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Abstract: Over the last years, a growing body of evidence suggests that gut microbial communities
play a fundamental role in many aspects of human health and diseases. The gut microbiota is a very
dynamic entity influenced by environment and nutritional behaviors. Considering the influence
of such a microbial community on human health and its multiple mechanisms of action as the
production of bioactive compounds, pathogens protection, energy homeostasis, nutrients metabolism
and regulation of immunity, establishing the influences of different nutritional approach is of pivotal
importance. The very low carbohydrate ketogenic diet is a very popular dietary approach used for
different aims: from weight loss to neurological diseases. The aim of this review is to dissect the
complex interactions between ketogenic diet and gut microbiota and how this large network may
influence human health.
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1. Introduction

1.1. The Human Gut Microbiota and the Microbiome

The human gut microbiota, that means the types of organisms that are present in an environmental
habitat, consisting of trillions of microbial cells and thousands of bacterial species [1]. It encompasses
~10−13 microorganisms belonging to the three domains of life Bacteria, Archaea and Eukarya and
it is involved in several and different functions [2,3]. Microbiome is the collection of the genes
and their functions and, due to the new genetic and bioinformatics technologies, the study of the
gut microbiome has been radically transformed. The use of the newest platform next generation
sequencing (NGS) enables the sequencing of a thousand to million DNA molecules of bacteria in one
sequence run (metagenomics) [4] and through this microbial sequencing has been finally possible the
understanding of how different microorganisms are present in different tracts of human body [5]. These
new omics-technologies allow scientists to discover the role of bacterial genes in human health [6].

Several studies suggest that a mammalian host establishes their core microbiota at birth [7]; the
colonization of the gastrointestinal tract by microorganisms, begins within a few hours of birth and
concludes around three to four years of age. The nature of the colonic microbiota is driven by several
factors such as breast feeding, geographical location, genetics, age and gender [8].

The impact of food (macronutrients) on gut microbiota composition is growing up in interest,
especially with respect of specifically dietary fibers. It has been shown that dietary patterns composed
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by non-refined foods and a high intake of “microbiota accessible carbohydrate” (MACs), are capable to
support the growth of specialist microbes producing short chain fatty acids (SCFAs): the prominent
energy source for human colonocytes and the signaling key molecules between the gut microbiota
and the host [9]. Controversially, the typical pattern of Western diet, high fat-high sugar and low
fibers, reduces the production of SCFAs shifting the gastrointestinal microbiota metabolism to the
production of detrimental metabolites, favoring the expansion of bacteria associated with chronic
inflammation [10].

The composition of the microbiome is influenced by many factors [11] and the stability of
the microbiome, reached between two to five years of age, is overlooked by Bacteroidetes, the
largest phylum of gram-negative bacteria associated with both beneficial and detrimental effects on
health [12,13]. However, the Firmicutes to Bacteroidetes ratio is regarded to be significant for the gut
health, the ratio is clearly linked with increasing body mass index (BMI) [14] and the levels of these
two dominant bacterial species are known to shift dramatically with aging, especially Bifidobacterium
and Lactobacillus genera [15].

1.2. Bioactive Products

The microorganisms living in our gut influence the host through the production of bioactive
metabolites, which are able to regulate many biological pathways involved in immunity and energy
production. The bacterial population of the large intestine digests carbohydrates, proteins and lipids left
undigested by the small intestine. Indigested substances, named “microbiota accessible carbohydrates”
(MACs), are represented by the walls of plant cell, cellulose, hemicelluloses and pectin and resistant
starch; these polymers undergo microbial degradation and subsequent fermentation [3]. It is really
fascinating that the genome of gut bacteria, different from the human genome, encoded several
highly specified enzymes able to digest and ferment complex biomacromolecules by hydrolyzing the
glycosidic bonds [16,17].

More important, microorganisms have the ability to produce a great amount of B12 and K
vitamins, essential for human health, especially for the daily vitamin K intake that is most frequently
insufficient [18,19].

The prominent end-products of fermentation in the colon are short chain fatty acids (SCFAs) such
as butyrate (C4H7O2-) produced especially by Firmicutes, propionate (C3H502-) by Bacteroidetes and
acetate (C2H402) by anaerobes; they represent the greatest source of energy for intestinal absorptive
cells. [20,21].

SCFAs contribute to the regulation of the systemic immune function, to the direct appropriate
immune response to pathogen and they influence the resolution of inflammation [22].

Moreover, specific bacteria have their own ability to produce many neuroendocrine hormones and
neuroactive compounds involved in key aspect of neurotransmission, thus, microbial endocrinology
interconnects the science of microbiology with neurobiology. As a matter of fact, γ amino butyric
acid (GABA), the major inhibitory neurotransmitter of mammalian central nervous system [23], has
been demonstrated to be produced by strains of Lactobacilli and Bifidobacteria, more specifically by
Lactobacillus brevis, Bifidobacterium dentium, Bifidobacterium adolescentis and Bifidobacterium infantis [24,25].
Lactobacillus rhamnosus has been demonstrated for its therapeutical potential in modulating the
expression of central GABA receptors, mediating depression and anxiety-like behaviors [26].

