The levels of significant association
between the same SNP and RA is variable in different papers,
and for the novelty of a new meta-analysis, investigators
may preferentially use a SNP in close proximity to those
that have already been published. In brief, we selected
data from RA risk allele groups that also have syntenic
regions in rodent studies and show one of a few on-going
animal/human studies (mouse Chr3 versus human Chr1) in
which the combined information may be not only quan-
titative but also qualitative (Figures 1 and 2). In other
words, two chromosome regions (Figure 1) have not only
SSLPs (andSNPs) in the “candidate” target regions but also
functional defects in the protein encoded by the mutated

gene that may either suppress or promote the onset and
severity of arthritis. Thus, these particular mouse studies aid
in the discovery of functional defects in disease-associated
genes in humans with RA.

As mentioned, over 100 rodent QTLs have been described
to date, but relatively few are syntenic with any of the 30
human RA risk alleles. In our laboratory, over 5,000 inbred
wild-type parents, approximately 500 F1 hybrids (all negative
for PGIA, data not shown) and 3,200 F2 hybrids of six
different genetic intercrosses were genotyped using a total
of 240 SSLP markers. The goal was to identify genetic alter-
ations responsible for individual and overlapping qualitative
(binary) QTLs that are linked to PGIA or CIA in the mouse
genome and then compare the results with loci identified in
human autoimmune diseases, preferably RA. Many of the
risk alleles in RA overlap with a number of risk alleles of other
autoimmune diseases [19, 21–27, 29], and a number of Pgia
and Cia loci [10, 82–87] overlap with chromosomal regions
identified in GWAS studies of RA patients [17, 19, 88–
91]. CIA was considered as a model of seronegative RA,
whereas PGIA, which has both rheumatoid factors and ACPA
[7, 49], was considered a seropositive RA model. The overall
hypothesis was that genes associated with a QTL in one or
more genetic combinations of murine autoimmune arthritis
should correspond to genes involved in RA. (A total of 26
loci out of 31 confirmed non-MHC loci were screened for
corresponding mouse QTLs. Only those that were found
in comparative studies of mouse genome-wide association
(GWAS) studies (n = 17) are listed under the “human locus
name.” These mouse GWAS studies include over a dozen
intercrosses screened in different laboratories. Occasionally,
the same (mouse) Cia locus-number appears on different
chromosomes in different publications, thus the references
corresponding to the appropriate mouse Cia (mCia) loci are
listed here. QTL of Pgia (n = 9) and mCia (n = 2) identified
in our laboratory are italic and bold faced. Each human
locus is listed by the gene-name and chromosome location
using the “standard” name of the given RA risk allele; the
corresponding mouse region/gene is indicated by the same
gene name and location in the mouse genome given by the
mega-base pair (Mbp) position (bold-faced). Tissue samples
(tails and kidney) of each F2 hybrid mouse are catalogued
and stored at −80◦C. Many of the F2 hybrids were retested
with additional, new markers in confirmatory studies (9 Pgia
and 2 mCia loci). The average marker density in these confir-
matory studies was 8.2 Mbp. Some of these reference markers
shifted slightly after confirmatory studies using high density
marker screening. Two QTLs on mouse chromosomes 3 and
15 have overlapping regions; therefore, they are listed in the
Table 1 twice due to the information from different studies.)

