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Abstract

Polygenic scores link the genotypes of ancient individuals to their phenotypes, which are

often unobservable, offering a tantalizing opportunity to reconstruct complex trait evolution.

In practice, however, interpretation of ancient polygenic scores is subject to numerous

assumptions. For one, the genome-wide association (GWA) studies from which polygenic

scores are derived, can only estimate effect sizes for loci segregating in contemporary popu-

lations. Therefore, a GWA study may not correctly identify all loci relevant to trait variation in

the ancient population. In addition, the frequencies of trait-associated loci may have

changed in the intervening years. Here, we devise a theoretical framework to quantify the

effect of this allelic turnover on the statistical properties of polygenic scores as functions of

population genetic dynamics, trait architecture, power to detect significant loci, and the age

of the ancient sample. We model the allele frequencies of loci underlying trait variation using

the Wright-Fisher diffusion, and employ the spectral representation of its transition density

to find analytical expressions for several error metrics, including the expected sample corre-

lation between the polygenic scores of ancient individuals and their true phenotypes,

referred to as polygenic score accuracy. Our theory also applies to a two-population sce-

nario and demonstrates that allelic turnover alone may explain a substantial percentage of

the reduced accuracy observed in cross-population predictions, akin to those performed in

human genetics. Finally, we use simulations to explore the effects of recent directional

selection, a bias-inducing process, on the statistics of interest. We find that even in the pres-

ence of bias, weak selection induces minimal deviations from our neutral expectations for

the decay of polygenic score accuracy. By quantifying the limitations of polygenic scores in

an explicit evolutionary context, our work lays the foundation for the development of more

sophisticated statistical procedures to analyze both temporally and geographically resolved

polygenic scores.

Author summary

The genomes of ancient organisms document, albeit imperfectly, the migrations, admix-

ture events, and displacements that may have occurred in a given species’ history.
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Researchers also use these ancient genomes to learn whether genetic changes underlie the

evolution of polygenic traits, like height and disease susceptibility, which are affected by

many genetic variants of small effects. Such analyses rely on models, often garnered from

large-scale genetic association studies, that predict the phenotypes of ancient individuals

from their genotypes. Yet, theoretical and empirical research suggests that prediction

accuracy depends on the relationship between the sample in which the model was built

and the sample in which it is applied. In this vein, we quantify the effects of one funda-

mental limitation on prediction accuracy: the fact that allele frequencies may differ across

time and geographic space. As a consequence, a given prediction model may not capture

all of the genetic variation relevant to phenotypic variation in the focal, ancient sample.

Introduction

Decay in linkage disequilibrium (LD) between tagging and causal sites, population stratifica-

tion, variation in allele frequencies within and across populations, and environmental hetero-

geneity, among other factors, are all thought to negatively impact the prediction accuracy of

polygenic scores (see e.g., [1–7], and more recently in humans, e.g., [8–13]). Many of these

issues likely influence both within- and out-of-sample predictions, where out-of-sample may

refer to an individual sampled from a distinct time or location relative to that of the GWA

study. While empirical [12, 14] and simulation [1, 13, 15] or combined [16] studies have

explored particular population genetic scenarios or experimental contexts, we still do not

know the extent to which each of these factors compromises prediction accuracy in general.

In this work, we address an issue pertinent to out-of-sample prediction: that causal loci may

have different allele frequencies in the GWA study and focal populations. Variants common in

the GWA study may be rare in the focal population, and vice versa. We refer to this phenome-

non as allelic turnover. Allelic turnover implies that effect estimates ported across space and

time, or both, may not reflect all of the genetic variation relevant to phenotypic variation in an

ancient or geographically distinct population. Allelic turnover further suggests that the statisti-

cal properties of ancient polygenic scores depend on when an ancient individual was sampled

—a feature not currently accounted for in ancient DNA analyses. Similarly, statistical proper-

ties of geographically disparate polygenic scores depend on the divergence time between the

GWA study and focal populations. An understanding of allelic turnover in these contexts may

ultimately improve statistical analyses of temporally (e.g., [17–20]) and geographically resolved

polygenic scores (e.g., [9, 10]), analyses which are increasingly commonplace.

We aim to quantify the effect of allelic turnover on the polygenic scores of such out-of-sam-

ple individuals when they are computed using effect estimates from a contemporary popula-

tion. We expect that increases in ancient sampling time or divergence time will be associated

with declines in polygenic score accuracy due exclusively to allelic turnover. The question is,

by how much does accuracy decline? And, can allelic turnover alone explain the reduced accu-

racy of out-of-sample predictions observed in numerous human (e.g., [15, 16]), animal (e.g.,

[1, 2, 4]) and plant (e.g., [21, 22]) experiments and simulation studies. The answer is likely to

depend on the particular population genetic, trait, and GWA study features of the system

under study [3]. We attempt to capture some important aspects of this diversity in our model-

ing framework.

Here, we consider a standard implementation of the polygenic score Ŷ which attributes

non-zero effects to a particular set of loci, S. An individual’s polygenic score is a weighted sum

of its genotype, where the weights are the estimated allelic effects. The loci in S and their
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estimated effects are usually identified in large-scale GWA studies, often performed in regional

biobanks with sample sizes in the tens to hundreds of thousands of individuals (e.g., the UK

Biobank [23], BioBank Japan [24]). Frequently, the set S includes loci which are approximately

independent and surpass some allele frequency and p-value thresholds. Though there are

numerous ways to define a polygenic score (e.g., [25, 26] and see Section 4 in S1 Text), the

“prune and threshold” method is commonly used and proves analytically tractable in our

framework.

Previous quantitative genetic approaches, such as [27] and [16], largely ignore the underly-

ing population genetic dynamics. For example, Wang et al. [16] estimate the reduction in poly-

genic score accuracy in a focal population relative to the GWA study population as a function

of the fixed population-specific trait heritabilities, allele frequencies, and LD patterns, and the

estimated per-locus effects. In contrast, we embed the ancient polygenic score in an explicit

population genetic framework, allowing us to take into account changes in allele frequency as

well as the statistical constraint imposed by a finite GWA study sample size. And, distinct from

previous approaches to the evolutionary modeling of polygenic scores [28], we track the fre-

quencies of all loci that potentially contribute to a trait—not just the loci included in the poly-

genic score (i.e., loci in S).