Furthermore, another important mediator of the gut-brain axis is serotonin (5-hydroxytryptamine
5-HT) that is produced by the enterochromaffin cells of the gastrointestinal tract. It is a metabolite
of the amino acid tryptophan and plays a pivotal role in the regulation of several functions such as
the mood.

The 95% of serotonin is stored in enterochromaffin cells and enteric neurons, while only the 5% is
found in the central nervous system. Kim and colleagues found that germ-free mice have a two-fold
decrease of the serotonin blood’s level as compared with commonly mice [27].
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However, the gut peripheral serotonin is unable to overstep the blood brain barrier; this serotonin
acts on lumen, mucosa, circulating platelets and it is grandly implicated in the gut peristalsis and
intestinal anti-inflammation [28,29]. Jun Namking and colleagues suggested that the regulation of the
peripheral serotonin might be an adequate tool for the treatment of obesity by the increasing of insulin
sensitivity [30].

1.3. Interindividual Variability of Microbiota

The variability among people and the adaptability of gut microbiota to substantial changes have
permitted the manipulation of various external factors, restoring both the biological functions and
richness of microbiota [31]. The fact that human microbial community is strictly influenced by diet,
and, a good ecological community is connected with a better health, offers a range of opportunity
for improving human’s health by changing the microbiota composition through different patterns of
diet [32–34].

The availability of a huge variety and combination of nutrients promotes the selective enrichment
of microorganisms, but both the quality and quantity of the macronutrients have an effect on the
structure and function of the microbiome [35].

It has been demonstrated the high fat–high sugar Western diet negatively impacts gut health [36]
and a high fat diet is closely related to inflammation [37], however, several studies [38–40] suggested the
necessity to consider the structure and the function of different fatty acids. De Wit and collaborators [41]
showed that specific type of fatty acids affect the gut microbiota in different way and, more recently, it
has been said that monounsaturated fatty acid’s (MUFA’s) and polyunsaturated fatty acid’s (PUFA’s)
omega 3 may be the control key of low-grade systemic inflammation, gut inflammation and as well as
obesity [39].

For these reasons, specialized and restricted dietary regimens adopted as a treatment of some
diseases, such as low FODMAP for the irritable bowel syndrome and ketogenic diet for refractory
epilepsy, should be investigated for their influence on human microbiota [40,42]. These patterns,
by reducing or excluding certain type of foods, may affect positively or negatively the microbiota
composition and its related influence on host physiology [43–45]. That is the case of very low
carbohydrate ketogenic diet (VLCKD), a nutritional approach growing up in interest not only for
neurological disorders but also for being a “lose-it-quick-plan” [45,46]. VLCKD, by the drastic
reduction of the carbohydrate intake, showed an impairment both on the diversity and richness of gut
microbiota [47].

1.4. Very Low Carbohydrate Ketogenic Diet (VLCKD)

The very low carbohydrate ketogenic diet (VLCKD) is a dietary protocol that has been used since
the 1920 as a treatment for refractory epilepsy [48] and it is currently getting popularity as a potential
therapy for obesity and related metabolic disorders [49]. Due to the typical pattern of VLCKD, a
hot topic in research and an evolving area of study has been the effect of ketogenic diet on the gut
microbiome [50–53].

Ketogenic diet permits a very low carbohydrate consumption (around 5% to 10% of total caloric
intake or below 50 g per day), as a mean to enhance ketone production [54].

Originally, VLCKD had been used as a treatment for epileptic patients that failed to respond
to anticonvulsant medication [55]. Currently it has become popular for its benefits extended
to neurodegenerative diseases, metabolic diseases and obesity [45]. Recently, VLCKD has been
demonstrated to be a powerful tool for some neurodegenerative disease such as autism spectrum
disorder (ASD), Alzheimer’s disease [46], glucose transporter 1 deficiency syndrome [56] and auto
immune multiple sclerosis (AIMS) [57]. Given the fact that VLCKD is a highly restricted dietary
pattern, nowadays, there has been the necessity of formulating new features of the VLCKD, such as
the popular modified Atkins diet (MAD) and low glycemic index diet (LGIT) [58,59].
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These new patterns have been demonstrated as a successful tool able to reduce seizure symptoms,
as well as they reveal a similar outcome, with lower side effects, while compared to the traditional
regimes of VLCKD [60–62]. LGIT, different from the modified Atkins regime, involves avoiding high
glycemic carbohydrates to stabilize blood glucose since it has been shown that stable glucose levels are
associated with seizure control [63]. Due to the MAD and LGIT people may choose in a more flexible
way the meal they want to consume, they do not have to calculate the specific ketogenic ratio but they
may focus on ensuring sufficient and appropriate fats, both in quantity and quality.