Although there are a number of weaknesses for both
human and animal GWAS, they may supplement and
support each other. During the past 15 years, we and others
have identified 29 Pgia and 40 Cia loci in different genetic
combinations of F2 hybrid mice [3, 10, 11, 57, 58, 82, 86, 95–
99] and a couple of corresponding QTLs in rats [100–105].
With a strong confirmation in the literature, we selected
QTLs from all (published) mouse genomic studies [10, 56–
58, 82–84, 92–96, 98, 106–112] that also correspond to one
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Figure 1: Summary of the genotypes and corresponding clinical phenotypes of parent stains and Pgia26 (3G0) and Pgia26 subloci that were
identified in IVSC lines with overlapping chromosome intervals. The original mChr3 region (3G0: 90.4–156.5 Mbp in size) was reduced and
separated into several subloci in 27 interval-specific subcongenic (IVSC) lines (3G1-3G27). For simplicity, only a 16.5 Mbp region is shown.
Green columns represent BALB/c, and yellow columns represent the DBA/2 chromosome regions. Horizontal black lines with numbers at the
right side (and with marker names) are shown. The short red lines crossing the IVSC chromosome region indicate the position between the
two markers, where the DBA/2 allele continued as BALB/c [84]. The blue-framed red rectangular area indicates the position of the Pgia26d
locus (between 101.4 and 107.2 Mbp); in the worst case, this region may include the entire flanking region between 99.9 and 108.8 Mbp
where the disease-promoting gene(s) in BALB/c mice is located (or reciprocally, the suppressive genes in DBA/2). This area contains the
most prominent Ptpn22 (protein tyrosine phosphatase non-receptor-22) identified in human GWAS with SNPs, an allele that is associated
with many autoimmune diseases. The mutation affecting R620W amino acid appears to affect both peripheral and central B-cell tolerance
[120]. Under the worst scenario, this region contains 128 protein-coding genes, 19 miRNAs, 13 pseudogenes, and 9 non-protein-coding
transcripts (http://www.ensembl.org/Mus musculus/Info/Index). Other Pgia26 subloci (with large scales) are presented in Figure 2 with
the corresponding human, rat, and mouse RA risk alleles. Another disease-suppressive region (inherited from the DBA/2 strain), between
92.7 Mbp and 96.4/99.9 Mbp position (framed), is currently under sequencing and examination.

of the major risk loci of RA confirmed in a number of
meta-analyses [19, 29, 90, 113–117]. Table 1 summarises
the risk alleles selected that have corresponding genomic
regions from human and mouse GWAS. Only QTLs that
correspond to at least one major RA-associated locus in the
human genome are listed; these QTLs were found on mouse
chromosomes 1 (2x), 2, 3 (2x), 5, 6, 10 (2x), 13, 15 (2x),
and 18 (a total of 13 QTLs). The list was organised in order
of mouse chromosomes. At least one, and possibly two or
three, QTLs from various animal studies covered the syntenic
chromosome region of human RA-associated loci. Standard

abbreviations of genes were used as they are listed in
gene bank databases (e.g., http://www.informatics.jax.org/;
http://www.ensembl.org/Mus musculus/Info/Index or http:
//genome.ucsc.edu/cgi-bin/hgGateway), and many of their
known functions are described in publications available from
PubMed (http://www.ncbi.nlm.nih.gov/pubmed). Thus, we
did not list the full names or discuss the function(s) of these
genes used to identify RA susceptibility loci or the “most
frequent” associated SNPs of meta-analyses. These “marker-
specific” genes were usually located near the unknown
genes that might carry the disease-causing genomic defect.

http://www.ensembl.org/Mus_musculus/Info/Index
http://www.informatics.jax.org/
http://www.ensembl.org/Mus_musculus/Info/Index
http://genome.ucsc.edu/cgi-bin/hgGateway
http://genome.ucsc.edu/cgi-bin/hgGateway
http://www.ncbi.nlm.nih.gov/pubmed
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Figure 2: Mouse chromosome 3 (Chr3) with Pgia26 subloci identified in IVSC mice (Figure 1) and corresponding human and rat
chromosome regions with their corresponding risk alleles. Panel (a) summarises the location of five Pgia26 subloci with corresponding
mouse mCia5 and mCia21 (collagen-induced arthritis) [3, 108, 121], mouse Eae3 (experimental allergic encephalomyelitis) [122, 123]
(between mChr1:84.3–126 Mbp), and the corresponding rat Chr2 region of rat Cia10 [124, 125]. The left side of the panel identifies risk
alleles on human Chr1 [126], with red-framed boxes and numbers in parentheses indicate the following regions: (1) between 87–89 Mbp
[127], (2) 105.4 Mbp [128], (3) 113–142 (including the PTPN22 gene at 114.4) Mbp positions [129–131], and (4) the FCGR family between
158 and 159 Mbp [132, 133]. Panel (b) displays the syntenic risk alleles of human Chr1 and mouse Chr3 (Pgia26a-e) with the number of
genes localized in the different chromosome regions.