Henceforth, we frame our study in terms of ancient polygenic scores. However, we formally

demonstrate that our theoretical results apply to out-of-space polygenic scores, where the pop-

ulation divergence time multiplied by two is analogous to the ancient sampling time (see Fig 1

and Section 1 in S1 Text). The latter scenario can represent an ancient individual sampled

from a population not directly ancestral to that of the GWA study as the two populations must

have diverged at some point in the past. This scenario, to a first approximation, describes the

population displacement events thought to be ubiquitous in the history of humans (e.g., [29]).

However, human history is additionally characterized by numerous admixture events and

population size changes (e.g., [29]) which are not yet captured within our modeling

framework.

We use several statistics to characterize ancient polygenic score error in distinct population

genetic and GWA study scenarios. Each statistic is indexed by the ancient sampling time τ: the

bias, bias(τ), mean-squared error,mse(τ), estimated additive genetic variance, V̂ AðtÞ, and

polygenic score accuracy, ρ2(τ), which approximates the expectation of the squared sample

correlation coefficient between the polygenic scores and phenotypes of an ancient sample. In

addition, we can readily express these statistics as functions of the genetic divergence between

the ancient and GWA study populations, as measured by the fixation index, FST (Section 11 in

S1 Text). We first derive general forms for these statistics that are agnostic to almost all of our

modeling assumptions and which provide conceptual insights into the effects of allelic turn-

over. Next, we derive explicit, parameter-dependent expressions for each statistic when the

trait is neutrally evolving in a population of constant size subject to recurrent mutation—

which for small mutation rates approximates the infinite sites model. We take advantage of the

spectral representation of the transition density function of the Wright-Fisher diffusion (tdf)
to execute these computations [30–33]. We then find interpretable linear approximations for

the initial rate of increase (or decrease) of the metrics under study. These approximations

apply for the small ancient sampling times typical of ancient humans remains (e.g., see [18]).

Consistent with our expectations,mse(τ) increases and the estimated additive genetic vari-

ance V̂ AðtÞ decreases with increasing sampling age τ. Despite the fact thatmse(τ) and V̂ AðtÞ

are measuring distinct quantities—and indeed have different functional forms—our linear

approximations reveal that, under our assumptions, both statistics initially change at approxi-

mately the same rate. This rate is proportional to the product of the mutation rate and the
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power to detect trait-associated loci in the GWA study, which in turn, is influenced by both

study size, the magnitude of the true per-locus effect, and the underlying distribution of the

allele frequencies of causal loci.

Moreover, we show that polygenic score accuracy ρ2(τ) is proportional to V̂ AðtÞ, which, as

stated, is sensitive to the GWA study and evolutionary parameters. Unlike V̂ AðtÞ, ρ
2(τ)

depends on the trait heritability h2, with larger values of h2 increasing its rate of decay. In con-

trast, for small mutation rates, relative accuracy, defined as the ratio of ρ2(τ) to accuracy mea-

sured in a present-day sample ρ2(0), is insensitive to h2, the true per-locus effect size, and the

GWA study parameters, as long as the GWA study size n exceeds some minimum threshold.

We show that this result likely holds for an arbitrary distribution of effects. Importantly, accu-

racy and relative accuracy decay considerably over the short time spans characteristic of

ancient human samples and geographically distinct human populations.

With equal probability of detecting positive versus negative effect alleles, and under neutral-

ity, the bias of the polygenic score is zero for all ancient sampling times. In practice, both of

these conditions are likely violated. For example, detection imbalances have been observed in

case-control GWA studies [34], and many polygenic traits are likely under some form of selec-

tion [35, 36]. While unequal thresholds do not precisely capture the phenomena described in

[34], they do yield a non-zero bias(τ) within our framework. The magnitude of this bias is

Fig 1. A population genetic model for an ancient polygenic score. Figures (A) and (B) portray the two demographic scenarios

encompassed by our modeling framework. In (A), the ancient individual is sampled at an earlier time τ from the same population in

which the GWA study is conducted. In (B), the ancient individual is sampled at an arbitrary time τ0 from a population that split from

the population in which the GWA study was conducted at some time τsplit in the past. The dotted line schematically relates τ0 to the

ancient sampling time τ of (A), i.e., τ = 2τsplit − τ0. In (C), a graphical model relates the random variables explicit and implicit in the

polygenic score Ŷ ðtÞ and phenotype Y(τ) of an ancient individual sampled τ generations in the past, as in (A). Darkly shaded and

thickly bordered nodes are observed quantities. Unshaded and thinly bordered nodes are unobserved. Lightly shaded nodes

bordered by dashed lines denote estimated quantities. Edges denote direct dependencies between connected nodes. For example,

conditional on the ancient genotype X(τ), the polygenic score Ŷ ðtÞ is independent of the population allele frequencies Z(τ).
Quantities in blue are associated with the present day only, and include the population allele frequencies Z(0); the genotypes of the n
individuals in the GWA study, fXig

n
i¼1

and their phenotypes, fYig
n
i¼1

; and, the effects and intercept term estimated in the GWA

study, β̂ and Ĉ , respectively.

https://doi.org/10.1371/journal.pgen.1010170.g001
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small, implying that other perturbations would be necessary to explain an observed, apprecia-

ble bias. To relax the neutrality assumption, we simulate recent directional selection. We find

that when the selection coefficient is large enough (4Ns� 1), selection indeed yields biased

polygenic scores. Though this selection-induced bias is several orders of magnitude larger than

that induced by asymmetry in the detection thresholds, it is still small relative to the variance

explained by segregating genetic variants. Additionally, weak selection only induces small

deviations from neutral theoretical expectations for the other statistics, suggesting that our

neutral theory may still accurately capture accuracy declines in the presence of weak direc-

tional selection. Altogether, our theoretical results suggest that allelic turnover may make large

contributions to out-of-sample reductions in accuracy, even under neutrality.