1.5. Physiology of Ketosis

The very low carbohydrate ketogenic diet (VLCKD) share several pathways that have been found
during fasting state [64]. After several days of drastically reduction of carbohydrate intake, at least
<20 g/d or 5% of total daily energy intake, the glucose in the body results insufficient for both fat
oxidation (oxaloacetate in tricarboxylic acid cycle TCA) and energy required for the central nervous
system forcing the organism to use fats as a primary fuel source [65].

However, fat free acids do not provide energy for the brain because they are not capable to
overstep the blood brain barrier: This energy is provided by ketone bodies.

Ketone bodies, 3 hydroxybutyrate (3HB), acetate and acetoacetate (AcAc) are produced in the liver
through the process of ketogenesis. Ketogenesis takes place especially in the mitochondria of liver cells
where fatty acids reach the mitochondria via carnitine palmitoyltransferase and then breaks down into
their metabolites, generating acetyl CoA. The enzyme thiolase (or acetyl coenzyme A acetyltransferase)
converts two molecules of acetyl-CoA into acetoacetyl-CoA. Acetoacetyl-CoA is then converted to
HMG-CoA due to the enzyme HMG-CoA synthase. Lastly, HMG-CoA lyase converts HMG-CoA
to acetoacetate, which can be decarboxylated in acetone or, via β-hydroxybutyrate dehydrogenase,
transformed in β-hydroxybutyrate.

The less abundant ketone body is acetone while 3HB plays a main role in the human body under
low carbon hydrate diet [66].

The global view of how VLCKD may influence the gut’s health is shown in Figure 1.
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Figure 1. The influence of a very low carbohydrate ketogenic diet and ketone bodies in gut health.
BHB: β-hydroxybutyrate, AcAc: Acetoacetate.

2. Methods

We performed a systematic review from February to March 2019; we used the electronic databases
Pubmed, (MEDLINE) and Google scholar. We adopted the MeSH term through the function “MeSH
Database” within Pubmed. The terms combined with Boolean operators AND, OR, NOT have been
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“gut microbiota”, “gut microbiome”, “intestinal microbiome”, “ketogenic diet”, with “ketogenic”, “fat”.
Eligibility criteria included full-text articles, written in English, available online from 2015 to 2019;
specific studies in which authors investigated the effect of the ketogenic diet on gut microbiota and
declared no conflict of interest. We decided to include both in vivo and in vitro studies, ranging from
randomized controlled trials to case-control and, to emphasize the effects of diet in “fixed” conditions,
we included as well animal studies.

3. Results

How VLCKD Affects the Gut Microbiome

As the ketogenic diet seems to gain consensus [63], little is still known about its impact on the
gut microbiota.

Only few experimental studies sought the relationship between VLCKD and gut
microbiome [47,50,52,53,67–70] investigating how VLCKD impacts composition and characteristics of
intestinal microorganisms. The effects of VLCKD on gut microbiome have been explored in mice and
humans with mixed results. Our systematic review included nine studies and the major findings have
been schematically reported (Table 1).
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Table 1. Main findings of the effects of Ketogenic diet (KD) on gut microbiome.

Subjects Subjects
Characteristics Duration Type of KD Measured KBs

(Y/N) KBs’ Level Genome Analysis
Technique Main Findings of Bacteria Changes

Tagliabue et al.
(2017) [50]

6 patients (3 females
3 males) pre-post

Glucose Transporter 1
Deficiency Syndrome 3 months

First 1:1 ratio with gradual
increase of 2:1, 3:1 and or 4:1

KD ratio
Ketonuria Not mentioned DNA extraction

RT-qPCR analysis INCREASE Desulfovibrio spp.

Swidsinki et al.
(2017) [52]

25 MS patients and
14 controls

Auto Immune
Multiple Sclerosis 6 months >50 g carbohydrate, >160 g fat,

<100 g protein
Ketonemia and

ketonuria

β-hydroxybutyric
acid ≥ 500 µmol/L;

acetoacetate ≥
500 µmol/L

FISH with
ribosomial RNA
derived probes

DECREASE β-diversity, DECREASE substantial
bacteria groups after two weeks, after six

months completely recover the concentration
to baseline

Newell et al.
(2017) [67]

25 juvenile male
C57BL/6 (B6) and

21 BTBR mice

Autism Spectrum
Disorder 10–14 days 75% kcal fat Ketonemia β-hydroxybutyric

acid 5.1 ± 0.8 mmol/L
DNA extraction

RT-qPCR analysis

DECREASE in total bacterial content both in
cecal and fecal analysis, DECREASE

A. muciniphila both in cecal and fecal matter,
INCREASE Enterobacteriaceae in fecal matter

Burke et al.
(2019) [47]

10 LCHF, 10 PCHO,
9 HCHO pre-post Elite race walkers 3 weeks 78% fat, 2.2 g/kg BM/day

protein, <50 g carbohydrate Ketonemia β-hydroxybutyric
acid ≥ 1.0 mmol/L

16S rRNA-gene
amplicon

sequencing

INCREASE in Bacteroides and Dorea spp.
DECREASE in Faecalibacterium spp.