For example, SNPs of two of the strongest RA risk alleles,
TRAF1/C5 and TNFAIP3/OLIG3, are in the intergenic
regions, making it difficult to establish causality of these
regions at this moment [20, 88, 118]. Although both TRAF1
and TNFAIP3 are “preferential” gene candidates based on
their function in TNF signalling, known to be important
in RA [119], none of the genes having SNPs or genomic
mutations evidently affect their function.

In the next section, we show an example of how we can
integrate information from the human and mouse studies.
This method may be one of the potential ways to identify
causal variants that map to human RA-associated chromo-
some regions.

6. Benefits of MHC-Matched Susceptible
and Resistant Mouse Strains: IVSC Strains
Targeting Human RA Risk Alleles

To eliminate or reduce the dominant effect of MHC in
cases where the association of a QTL with an arthritis

phenotype has been sufficiently confirmed, one of the
most successful alternative approaches is to use MHC-
matched arthritis-susceptible and arthritis-resistant strains
to establish congenic and subcongenic lines. Either a disease-
promoting chromosome region can be “inserted” into a
resistant strain, or reciprocally, the same region containing
a disease-suppressive allele can be inserted into a fully sus-
ceptible genetic background. Either direction is acceptable,
but from a practical point of view and based on many
congenic experiments during the past decade, the latter
solution appears to be more manageable. First, F1 males
are selected, for example, from the intercross of a PGIA-
susceptible BALB/c female and a resistant DBA/2 male (both
MHC H2d) carrying the DBA/2 genomic region of interest.
These F1 males are backcrossed several times with wild-type
BALB/c females, and the offspring are genotyped for each
litter until the N1-NX generations have sufficient numbers
of recombination events (and, if possible, overlapping areas)
(Figure 1). These Nx males are intercrossed with wild-type
BALB/c females, and the resulting heterozygous Nx+1 males
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and Nx+1 females are intercrossed to establish a homozygous
IVSC strain(s).

During the ongoing backcrossing process, fewer and
fewer previously heterozygous loci need to be tested by PCR.
If a gender effect is expected, it is necessary to replace the Y
chromosome with a single reciprocal backcross, but it is both
practical and sufficient to do this replacement near the final
step.

Subsequently, the chromosome intervals from the resis-
tant strain of a relatively (and usually) large QTL (several
cM or Mbp in size) need to be tested for clinical phenotypes.
For example (Figure 1), the “Chr3G0” (“3G0”) subcongenic
line contains an overlapping region ∼66 Mbp in size that
significantly affected all clinical phenotypes when compared
to either susceptible BALB/c or resistant DBA/2 parental
strains [84], a finding that needs to be further confirmed
by in vitro tests (i.e., measuring biomarkers). In this case,
males from the congenic 3G0 strain can be used to reduce
the chromosome interval with new recombination events
with matings into inbred BALB/c females. On the other
hand, only the critical interval of mChr3 with high-density
markers needs to be genotyped because the entire genome
was previously genotyped for BALB/c (during the selection
of 3G0 congenic line). Then, mice with the most appropriate
recombination products are used as founders for fine
mapping of chromosome intervals generating IVSC strains.
Conceptually, the same backcrossing to the susceptible
BALB/c strain and genotyping approach, as described above,
are used for the selection of new congenic strains. However,
investigators need to (i) focus on the new recombination
events within selected chromosome interval using high
marker density within the region of interest (e.g., Pgia26)
and (ii) genotype both males and females. Depending on
the volume of backcrossing (i.e., the number of breeding
pairs and offspring) and the shortest chromosome interval
achievable after a few generations, we are able to select a
number of heterozygous males and females with identical
recombination events at different positions (if possible with
overlapping regions as shown in Figure 1: e.g., Chr3G0-
Chr3G27) to establish homozygous IVSC strains for in vivo
and in vitro tests.