Model and metrics

Our modeling framework readily encompasses two demographic scenarios. In the first, the

focal individual is sampled from the same population in which the GWA study was performed,

but at a previous point in time τ (Fig 1A). We specify τ in coalescent time units: An ancient

sampling time of τ corresponds to 2N � τ generations in the past, with 2N as the diploid popula-

tion size. When τ = 0, the focal individual is an independent sample from the GWA study pop-

ulation. In the second scenario (Fig 1B), the focal individual is sampled at τ0 from a population

that diverged from the GWA study population at τsplit (in coalescent time units) in the past.

However, we show in Section 1 in S1 Text that scenario (A) is equivalent to scenario (B) if the

ancient sampling time τ is equal to 2τsplit − τ0. Therefore, we proceed according to the first sce-

nario, while emphasizing that our conclusions readily translate to the second.

We summarize the full model in Fig 1C and detail its constituent parts in the proceeding

subsections. Briefly, the genotype of the ancient individual is sampled conditional on the popu-

lation allele frequencies at τ. The ancient individual’s phenotype is then sampled conditional

on its genotype. Population allele frequencies for all loci that potentially affect the trait evolve

until present day, at which point the GWA study is conducted. In particular, the effect sizes

included in the polygenic score model are estimated from the genotypes and phenotypes of n
contemporary individuals. Finally, the ancient polygenic score is computed from the ancient

individual’s genotype and the polygenic score model derived from the results of a contempo-

rary GWA study.

Sampling the genotype of a time-indexed individual

We assume that each site is at most bi-allelic, with possible alleles A1 and A2. We denote the

genotype of an individual sampled at some time t (in coalescent units) as Xiℓ(t), where i indexes

the individual, and ℓ the locus. For the ancient individual(s), t = τ; for the participants in the

GWA study, t = 0. For mathematical convenience, we use a symmetric genotype encoding,

that is Xiℓ(t) 2 {−1, 0, 1}, corresponding to genotypes A1 A1, A1 A2, and A2 A2, respectively.

Conditional on the population allele frequency of allele A2 at t, Zℓ(t), the distribution of Xiℓ(t)
is given by the Hardy-Weinberg sampling probabilities: PfXi‘ðtÞ ¼ � 1jZ‘ðtÞ ¼ zg ¼ ð1 � zÞ

2
,

PfXi‘ðtÞ ¼ 0jZ‘ðtÞ ¼ zg ¼ 2zð1 � zÞ, and PfXi‘ðtÞ ¼ 1jZ‘ðtÞ ¼ zg ¼ z2.

Modeling the true phenotype

The genetic basis of a polygenic trait, Y, is determined by a set L, consisting of L distinct

genetic loci (jLj ¼ L), each with a true per-locus additive effect b‘ 2 R (for ℓ = 1, 2, . . ., L). We

further assume that the L loci contribute linearly to the trait, such that the true phenotype of
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the i-th individual sampled at t is specified by the commonly used additive genetic model [37],

YiðtÞ ¼ C þ
XL

‘¼1

Xi‘ðtÞb‘ þ �iðtÞ; ð1Þ

where C is a constant; βℓ is the true additive effect of locus ℓ; and �iðtÞ � N ð0; s2
eÞ is a normally

distributed random variable that incorporates variance in the phenotype due to the environ-

ment. The summation in Eq 1 is often referred to as an individual’s genetic value [25]. A locus

ℓ contributes ±βℓ to the genetic value (and phenotype) of an individual who is homozygous at

ℓ, and zero to that of a heterozygous individual. C is thus the phenotype of an hypothetical all

heterozygous individual. Without loss of generality, we set C = 0. In addition, we assume, with-

out loss of generality, that all βℓ� 0 such that locus ℓ contributes −βℓ to the genetic values of

A1A1 individuals and +βℓ to the genetic values of A2A2 individuals.

A fixed locus, Zℓ(t) 2 {0, 1}, will affect the mean phenotype of the population at t by ±βℓ but

will not contribute to phenotypic variation. We illustrate this fact by conditioning on the allele

frequencies of all loci in L at t, Z(t) 2 [0, 1]L. Assuming linkage equilibrium between loci as

well as independence between the environmental and genetic effects, we have,

V½YiðtÞjZðtÞ� ¼ 2
XL

‘¼1

b
2

‘
Z‘ðtÞð1 � Z‘ðtÞÞ þ s

2

e : ð2Þ

The summation in Eq 2 is the additive genetic variance at t, VA(t). For a segregating site, the

summand is proportional to Zℓ(t)(1 − Zℓ(t)), with 0< Zℓ(t)(1 − Zℓ(t))< 1. For a fixed site, the

summand is zero and the site does not contribute to the additive genetic variance VA(t). An

important feature of our model is that some of the L loci may not exhibit genetic variation in

the population at a given time. More concretely, the set of loci with non-zero estimated effects

on the polygenic score, S, may only be a small subset of L. Thus, we assume that L is a superset

of S.

Constructing a model for the polygenic score

As our aim is to isolate the effects of allelic turnover on the statistical properties of polygenic

scores, we make the additional assumption that the genotyped sites are the causal sites. (We

have already assumed that all loci are in linkage equilibrium.) Akin to [38], we employ a simple

threshold model for the effect estimates. For a GWA study consisting of n individuals (and 2n
chromosomes),

b̂‘≔
b‘ if D‘ 2 ðd‘1; 2n � d‘2Þ;

0 else;

(

ð3Þ

where Dℓ is the allele count of the trait-increasing allele A2 at the ℓ-th site in the GWA study

sample; and dℓ1 and dℓ2 are the site-specific detection thresholds. In this simplified model, the

true effect is estimated perfectly for all sites with allele counts within the intervals (dℓ1, 2n −
dℓ2) for ‘ 2 L. In Section 4 in S1 Text, we relate Eq 3 to two alternative estimation procedures:

maximum likelihood estimation (MLE) and the best linear unbiased predictor (BLUP).