Lindefeldt et al.
(2019) [70]

12 children (parents as
controls) pre-post

Therapy-resistant
epilepsy 3 months 4:1 in 7 children, 3.5:1 in 2, and

3:1 in 3 KD ratio Ketonemia β-hydroxybutyric
acid 0.3 ± 0.2 mmol/L

Shotgun
metagenomic DNA

sequencing

DECREASE in abundance of bifidobacterium,
E. rectale, E. dialister, INCREASE in E. coli,

changes in 29 SEED subsystem: reduction of
seven pathways of carbohydrate metabolism

Olson et al.
(2018) [53]

Juvenile SPF wild-type
Swiss Webster mice, GF
wild type SW mice, SPF
C3HeB/FeJ KCNA1 KO

mice

6 Hz induced seizure
model of refractory

epilepsy
3 weeks 6:1 KD ratio

Ketonemia (liver,
colon, intestine) and
normalized to SPF
(specific-pathogen

free)

β-hydroxybutyric
acid (different levels

accepted)

16S rRNA-gene
amplicon

sequencing

DECREASE in α diversity, INCREASE
A. muciniphila, Parabacteroides, Suttarella and

Erysipelotrichaceae

Zhang et al.
(2018) [69]

20 patients (14 males
6 females) pre-post Refractory epilepsy 6 months

4:1 KD ratio (plant fat 70%,
1 g/kg BM/day from animal

source
Ketonemia

β-hydroxybutyric
acid 2.85 ± 0.246 and
3.01 ± 0.238 mmol/L

(effective and
ineffective group)

16S rRNA-gene
amplicon

sequencing

DECREASE in α diversity, Firmicutes,
Actinobacteria, INCREASE in Bacteroidetes

Ma et al. (2017)
[51] C57BL/6 male mice Healthy mice 4 months

75% fat (saturated,
monounsaturated,

polyunsaturated), 8.6% protein,
3.2% carbohydrates

Ketonemia
β-hydroxybutyric

acid around 1.5
mmol/L

16S rRNA-gene
amplicon

sequencing

DECREASE in diversity, INCREASE
A. muciniphila, Lactobacillus, DECREASE

Desulfovibrio, Turicinabacter

Xie et al. (2017)
[68]

14 patients and
30 healthy infants Refractory epilepsy 1 week

lipid-to-non-lipid ratio of 4:1
(40% medium chain, 60% long
chain), 60–80 kcal/kg per day,

1–1.5 g/kg protein

Not mentioned Not mentioned
16S rRNA-gene

amplicon
sequencing

DECREASE Proteobacteria (Cronobacter),
INCREASE Bacteroidetes (Bacteroides,

Prevotella), Bifidobacterium

KD: Ketogenic diet; RT-qPCR: Real-time quantitative polymerase chain reaction; MS: Multiple Sclerosis; FISH: Fluorescent in situ hybridization; rRNA: ribosomial ribonucleic acid;
SPF: specific-pathogen-free; SW: Swiss Webster.
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Recently, [53] it has been explored the role of VLCKD on gut microbiota related to the anti-seizure
effect on mice. In this study, they found that mice, within four days of being on a diet, had significant
changes in gut bacterial taxonomy. Two species of bacteria, Akkermansia and Parabacteriodes were
significantly increased in mice that were fed ketogenic diets and gnotobiotic colonization with these
microorganisms revealed an anti-seizure effect in germ-free mice or treated with antibiotics.

The increase of these two bacteria species in the gut led to a decreased production of γ-glutamyl
transpeptidase by the gut microbiome, the enzyme catalyzes the transfer of γ-glutamyl functional
groups from molecules such as glutathione to an acceptor that may be an amino acid forming
glutamate [71].

Moreover, they observed a decrease in subset of ketogenic γ-glutatamylated (GG) amino acids
(i.e., γ-glutamyl-leucine) both in the gut and blood. GG amino acids are supposed to have transport
properties across the blood–brain barrier, different from non-γ-glutamylated forms [72]: This property
is involved in glutamate and GABA biosynthesis [73].

This fact, in turn, had the effect of increasing the ratio of GABA to glutamate in the brain of mice.
The researchers suggested that VLCKD-microbiota-related limitation in GG amino acids plays a pivotal
role on anti-seizure effect, confirmed by the previous studies showing GGT activity to modify the
electrical activity of seizure [53].

The ketogenic diet, composed by short fatty acids SFAs, monounsaturated fatty acids MUFAs
and polyunsaturated fatty acids PUFAs, has been provided for 16 weeks by Ma and colleagues [51]
and it reveals that mice had a variety of neurovascular improvement strictly linked to a lower risk
of developing Alzheimer’s disease. These beneficial effects may be connected with the changing
on gut microbiota composition, more specifically with the growing quota of beneficial bacteria,
Akkermansia Muciniphila and Lactobacillus, which have the ability of generating short chain fatty
acids SCFAs. Interestingly, they found a reduction in pro-inflammatory microbes such as Desulfovibrio
and Turicibacter. The VLCKD however, decreased the overall microbial α diversity due to the low
carbohydrate (complex carbohydrate) content of diet, which is fundamental for the microorganism in
order to breakdown them and producing energy [52].