To save time, it is practical to genotype both males
and females for all new recombination products within the
chromosome interval of interest, a locus that corresponds
to the selected human RA risk allele. As shown in Fig-
ures 2(a) and 2(b) and Table 1, the PTPN22/CD2 human
risk locus most likely represents a complex trait on mChr3
(syntenic with hChr1) containing both disease-suppressive
and disease-promoting alleles [84]. Distinct regions, alone
or in combination, may result in clinically similar phe-
notypes (Figure 1), while the IVSC-associated biomarkers
may show significant differences. Thus, a relatively small
IVSC chromosome region may be separated for different
genotypes representing similar clinical phenotypes (Figure 1,
only the centromeric region of the mapped mChr3 is shown).
However, while clinical phenotypes are comparable, funda-
mentally different genes in nearby chromosome regions may
control disease susceptibility, onset and severity. Needless
to say, fine mapping of chromosome regions and selecting

narrow genomic regions with high probability for successful
genomic high-throughput sequencing might be difficult,
if not impossible, to complete using RA patients from
the heterogeneous human population. Further, this highly
specific and laborious animal study is valuable only if it
represents human relevance, that is, if the corresponding
region where the human risk allele was localised had already
been identified.

Figure 2 shows simplified schematics comparing the
previously outlined IVSC approach (Pgia26 on mChr3) in
combination with mouse (mCia) and rat CIA loci syntenic
with the RA loci identified on human Chr1. Colours,
numbers of genes, locations of syntenic genomic loci,
and their flanking regions are indicated in Figure 1 and
legend. With the advent of genome sequencing techniques,
SureSelect Target Enrichment kit (Agilent, San Diego, CA,
USA), library amplification and Illumina parallel sequencing
methods made it realistic to oversequence 10–30 Mbp of
homogeneous genomic regions from inbred IVSC strains
and compare sequences with parent strains (susceptible
versus resistant). It is also a reasonable approach to confirm
the function of arthritis-susceptible or arthritis-resistant
murine strains with transgenic methodologies. Today, the
real challenge in human genetics is to find and select
appropriate human patients with nearly identical genomic
region(s) for high-throughput genomic sequencing due to
the extreme heterogeneity of the human population. While
SNP analyses using thousands of samples can give an
extremely high statistical power, the same approach (SNP
selection for genomic sequencing) is unsuccessful in the
selection of human samples [20].

However, there are promising directions based on the
combination of human-mouse GWAS. Selected homozy-
gous regions of IVSC mice sequenced first with high-
throughput sequencing method and affected genes and/or
intergenic (relatively small) regions are genome-sequenced
from selected humans with appropriate primers. In fact, a
certain number of mutations/SNPs of the syntenic regions
(identified in IVSC mouse and confirmed using conventional
Sanger sequencing of human genomic DNA) may guide
the selection of human RA patients for high-throughput
sequencing of the region of interest (Figure 2). Alternatively,
for example, if miRNA-related sequences are expected, the
high-throughput sequencing of RNAs isolated by cross-
linking immunoprecipitation (HITS-CLIP) with antibodies
against the RNA-binding protein Argonaut (Ago HITS-
CLIP) [134–138] may offer another solution.