We allow the two thresholds to differ in order to encompass scenarios in which power is an

asymmetric function of the sample allele frequencies, e.g., there is more power to detect low

frequency (Dℓ< n) versus high frequency (Dℓ> n) trait-increasing alleles. Such situations may

arise with polygenic disease inheritance and imbalanced case and control sample sizes [34]. In

most cases, however, we will consider symmetric detection thresholds, with dℓ1 = dℓ2 = dℓ. The
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threshold dℓ depends on on the phenotypic variance, genome-wide significance threshold, true

per-locus effect βℓ, and GWA study size n. In Section 2 in S1 Text, we give an explicit form for

this dependency for a continuous focal trait and equal detection thresholds. Varying dℓ while

keeping the GWA sample size fixed is equivalent to varying the true per-locus effect βℓ. Vary-

ing the GWA study size n while keeping βℓ and the other parameters fixed is akin to varying

the GWA study’s power to detect loci of a particular effect size. In Analytical Results, we do

both.

The threshold model arises in the large GWA study size n limit for the model of b̂‘ provided

in Equation 5 in S1 Text. Namely, as long as Dℓ is not too small, the variance of b̂‘ goes to zero

as n grows. Thus, the threshold model in Eq 3 will necessarily underestimate the true variance

of b̂ (Section 4 in S1 Text). Still, this model captures the dependency of b̂‘ on the GWA study

sample size n and the true per-locus effect βℓ, while facilitating our analytical treatment.

In order to compare the polygenic score with an individual’s true phenotype, we need to

account for all sites in the mutational target L, not just those in S, the set of sites with non-

zero effect estimates in the polygenic score. As b̂‘ ¼ 0 for any site in L but not S, we express

the polygenic score as a function of all loci in L. The ancient polygenic score of individual i
sampled τ generations in the past is then given by,

Ŷ iðtÞ≔Ĉ þ
XL

‘¼1

Xi‘ðtÞb̂‘; ð4Þ

where Ĉ is the average phenotype of the GWA sample after subtracting the estimated genetic

effects at all loci,

Ĉ≔�Y �
XL

‘¼1

b̂‘
�X ‘; ð5Þ

with �Y ¼ 1

n

Pn
j¼1
Yj and �X ‘ ¼

1

n

Pn
j¼1
Xj‘ as the mean phenotype and genotype at locus ℓ in the

GWA study sample, respectively. Here, and in the remainder of our study, we omit time-

indexing for random variables associated with the GWA study at t = 0. By design, the esti-

mated intercept Ĉ absorbs the effects of all loci which were not detected as significant in the

GWA study, i.e., those sites for which b̂‘ ¼ 0. Its presence in the polygenic score of Eq 4 is

necessitated by the fact that, to facilitate our analytical treatment, we did not center nor scale

the genotypes and phenotypes in the GWA study. Importantly, all of our results are indepen-

dent of this choice (Section 5 in S1 Text). Henceforth, unless otherwise noted, we refer to Eq 4

as the polygenic score and to the summation in Eq 4 as the genetic prediction.

Modeling population genetic dynamics

Population genetic processes govern the correlations between allele frequencies at distinct

points in time. We model this correlation using the Wright-Fisher diffusion with recurrent

mutation. As we assumed all loci were in linkage equilibrium, their allele frequencies evolve

forward in time independently, subject to genetic drift and mutation. At each site, alleles

mutate from A1! A2 with rate μ, and from A2! A1 with rate ν. While our results readily gen-

eralize to arbitrary μ and ν, we restrict ourselves to equal mutation rates, μ = ν.
We further assume that the population is at equilibrium. In this setting, the marginal allele

frequencies are beta-distributed, with shape and scale parameters specified by the population-

scaled mutation rate; we denote the latter quantity by a, with a = 4Nμ = 4Nν.
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The relative magnitudes of mutation and genetic drift determine which force dominates an

allele frequency trajectory. For example, as a approaches 0, the effects of mutation on the fre-

quencies of segregating mutations become negligible and genetic drift dominates. In this low

mutation regime (a� 1, or equivalently m� 1

2N), the recurrent mutation model approximates

the infinite sites model, while still retaining the features that make it attractive for our analyti-

cal treatment. In particular, the stationary allele frequency distribution is a well-defined proba-

bility distribution under the recurrent mutation model, but not under the infinite sites model.

We concern ourselves almost exclusively with the low mutation regime.

Quantifying out-of-sample prediction errors

To quantify how well the polygenic score approximates the true phenotype of an individual

sampled uniformly at random from the population at time τ before the present, we use several

statistics:

Bias. We define the bias as the expectation of the difference between the polygenic score

and true phenotype,

biasðtÞ≔E½Ŷ ðtÞ � YðtÞ�; ð6Þ

where, here and elsewhere, we omit the subscript when there is only one sample. The expecta-

tion in Eq 6 is with respect to the entire random process, encompassing the underlying popula-

tion genetic dynamics, estimation of the per-locus effects in the GWA study, and computation

of the ancient polygenic score (illustrated in Fig 1C).

Mean-squared error (mse). We define themse as the expectation of the squared predic-

tion error,

mseðtÞ≔E½ðŶ ðtÞ � YðtÞÞ2�: ð7Þ

As in Eq 6, the expectation in Eq 7 is with respect to all sources of randomness in the

model. The variance of the prediction error equals the difference of themse and the square of

the bias, and thus it is fully characterized by these two metrics.

Expected estimated additive genetic variance (V̂ A). The estimated additive genetic

variance is an estimate of the amount of phenotypic variance in the ancient population

explained by additive genetic effects alone. We use V̂ AðtÞ to represent the expectation of this

quantity,

V̂ AðtÞ≔
XL

‘¼1

V̂ A‘ðtÞ ¼ 2
XL

‘¼1

E½b̂2

‘
Ẑ ‘ðtÞð1 � Ẑ ‘ðtÞÞ�; ð8Þ

where Ẑ ‘ðtÞ is an estimate of the ancient population allele frequency computed from a sam-

ple of na individuals sampled at τ. The expected true additive genetic variance, E½VA�, can be

found by taking the expectation of the summation in Eq 2.