A 2016 study [67] investigated whether or not a VLCKD could ensure benefits in the gut
microbiome in murine model of autism. The authors administrated a VLCKD for several days (10–14)
observing changes in gut microbiome; they concluded that the VLCKD had an “anti-microbial” effect
by decreasing the overall richness of microorganisms both in cecal and fecal matter, and as well as
improved the ratio of Firmicutes to Bacteroides species. A lowered firmicutes: bacteroides ratio
is common in ASD and the VLCKD, by improving this ratio, was able to enhance ASD behavioral
symptoms. Lastly, different from the above-mentioned studies, the VLCKD decreased the number of
A. muciniphila bacteria species, resulting in similar levels to those found in the control groups.

It has been described the connection between microbiome, VLCKD and the potential role playing
in multiple sclerosis (MS) [52]. A common attribute of the AIMS is the damage and affliction of
“colonic bio-fermentative function”. The fermentative process which allow the production of beneficial
byproducts such as SFCA, is impaired, thus, the dysbiotic colonic bacteria ferment foods into dangerous
compounds affecting the organism. The VLCKD completely restored the microbial biofermentative
mass and normalizing the concentration of the colonic microbiome. The authors [52] showed a biphasic
effect of VLCKD: first there has been a dramatic decrease in richness and bacterial diversity, but, after
12 weeks, bacterial concentration began to recover back to baseline and, after 23–24 weeks, it showed a
significant increase in bacterial concentration above baseline.

A study in children by Xie and colleagues [68], investigated the connection between microbiome
and refractory epilepsy in 14 epileptic and 30 healthy infants. Patients with epilepsy demonstrated
an imbalance of gut microbiota before starting the VLCKD. The authors found a higher amount of
pathogenic proteobacteria (Escherichia, Salmonella and Vibrio), which significantly decreased after
VLCKD treatment and an increase of Bacterioidetes both in healthy subjects and in patients. Bacteroides
spp. are strictly connected with the digestion and metabolism of high-fat nutrients and the regulation
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of the secretion of 6–17 interleukins in dendritic cells, which is connected with the seizure effects on
epileptic patients [74]. Researchers suggest that VLCKD can reduce these symptoms by developing
changes on microbiota diversity.

Zhang et al. sought the differences in the microbiota of pediatric patients fed a ketogenic diet [69].
They investigated the difference between responders (seizure frequency was reduced or stopped) and
non-responders (no effect on seizure). They found increased amount of Bacteroides and decreased
amounts in Firmicutes and Actinobacteria, in responders. On the other hand, Clostridia, Ruminococcus
and Lachnospiraceae (Firmicutes phylum) increased in non-responders. These data demonstrated that
ketogenic diet alters the gut microbiome of pediatric patients, suggesting that the gut microbiome
should be taken into account as a biomarker of efficacy of anti-seizure treatment. As regard patients
affected by Glucose Transporter 1 Deficiency Syndrome [50], it has been showed a significant increase in
Desulfovibrio spp. in six patients, after 3 months of intervention. Desulfovibrio spp is a genus belonging
to a heterogeneous group of sulfate-reducing, motile, anaerobic bacteria related to the inflammatory
status of the gut layer mucosa [75]. Authors suggested that in case of dysbiosis, it might be a good
option the use of an extra-supplementation with pre or probiotics to maintain the “ecological balance” of
gut microbiota [50].

Recently, a study in epileptic children found a reduction of Bifidobacteria, as well as E. rectale and
Dialister, which are correlated with health promoting benefits such as the prevention of colorectal
cancer, IBS and necrotizing entercolitis [76]. Researcher identified a relative abundance of Actinobacteria
and Escherichia coli that may be due to the VLCKD restricted on carbohydrate. It should be stressed
that through the analysis of the 29SEED subsystem, scientists revealed a depletion of those pathways
responsible of the degradation of carbohydrates [70].

4. Discussion

4.1. Friend or Enemies?

All the papers that have been chosen for depicting the crossing mechanisms, revealed supposed
connections between gut microbiome, ketogenic diets and systemic effects. Some findings are
demonstrated through “omics” analyses, some are only assumed. As it can be seen, there are several
and controversy findings suggesting the necessity of a deeper understanding. The picture (Figure 2)
aims to highlight the supposed major effects of ketogenic diet on different tissues and gut microbiota,
along with how tissues may be influenced by gut microbiota diversity.
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Figure 2. Effects of ketogenic diet on different tissues and the microbiome. Figure 2. Effects of ketogenic diet on different tissues and the microbiome. KD has a contradictory