7. Overall Summary and Perspectives

Overall, mouse studies, especially with congenic strains,
appear to be a fundamental resource for the identification
of candidate gene(s) in RA. During the past 15 years or so,
almost concurrent with the first human genomic studies
in RA, a number of rodent (mouse and rat) GWAS studies
have been performed. At approximately the same time, both
the human and mouse genome sequencing studies were
completed and, simultaneously, unlimited numbers of new
markers became available for both species. The number
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of human studies expanded; tens of thousands of RA
patients, along with controls, were genotyped; new and
more reliable SNP arrays became available; more risk alleles
became identified in RA and in almost all autoimmune
diseases. However, after extensive progress in GWAS, the
direction of RA research moved towards confirmatory
studies of previously tested patients, examinations of
different ethnic groups or comparisons of the therapeutic
effects of different biologics. Briefly, human studies turned to
mainly in silico and meta-analysis studies rather than aimed
towards finding causative and functional (aetiological)
reasons. The previously identified genomic regions were
confirmed using a high marker density, but the large
chromosome regions with tens of Mbps in size still remained
unmanageable. Only a very few SNPs causing missense
mutations proved to be associated with disease, and
usually only in a narrow selection of the patient population.
However, the number of risk alleles increased, and previously
identified marker positions were confirmed.

Unfortunately, animal studies also slowed down,
although due to completely different reasons from human
studies. Increasing the number of new combinations of
disease-susceptible and disease-resistant inbred strains
revealed more and more QTLs, but not a disease-causing
gene. Recognising the limitations as well as the potential of
both human and mouse GWAS, approximately 10 years ago,
a number of congenic strains carrying the most promising
traits representing the strongest clinical phenotypes were
established. These strains carry overlapping traits identified
in different animal models and syntenic with genomic
regions identified as RA risk alleles. In other words, at
the time when the human GWAS explored the most
critical RA risk alleles, congenic backcrossing had selected
inbred IVSC strains with syntenic regions to the major
human risk alleles. We selected two QTLs for more detailed
analysis: Pgia26/Cia5/mCia21/Eae3 on mChr3 and rat Cia10,
corresponding to the PTPN22/CD2 allele on human Chr1
(Figure 2); Pgia2/Cia2/Cia3 on mChr2 (corresponding
to the TRAF1/C5 allele on hChr9). Then, we generated
IVSC strains (Figures 1 and 2, Pgia26 is shown). All other
congenic and subcongenic strains were cryopreserved. The
two major/dominant mouse QTLs were separated into
narrow subtraits and simultaneously tested for arthritis
susceptibility, for disease onset and severity, and for over 15
biomarkers that might have some potential relevance for RA
[84]. Simultaneously, some of the IVSC genomic regions
representing homogeneous regions of disease-susceptible
and disease-resistant IVSC mice (and the corresponding
parent genomic regions) were sequenced, and a few mutated
genes were identified (with “known” or completely unknown
function). Occasionally, these genes had not been previously
associated with arthritis, but all of them had localised in
close proximity to a gene used to name the human RA risk
alleles. The analyses of these genes and a targeted selection
of appropriate human genomic DNA samples used for
high-throughput sequencing are currently in progress in
a number of laboratories. The approaches and concepts
outlined in this paper (especially in Sections 4 and 5) are
not the only possible avenues for the identification of the

RA (or other autoimmune disease)-related defects in the
genome. However, these approaches may allow us to merge
currently available results of human GWAS with findings of
GWAS and IVSC studies in mice. Nonetheless, to confirm
the role of these genes in RA, researchers must identify
not only the genomic identity but also the corresponding
functional defects in mice analogous with those present in
patients with RA. Unfortunately, mechanistic and functional
studies, manipulation of the genome, and pretesting of
new therapeutic approaches cannot be applied in human
patients, which underlines the relevance of and necessity for
laborious genetic studies in animal models.
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[85] V. A. Adarichev, T. Bárdos, S. Christodoulou, M. T. Phillips,
K. Mikecz, and T. T. Glant, “Major histocompatibility
complex controls susceptibility and dominant inheritance,
but not the severity of the disease in mouse models of
rheumatoid arthritis,” Immunogenetics, vol. 54, no. 3, pp.
184–192, 2002.



Clinical and Developmental Immunology 13

[86] V. A. Adarichev, J. C. Valdez, T. Bárdos, A. Finnegan, K.
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