Polygenic score accuracy (ρ2). Practitioners often compute the sample correlation coeffi-

cient r2 to measure the accuracy of a predictor in a sample. Here, our sample is na ancient indi-

viduals sampled at time τ, thus,

r2ðtÞ≔
Cov½Ŷ ðtÞ;YðtÞ�2

Var½Ŷ ðtÞ�Var½YðtÞ�
; ð9Þ

where Cov[�, �] and Var[�] are the sample covariance and variance operators, respectively, and

Ŷ ðtÞ;YðtÞ 2 Rna are the na-dimensional vectors of polygenic scores and phenotypes of the
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ancient individuals, respectively. Ideally, we would compute the expectation of this quantity—

but, this is challenging due to the common difficulty of computing an expectation of a ratio of

random variables. Thus, we approximate the expectation of r2(τ) as the ratio of expectations,

E r2ðtÞ½ � �
E½Cov½Ŷ ðtÞ;YðtÞ��2

E½Var½Ŷ ðtÞ��E½Var½YðtÞ��
≕r2ðtÞ; ð10Þ

where, as above, the covariance and variances are taken with respect to the sample of na
ancient individuals, while the expectation is over all sources of randomness in Fig 1C (see Sec-

tion 7.4 in S1 Text for more details). We present simulations in the section Polygenic score
accuracy of Analytical Results showing that ρ2(τ) is a good approximation for the expectation

of r2(τ) in the parameter regimes of interest.

Analytical Results

By how much does the prediction accuracy of a polygenic score decrease as the time between

sampling the ancient individual and conducting the GWA study increases? To answer this

question, we consider a trait potentially influenced by L genetic loci, each with true effect βℓ�
0, ℓ = 1, . . ., L. The forward evolution of sites underlying this trait is modulated by a per site,

per generation mutation rate, μ, and a population scaled rate of a = 4Nμ. The diploid popula-

tion of size 2N chromosomes is assumed to be at equilibrium. The parameters dictating the

GWA study are the sample size n and the detection thresholds specified by d1, d2 2 {1, . . ., n}L.

The metrics are indexed by the ancient sampling time τ in coalescent time-units. An ancient

sampling time of τ corresponds to 2N � τ generations in the past. We omit the time index for

variables associated with the GWA study, which occurs at present day (t = 0). (We show in Sec-

tion 11 in S1 Text, that the metrics can also be expressed as a function of divergence or FST

between the ancient and contemporary populations).

Each subsection is structured as follows: We first derive a general expression for the statistic

that does not depend on how we model the population genetic dynamics nor the GWA study.

Second, we derive an analytical expression for the statistic under the population genetic

assumptions and the GWA study threshold model described in Model and metrics.

Bias

We can rewrite the sampling time-dependent bias defined in Eq 6 as,

biasðtÞ ¼
XL

‘¼1

bias‘ðtÞ ¼
XL

‘¼1

E½ð�X ‘ � X‘ðtÞÞðb‘ � b̂‘Þ�; ð11Þ

where biasℓ(τ) is the contribution of locus ℓ to bias(τ). From Eq 11, we see that biasℓ(τ)� 0

when either or both of b̂‘ � b‘ and �X ‘ � X‘ðtÞ are true. Thus, biasℓ(τ) is minimal when (i)

effect estimates are accurate, and (ii) the allele frequencies have not changed substantially in

the interval [τ, 0].

Under the assumption of equal mutation rates and detection thresholds (dℓ1 = dℓ2), biasℓ(τ)
= 0 for τ� 0 for a reason distinct from those stated above. Trait-increasing alleles at high fre-

quencies (Dℓ> n) and low frequencies (Dℓ< n) are detected as significant (b̂‘ 6¼ 0) with equal

probability. An equivalent assumption is that power is not affected by whether the most preva-

lent allele is trait-increasing or decreasing. Subsequent evolution of the allele frequencies pre-

serves this symmetry and bias(τ) remains equal to zero for all τ. It follows that in the absence

of additional perturbing forces, an estimate of the mean polygenic score from a sample of na
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ancient individuals will also be unbiased, and therefore will on average accurately reflect the

lack of change in the mean phenotype.

However, if we introduce asymmetry in the detection thresholds (dℓ1 6¼ dℓ2), bias(τ) is non-

zero for all τ (Section 7.1 in S1 Text). Using the spectral representation of the transition density

of the Wright-Fisher diffusion (tdf), we derive the per-locus contribution to the bias, biasℓ(τ)
(Section 7.1 in S1 Text). For a small population-scaled mutation rate a and a large GWA study

size n, we approximate this expression (given in Equation 45 in S1 Text) as,

bias‘ðtÞ � ðe� at � 1ÞðPðd‘1Þ � Pðd‘2ÞÞ; ð12Þ

where,

Pðd‘iÞ ¼
Xd‘i � 1

i¼0

2n
i

� �
Bðaþ i; aþ 2n � iÞ

Bða; aÞ
ð13Þ

is the probability that the allele count of site ℓ is less than dℓi, i.e., Dℓ< dℓi for i = 1, 2; and, B(�, �)

is the beta function. Thus, the magnitude of biasℓ(τ) is approximately proportional to the dif-

ference in the probability of detecting high (Dℓ> n) versus low (Dℓ< n) frequency alleles, and

increases exponentially with τ. With a large GWA study size n and a small mutation rate a, this

difference is small relative to the square root of the additive genetic variance—the ratio of

these two quantities is smaller than OðaÞ (Fig S1a in S1 Text). This is due to the fact that when

the mutation rate is small, most alleles are close to fixation or fixed. The stationary population

allele frequency density κ(z)/ za−1(1 − z)a−1 behaves like z−1(1 − z)−1 for small a. Varying dℓi
then has relatively little impact on Pðd‘iÞ, constraining the difference between the one-sided

detection probabilities (Fig S1b in S1 Text).

Mean-squared error

The sampling time-dependent mean-squared errormse(τ) can be expressed as,

mseðtÞ ¼
XL

‘¼1

mse‘ðtÞ þ
n � 1

n

� �

s2

e

¼
XL

‘¼1

E ðX‘ðtÞ � �X ‘Þ
2
ðb̂‘ � b‘Þ

2
h i

þ
n � 1

n

� �

s2

e ;

ð14Þ

where s2
e is the variance in the phenotype due to the environment (Section 7.2 in S1 Text).

Note the similarity of the left term in Eq 14 to the form of bias(τ) given in Eq 11—similar heu-

ristics apply. Under the threshold model specified in Eq 3, sites at moderate frequencies in the

GWA study sample, Dℓ 2 [dℓ, 2n − dℓ], will not contribute tomse(τ) since b̂‘ ¼ b‘. Only sites

with frequencies outside this interval (including sites invariant in the GWA study sample) will

contribute, and their contributions will be proportional to the squared difference between

Xℓ(τ) and �X ‘. In practice, moderate frequency loci will also contribute tomse(τ) due to errors

in the estimation of the effect estimates and any difference between the ancient genotypes and

the average genotypes in the GWA study sample at these sites (Section 4 in S1 Text).