role on hunger but the net effect is anorexigenic. KD Exerts orexigenic effects: The increase of brain
GABA (γ-aminobutyric acid) through BHB (β-hydroxybutyric acid); the increase of AMP (adenosine
monophosphate -activated protein) phosphorylation via BHB; the increase of circulating level of
adiponectin; the decreases of ROS (reactive oxygen species). KD Exerts anorexigenic effect: the increase
of circulating post meal FFA (free fatty acids); a maintained meal’s response of CCK (cholecystokinin);
a decrease of circulating ghrelin; a decrease of AMP phosphorylation; a decrease of AgRP (agouti-related
protein) expression. KD has positive effects on Alzheimer’s disease through: an increase levels of
CBF (cerebral blood flow) in VMH (ventromedial hypothalamus); a decrease expression of mTOR
(mammalian target of rapamycin) by the increase of the level of eNOS (endothelial nitric oxide synthase)
protein expression; an increased expression of P-gp (P-glycoprotein), which transport Aβ (amyloid-β)
plaques; an improvement of BBB’s (blood–brain-barrier) integrity. KD has beneficial effects on epileptic
seizure by the modulation of hippocampal GABA/glutamate ratio. It exerts anti-seizure effects through:
An increase level of GABA, an increase content of GABA: glutamate ratio. KD plays a main role on
fat loss. It exerts positive effects on adipose tissue through: a decrease of liposynthesis, an increase
of lipid oxidation and an increase in adiponectin. KD has a contradictory role on microbiome. KD
generally exerts its effect through: a decrease in α diversity (the diversity in a single ecosystem/sample)
and a decrease in richness (number of different species in a habitat/sample). KD influences the gut
health through metabolites produced by different microbes: an increase/decrease in SCFA (short chain
fatty acids), an increase in H2S (hydrogen sulfide) and a decrease in lactate. KD to microbiome to the
brain: KD may influence the CNS (central nervous system) not only directly but also indirectly. The KD
effects on the brain are supposed to be mediated by microbiota through an increase of SCFAs and a
decrease of γ-glutamyl amino acid. A. muciniphila and Lactobacillus are known as SCFAs producers.
SCFAs are transported by monocarboxylase transporters expressed at BBB. Desulfovibrio has the ability
to produce hydrogen sulfide and, as a consequence, impair intestinal mucosal barrier. A reduction in
Desulfovibrio and an enhancement in A. muciniphila and Lactobacillus may facilitate BBB and neurovascular
amelioration. KD to microbiome to the adipose tissue: KD may indirectly influence the adipose tissue
by the microbiota through a decrease in glycemia via adenosine monophosphate-activated protein
kinase (AMPK) phosphorylation, an increase in insulin sensitivity and an increase in SCFAs. The great
amount of A. muciniphila and Lactobacillus spp. led to the reduction of body weight and glycemia. It has
been demonstrated that patient with type 2 diabetes, treated with metformin, revealed higher level
of A. muciniphila, may be to the ability of metformin on decreasing body weight by the activation of
AMPK pathways (amp-activated protein kinase). A. muciniphila is related with the enhancement of
insulin sensitivity and Lactobacillus may be playing the same effects through SFCAs production: Several
studies showed that Lactobacillus is strictly connected with body weight loss.
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4.2. Factors Affecting Microbiota during a VLCKD: What Should We Consider?

4.2.1. Fats

The optimal composition of a VLCKD considers both high saturated and mono-polyunsaturated
fats [54], whilst the Western diet is rich in saturated-trans fats and poor in mono-polyunsaturated
fats [77].

A recent systematic review concluded that diets high in saturated fatty acids led to negative
effects on the gut microbiota [78]. The authors observed that diets rich in highly monounsaturated fats
affected negatively the gut microbiota decreasing bacteria richness, while diets rich in polyunsaturated
fatty acids (with opposite effects when comparing omega 3 vs. omega 6 fats) did not change richness
and diversity. However, to notice that only a few studies have been conducted with NGS methods or
shotgun sequencing, these new technologies deliver accurate data by avoiding experimental pitfalls
and biases created by the “old fashioned” sequencing methods [79]. Recently, a randomized controlled
trial study [80] has revealed that a diet with a high content in fat increased Bacteroides while reducing the
number of butyrate producers (Faecalibacterium and Blautia bacteria) compared with a middle-lower-fat
group. The differences in fecal SCFA could be explained by the high content of carbohydrates in the
middle to low-fat diets, made up of resistant starches that have been broken down and fermented.
It has to be stressed that the source of fat came from soybean oil, which is highly rich in omega 6
polyunsaturated fatty acids [81]; a higher omega-6: omega-3 long-chain PUFA ratio is associated with
many health risks and chronic state of inflammation [82–84]. Another RCT study [85] showed that a
supplementation with omega 3 PUFA did not disclose any taxonomic changes both in α and β diversity
(at family and genus levels) including short-chain fatty acid producers.

According to these results, different studies demonstrated that each type of fatty acid may
induce different effects: The saturated fats (palm oil) induce higher liver triglyceride content in mice,
as opposed to polyunsaturated fats (olive oil) [41]. Moreover, genetically modified mice, characterized
by the ability of producing omega 3 (PUFAs) and fed with high fat and high sugar diet, showed
a higher microbial diversity and a normal gut layer function in the distal intestine, different from
non-modified-mice fed with the same macronutrients [86].