We use the spectral representation of the tdf (Section 6 in S1 Text) to derive an analytical

expression formseℓ(τ), the per-locus contribution to themse (Section 7.2 in S1 Text). From

this expression, Equation 50 in S1 Text, we derive a linear approximation for the initial per-

locus increase in this statistic, Δmseℓ(τ). With a symmetric detection threshold (dℓ1 = dℓ2 = dℓ)
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we have,

Dmse‘ðtÞ≔mse‘ðtÞ � mse‘ð0Þ � 2b
2

‘
aPðd‘Þt; ð15Þ

wheremseℓ(0) is the contribution of site ℓ tomse(τ) for τ = 0 (Equation 76 in S1 Text); and

2Pðd‘Þ, defined in Eq 13, is the probability that the allele count of site ℓ is outside the detection

interval such that b̂‘ ¼ 0. Bothmseℓ(0) and Pðd‘Þ depend on the mutation rate a, the GWA

study size n, and the detection threshold dℓ.
Δmseℓ(τ) reflects the time-dependent contributions of sites not detected in

the GWA study. To see this, we condition on the effect estimate b̂‘,

mse‘ðtÞ ¼ b
2

‘
E½ðX‘ðtÞ � �X ‘Þ

2
jb̂‘ ¼ 0� � 2Pðd‘Þ þ 0 � ð1 � 2Pðd‘ÞÞ. Thus, Eq 15 implies that

dE½ðX‘ðtÞ� �X ‘Þ
2 jb̂‘¼0�

dt � a for small τ, and consequently, the combined effects of drift and mutation

onmseℓ(τ) are captured in the product of the mutation rate and sampling time aτ.
In addition, Eq 15 suggests that the rate at whichmseℓ(τ) increases will be shared across

parameter regimes when aPðd‘Þ is similar (Fig S4a in S1 Text). To illustrate this, we use our ana-

lytic formula (given in Equation 50 in S1 Text) to computemseℓ(τ) for several low mutation

rates, a 2 {10−4, 10−3, 10−2}, and three GWA study sizes, n 2 {104, 105, 106} (Fig 2A). These

mutation rates and sample sizes span the range of parameter values appropriate for human

data. We depict our results in two ways: (i) we plot the change inmseℓ(τ), and (ii) we plot

mseℓ(τ) normalized by the expected additive genetic variance contributed by a single site. At

stationarity the expected additive genetic variance is constant and equal to,

E½VA‘� ¼ E½2b
2

‘
Z‘ð1 � Z‘Þ� ¼ b

2

‘
ða=ð2aþ 1ÞÞ

for a scaled-mutation rate a. The plot of the former, Fig 2A, exhibits the functional relationship

revealed by Eq 15, while the latter, Fig 2B, approximates the noise-to-signal ratio. In Section 9

in S1 Text, we demonstrate that Eq 15 is a good approximation tomse(τ) for τ� 0.2, particu-

larly when the GWA study size n is large (in particular, see Fig S5 in S1 Text).

To find the GWA study size specific detection thresholds used in Fig 2A and 2B, we solve

Equation 11 in S1 Text for a given effect size β, phenotypic variance Vp, and significance

threshold α, while varying the GWA study sample size. For β2 = 0.01, Vp = 1, and α = 10−8, the

detection thresholds are d = 4142, 3340, 3290 in order of increasing sample size, which corre-

sponds to sample allele frequencies of approximately 0.2, 0.02, amd 0.002, respectively. Thus,

for a given effect size, larger sample sizes will lead to the detection of alleles at more extreme

allele frequencies, while smaller samples will restrict detection to alleles at more intermediate

frequencies. Due to non-identifiability, the parameter choices are fairly arbitrary.

We find that for small mutation rates, the cumulative change in themse, Δmseℓ(τ), is mostly

insensitive to differences in the GWA study sample size (Fig 2A and 2B). The approximation

in Eq 15 helps to explain this result. The rate of increase is approximately proportional to

2aPðd‘Þt. For small mutation rates (a� 1) and an arbitrary detection threshold dℓ, the proba-

bility of not detecting a locus as significantly associated with the trait is roughly 2aPðd‘Þ � 1 for

all sufficiently large n (Fig S1b in S1 Text). In this regime, increasing the GWA study sample

size only yields small increases in the probability of detecting a locus as significant. Thus, for

small mutation rates, the product of this quantity with the mutation rate is 2aPðd‘Þ � a, and

indeed, we observe a cumulative increase inmseℓ(τ) that is OðaÞ for τ = 1 (Fig 2A). We note

that increasing the GWA study sample size does enable detection of loci with smaller effects.

The result in Fig 2A, however, hides the fact that a small absolute increase inmse(τ) may

correspond to a substantial increase in the noise-to-signal ratio. Indeed, for a = 10−3 (blue

lines throughout),mseℓ(τ) ultimately exceeds the expected additive genetic variance E½VA‘� for
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all GWA study sample sizes (Fig 2B). By τ = 0.2, a sampling time characteristic of ancient

humans,mseℓ(τ) due to allelic turnover is approximately 20% of the additive genetic variance

E½VA‘�. For sufficiently large τ,mseℓ(τ) is at least the same order of magnitude as the expected

additive genetic variance. In addition, whilemseℓ(τ) increases at approximately the same rate

irrespective of study size, its initial valuemseℓ(0) is sample size dependent (Fig 2B and see Fig

S4b and S4e in S1 Text for a larger parameter space). Yet, for a given value of dℓ, reductions in

mseℓ(0) mediated by sample size diminish once n is large enough (Fig S4b and S4e in S1 Text).

Further, Fig 2A obscures the fact that different mutation rates may yield similar noise-to-

signal ratios. As discussed, for small a,mseℓ(τ) increases with τ at a rate that is OðaÞ. For small

a, the additive genetic variance is likewise OðaÞ, yielding a relative increase that is mostly

insensitive to the mutation rate. Normalizedmseℓ(0) is also similar across small mutation rates

(Fig S4b and S4e in S1 Text), rendering relativemseℓ(τ) mostly insensitive to a. We thus omit-

ted the other two mutation rates from Fig 2B.

Lastly, we fix the GWA study sample size at n = 105 and vary the detection threshold d (Fig

2C). Varying d while keeping n fixed is analogous to varying the true per-locus effect size β, or

keeping β fixed while varying the significance threshold α. The minimum threshold is d = 10,

whereas d = n = 105 maximizesmseℓ(τ) since b̂‘ would equal zero for all ℓ. Consistent with our

analysis above, for small a, (i)mseℓ(0) depends critically on d, while (ii)mseℓ(τ)’s approxi-

mately linear growth rate is largely insensitive to d. Furthermore, by our previous arguments,

relativemseℓ(τ) is similar across small mutation rates, and they are also omitted in Fig 2C. For

Fig 2. Per locus contributions to the mean-squared error and estimated additive genetic variance across sample sizes, mutation rates, and

detection thresholds. In (A), we plot the per-locus increase inmse, Δmseℓ(τ), normalized by β2, for three mutation rates a = 10−4, 10−3, 10−2 by color,

and for the three sample sizes, n = 104, 105, 106 by shape, respectively. For a squared effect size of β2 = 0.01, each sample size, in part, specifies a value of

dℓ, with d = 4142, 3340, 3290, or sample allele frequencies of approximately 0.2, 0.02, and 0.002, in order of increasing sample size. In (B-C), we restrict

ourselves to a = 10−3 as the lines for different mutation rates would otherwise largely coincide. In (B), we plotmseℓ(τ) normalized by the expected

additive genetic variance at stationarity, E½VA‘� ¼ b
2a=ð2aþ 1Þ. In (C), we fix n = 104 and vary the detection threshold over several orders of

magnitude, d 2 {10, . . ., 105}, plottingmseℓ(τ) normalized by E½VA‘�. In (D-F), we repeat (A-C), but for the statistic V̂ A‘ðtÞ, with the following exception:

Because V̂ A‘ðtÞ decreases with τ, we plot the absolute value of its difference from V̂ A‘ð0Þ in (A). For all plots the ancient sampling time τ 2 [1, 0], which

corresponds to a time span of 2N generations.

https://doi.org/10.1371/journal.pgen.1010170.g002
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independent and identically distributed (iid) loci and s2
e ¼ 0, the per-locusmseℓ(τ) values pre-

sented in Fig 2B and 2C are equal to the corresponding trait-wide statisticsmse(τ).

Additive genetic variance

The per-locus contribution to the expected estimated additive genetic variance V̂ AðtÞ is,

V̂ A‘ðtÞ ¼ 2E b̂2
‘
Ẑ ‘ðtÞð1 � Ẑ ‘ðtÞÞ

h i
¼ 2

2na � 1

2na

� �

E b̂2
‘
Z‘ðtÞð1 � Z‘ðtÞÞ

h i
; ð16Þ

where ẐðtÞ ¼ 1

2na

Pna
i¼1
XiðtÞ þ 1ð Þ is the estimated allele frequency at τ, computed in a sample

of na ancient individuals. When b̂‘ ¼ 0 or Zℓ(τ) 2 {0, 1}, site ℓ will not contribute to V̂ AðtÞ.

Thus, a site ℓ has a non-zero contribution to the estimated additive genetic varianceonly

when it is segregating at both the present day and τ. This condition is necessary for both

Ẑ ‘ðtÞð1 � Ẑ ‘ðtÞÞ > 0 and b̂‘ 6¼ 0 to be true.

As with the two previous statistics, we use the spectral representation of the tdf to derive an

analytical expression for V̂ AðtÞ under our population genetic assumptions (Section 7.3 in S1

Text). The resulting expression, Equation 54 in S1 Text, indicates that the expected additive

genetic variance decays exponentially. We then, to first order in the ancient sampling time τ,
approximate the initial decrease in the per-locus estimated additive genetic variance DV̂ A‘ðtÞ,

DV̂ A‘ðtÞ≔V̂ A‘ðtÞ � V̂ A‘ð0Þ ¼ � 2
2na � 1

2na

� �

b
2

‘
aPðd‘Þt; ð17Þ

where V̂ A‘ð0Þ is V̂ A‘ðtÞ evaluated at τ = 0 (Equation 77 in S1 Text);and 2P(dℓ), defined in Eq 6,

is the probability that b̂‘ ¼ 0. The factor due to finite sampling, 2na/(2na − 1), is�1 when the

ancient sample size na is large. Thus, apart from sign, DV̂ A‘ðtÞ is equal to Δmseℓ(τ) of Eq 15.

Therefore, for small τ, V̂ AðtÞ decreases at approximately the same rate asmse(τ) increases.

This result further suggests that for a� 1 and a large GWA study size n, V̂ A‘ðtÞ=E½VA‘� �
1 � mse‘ðtÞ=E½VA‘� for small τ (Fig 2C and 2F). Although, this relationship trivially breaks

down for large τ asmseℓ(τ) is not bounded by one.

To compare V̂ A‘ðtÞ across mutation rates, we mirror our treatment ofmseℓ(τ) in the previ-

ous section. We plot (i) its increase DV̂ A‘ðtÞ (Fig 2D); (ii) V̂ A‘ðtÞ normalized by the expecta-

tion of the true additive genetic variance at stationarity (Fig 2E); and (iii) normalized V̂ A‘ðtÞ,

varying the detection threshold for a fixed GWA study sample size (Fig 2F). Akin tomseℓ(τ),
normalized V̂ A‘ðtÞ is very similar across small mutation rates. And, while the GWA study size

n and the detection threshold d influence the initial estimated additive genetic variance

V̂ A‘ð0Þ, its rate of change is mostly insensitive to the two GWA study parameters.