The source of fats (omega 6: Omega3, PUFAa and MUFAs) and their own quality should be highly
considered when performing a very low carbohydrate dietary plan and as well as when giving general
nutritional advices.

4.2.2. Sweeteners

An area of controversy in the ketogenic diet is the consumption of artificial sweeteners replacing
natural sugars. Several evidences demonstrated that artificial sweeteners have a negative impact
on both host and gut health. Nettleton at al. found that low calorie sweeteners, such as acesulfame
potassium (Ace-K) and sucralose, disrupted the structure and function of gut microbiota and gut
mucosa [87]. More recently Qiao-Ping Wang investigated, through the use of NGS, the effects of
non-nutritive sweeteners (NNSs) on the gut microbioma of mice at the organism level; the study
reveals that artificial sweeteners has bacteriostatic effects and as well as change the composition of
microbiota [88]. These findings, according to the fact that the routine consumption of NNSs may
increase the risk of cardiometabolic diseases [89], suggested that these chemical substitutes may be
detrimental for human health and should be avoided [90]. However, recently, the use of stevia (also
called Stevia rebaudiana) has been widely adopted as a non-nutrient but natural sweeteners. The use
of Stevia lowered insulin and glucose level in 19 healthy lean and 12 obese individuals and left
them satisfied and full after eating, despite the lower calorie intake [91]. Accordingly, Sharma and
colleagues [92] showed a reduction of cholesterol level, triglyceride, low-density lipoprotein (LDL) and
an enhancement of high-density lipoprotein (HDL) on 20 hypercholesterolemic women consuming
stevia extracts. In a 2008 review, authors suggest that there are not enough information concerning the
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effect of stevia on gut microbioma [93], whilst others reported a possible link between nonnutritive
sweeteners, including stevia, and the disruption of beneficial intestinal flora [94].

Given the fact that there is no explicit data available on gut microbiome, but, The Food and Drug
Administration (FDA) considered it as “generally safe” [95], stevia might slightly be used in place of
artificial and chemical sweeteners, within coffee, tea or in a unsweetened yogurt. However, further
investigation need to be done considering the effect of low calorie sweeteners on gut and human health.

4.2.3. Pre and Probiotics

A proper suggestion for maintaining a healthy gut microbiota during the ketogenic diet may be the
use of pre and probiotics: Increasing evidences [96,97] demonstrate their positive benefits. The major
source of prebiotics is represented by fructo-oligosaccharides, inulin, lactulose galacto-oligosaccharides
and trans-galacto-oligosaccharides [98]. Fermentation of prebiotics by gut microbiota produces SCFAs,
which positively modulate the composition of microbiota (by increasing intestinal bifidobacteria
and lactic acid bacteria), providing an energy source for colonocytes [99]. Differently, probiotics are
living bacteria (especially from the genera Bifidobacterium and Lactobacillus) and yeasts that, when
administrated in an adequate amount, show positive effect on human health; they are usually added to
yogurts or found in “specialty food” [100–102]. It has been reported [103,104] that foods enriched with
these microorganisms are able to recovery and improve gut microbiota, reaching the state of eubiosis.
Cultured-milk products (kefir, Greek yogurt), traditional buttermilk, water kefir, fermented cheese,
sauerkraut, kimchi, miso, kombucha and pickles contain several and different “friendly bacteria” such
as Lactobacillus acidophilus, Lactobacillus delbrueckii subsp. bulgarius, Lactobacillus reuteri, Saccharomyces
boulardii and Bifidobacterium bifidum [105–108].

However, despite the growing interest on fermented foods, there is a lack of epidemiological
studies [104] and the majority have focused only on yogurt and cultured dairy foods [109,110].
The paucity arises from the difficulty of understanding if health benefits come from the fermentation
operated by microbes or other bioactive compounds. As regard the usefulness of fermented foods
during a VLCKD, they represent an excellent and palatable source of dietary fiber and essential
micronutrients [111], which should be moderately provided during a VLCKD.

In our opinion since foods that have undergone deep fermentation seem to improve the gut
microbiome diversity and gut health index [112] adding small portions of fermented foods to the diet
may be a useful prebiotic/probiotic supplementation as well as an effective aid to digestion. A caveat
should be done: It is mandatory to verify that fermented foods and beverages are able to not modify in
a significant manner glycaemia and insulinaemia while maintaining a sufficient ketonemia.

It has been recently shown that parmesan (an Italian hard and dry cheese), contains “friendly
bacteria” acting as probiotics and able to colonize and live in the gut of those individuals who daily
consume it [113]. Thus, the moderate consumption of a high-fat fermented food is well recommended
for human gut and human health.

4.2.4. Proteins

Several considerations have to be done to the different impact of different protein on
gut microbiome.

The source and type of protein must be considered, especially in the field of sports, in which the
intake of protein within VLCKD is fundamental to maintain lean body mass [114].

Several studies investigated how and how much different kind of protein (plant versus animal)
modify microbiome [115–117], showing that, even though high protein diet generally impair gut health
(decrease abundance and change composition) [118], several and disparate effects appear on the gut
microbiota [119].

Plant-derived protein, such as mung bean protein (as a part of high fat diet), increased
Bacteroidetes while decreasing Firmicutes as well as pea protein increased strains of Bifidobacterium
and lactobacillus [115].
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These studies demonstrated that plant-derived protein get better benefits on gut microbiome
along with positive effects on the host metabolism.

To note that we did consider that no studies investigated how protein have been processed, such
as thermal treatment, and the effect of the processing treatment on microbiome composition.

During a period of VLCKD, we recommend the use of a source of plant protein (veg protein) since
these are more beneficial in terms of health gut microbiota.

5. Conclusions, Perspective and Future Research

In the recent years, the interest regarding the benefits of ketogenic diets is growing up and
expanding well beyond the seizure control. Ketogenic diet, as well as the more flexible and less
restrictive regimens MAD, LGIT is commonly adopted for weight loss in both obese patients and
athlete populations. Bacteria taxa, richness and diversity are strictly influenced by ketogenic diet.
A few human and animal studies have shown different results demonstrating positive effects on
reshaping bacterial architecture and gut biological functions, while others reporting negative effects as
a lowered diversity and an increased amount of pro-inflammatory bacteria.

Nevertheless, short period studies and with specific disease conditions have been carried
out [50,52,67,68], limiting generalization to the overall population. Additionally, the microbiota of
many environments may be highly variable and its plasticity could be dependent on past and specific
dietary patterns [120]. In agreement with these considerations, Healey and colleagues concluded
that because of the high variability among people of microbiome composition, it is actually difficult
to identify how microbiota may change the diversity in relation to a specific dietary pattern [121].
According to different authors [50,70], there is the necessity to find better strategies to maximize the
benefit of VLCKD. It may be useful implementing VLCKD with specific pre and probiotics, which
has been found to be drastically reduced during VLCKD [50]. Additionally, promising evidence
comes from randomized control trials suggesting that quality dietary fats highly affects the gut
microbiota composition. Diets with a high fat content and good quality of polyunsaturated fats
and plant-derived protein are able to maintain normal gut function [80,86]. In parallel, the abolition
of artificial sweeteners [90] should be recommended to avoid negative effects on general health
caused by alteration of gut microbiota. It has been suggested that a supplementation with prebiotics,
such as inulin, lactulose, fruttooligosaccharides (FOS) and galactooligosaccharides (GOS) that increases
Bifidobacteria, may prevent undesired changes in the gut microbiota [122].

Nonetheless, it is essential to point out that the modified microbiota composition, changed
by VLCKD, plays a pivotal role on the itself activity of VLCKD [53,67,68]; the changes have been
demonstrated to be necessary in order to provide positive effects such as the anti-seizure effect and
amelioration of neurovascular function [53,69,70].

Although there are still many questions limiting the practical research on microbiome, several
new developments carried on advancement in this field. Integration of omics science with the newest
metagenomic methods of microbiota assessment (next generation sequencing, shotgun sequencing
16S rRNA) shall be helpful to define healthy versus unhealthy microbial operational taxonomic units
(OTUs). For this purpose, the Italian Microbiome Project (http://progettomicrobiomaitaliano.org)
focuses his research on the advantages and disadvantages that may arise from the genes of bacterial
origin, by combining bioinformatic tools with algorithms to better link microbiota data to human
health outcomes. Recently, it has been developed a machine e-learning algorithm that is able to predict
a specific post-prandial glycemic response by analyzing microbiome profiling [123,124].

The observations that a ketogenic diet can modulate and reshape gut microbiota represents
a potential and promising future therapeutic approach. VLCKD has been demonstrated to be a
powerful tool and needs to be further refined and well formulated considering its impact on gut health.
In conclusion, further research with long-term clinical trials has to be performed in order to establish
safer and healthier specific dietary interventions for patients.

http://progettomicrobiomaitaliano.org
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Take Home Message:

Practical recommendations to preserve gut health during a VLCKD:

• Introduce the use of whey and plant proteins (i.e., pea protein);
• Reduce the intake of animal protein;
• Implement fermented food and beverages (yoghurt, water and milk kefir, kimchi, fermented

vegetables);
• Introduce properly prebiotics and specific probiotics (if needed);
• Reduce omega 3 to omega 6 fatty acids ratio (increase omega 3 while decreasing omega 6);
• Introduce an accurate quantity and quality of unsaturated fatty acids;
• Avoid artificial sweeteners (stevia?) and processed foods;
• Test your microbiome if needed (analysis of 16S rRNA to identify biodiversity and richness).

It is mandatory to verify that fermented foods and beverages and proteins should not modify
(in a significant manner) glycaemia and insulinaemia while maintaining a sufficient ketonemia.

We need to remember as well as that the modified microbiota composition induced by VLCKD,
plays a pivotal role on the itself activity of diet.
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