As V̂ AðtÞ largely recapitulates our results formse(τ) with opposing sign, we focus on their

differences. Indeed, they have different functional forms and behave differently for modest or

large τ (see Equations 50 and 54 in S1 Text, respectively). Conceptually, this discrepancy is not

unexpected: In the previous section, we showed that a site only contributes tomse(τ) if its allele

count falls outside the detection interval and b̂‘ ¼ 0. Thus,mse(τ) increases with τ due to

alleles shifting from intermediate frequencies in the ancient population to frequencies outside
of the detection region in the contemporary population. For the expected estimated additive

genetic variance V̂ AðtÞ, the converse is true: The slope represents the decline in V̂ AðtÞ due to

alleles changing from frequencies near or at fixation in the ancient population to frequencies

within the detection interval in the contemporary population. While our results reveal similar
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functional behavior for these two quantities (with opposing signs) that applies for small τ, we

caution that statements about V̂ AðtÞ do not immediately translate to statements aboutmse(τ),
particularly for τ ⪆ 0.2.

Polygenic score accuracy

While our framework, in principle, encompasses a trait with varying effect sizes, we will first

assume that all sites are iid with true effect size β. Our approximation to the expectation of the

sample correlation coefficient simplifies to,

r2ðtÞ ¼
LbE½b̂ðXðtÞ � �XðtÞÞ2�

Lb2E½ðXðtÞ � �XðtÞÞ2� þ s2
e

¼
E½b̂Z‘ðtÞð1 � Z‘ðtÞÞ�=b
E½Z‘ðtÞð1 � Z‘ðtÞÞ� þ s2

e0
; ð18Þ

where the compound parameter s2
e0 ¼ s

2
e=Lb

2
is the environmental variance normalized by

the product of the number of loci in the mutational target L and the squared per-locus effect

size β (Section 7.4 in S1 Text). By comparing Eq 18 with Eq 16, we can see that ρ2(τ) is closely

related to the estimated additive genetic variance. Thus, like V̂ AðtÞ, ρ
2(τ) will decrease with τ

due to loci having changed from frequencies close to zero or one in the ancient population to

intermediate frequencies in the contemporary population. However, unlike V̂ AðtÞ, ρ
2(τ) does

not depend on the ancient sample size. Therefore, to relate the two statistics, we multiply by

the inverse of the ancient sample size dependent factor implicit in V̂ AðtÞ,

r2ðtÞ ¼
2na

2na � 1

� �
V̂ A‘ðtÞ=b

2

E½VA‘ðtÞ�=b
2
þ s2

e0
: ð19Þ

For s2
e ¼ 0, barring the sample size factor, Eq 19 is equal to V̂ AðtÞ normalized by the

expected additive genetic variance. By extension, this quantity approximates the expected sam-

ple correlation coefficient r2(τ). By invoking our additional population genetic and GWA

study assumptions, we arrive at an approximation for the decrease in polygenic score accu-

racy,

Dr2ðtÞ≔r2ðtÞ � r2ð0Þ � �
2aPðd‘Þt
a

2aþ 1
þ s2

e0

: ð20Þ

Now, to relate our theory to empirical and simulation studies, we compute ρ2(τ) for a given

narrow-sense heritability h2 and mutation rate a pair. We define h2 for a trait with a muta-

tional target of L loci of equal effects β,

h2≔
E½VA�

E½VA� þ s2
e

¼
a=ð2aþ 1Þ

a=ð2aþ 1Þ þ s2
e0
;

where the equality follows from our population genetic assumptions. Together with a, h2 fully

specifies the compound parameter s2
e0 with,

s2
e0 ¼

a
2aþ 1

� �
1 � h2

h2

� �

:

We plot our analytical expressions for both accuracy (Fig 3A) and relative accuracy (Fig

3B), defined as the ratio of ρ2(τ) to ρ2(0) for τ 2 [1, 0] spanning 2N generations. For humans,

this time span corresponds to approximately 500,000 years in the past, encompassing the

“Out-of-Africa” migration event estimated to have occurred 50,000–100,000 years ago [39]. As
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with the preceding statistics, when τ = 0, ρ2(τ) approximates the accuracy of the polygenic

score within the GWA study population. Relative accuracy then directly measures reductions

in accuracy relative to the GWA study population. We set h2 = 0.5 and a = 10−3, and fix the

GWA study sample size at n = 105. We then compute ρ2(τ), varying the detection threshold

over several orders of magnitude (Fig 3A). (See Fig S6 in S1 Text for accuracy as a function of

the fixation index, or FST.) Our results for ρ2(τ) necessarily recapitulate those of V̂ AðtÞ: While

increasing the detection threshold d reduces accuracy substantially, it does not have a large

impact on relative accuracy for n = 105 (Fig 3A). Indeed, for small mutation rates, relative

accuracy is insensitive to the mutation rate and threshold, and is well approximated by e−τ

(Equation 68 in S1 Text). Thus, its derivative is also exponential. Absolute accuracy ρ2(τ) like-

wise decays exponentially, but its derivative is scaled by a quantity that reflects features of the

GWA study and the phenotypic variance. For a small mutation rate a� 1, its derivative is

approximately 2PðdÞða=ðaþ s2
e0 ÞÞe

� t, which, in turn, is approximately 2P(d)h2e−τ (Equation 67

in S1 Text). The latter expression suggests that the probability of not detecting a significant

association P(d) and trait heritability h2 are the key determinants of prediction accuracy.

Importantly, ρ2(τ) declines considerably over the interval τ 2 [1, 0] irrespective of the detection

threshold d.

In addition, we glean from Eq 18 that while heritability affects the magnitude of ρ2(τ)
through the compound parameter s2

e0 , it does not influence the relative accuracy, consistent

with previous results [16]. Our simulations suggest that this is also true of the sample correla-

tion coefficient, as simulated estimates of r2(τ) agree extremely well with our theory for ρ2(τ)
(Fig 3B). We note that this result is contingent on the fact that the environmental variance s2

e

only enters our simple threshold model in the specification of the threshold d (Equation 11 in

S1 Text), and does not contribute directly to the variance of the polygenic score (Section 7.4 in

S1 Text). Therefore, we expect this result to hold only for large GWA study sample sizes for

Fig 3. Polygenic score accuracy. We plot our theoretical results for both absolute (A, main) and relative accuracy ρ2(τ) (A, inset) for ancient sampling

times τ 2 [1, 0] (or a time span of 2N generations) with a mutation rate of a = 10−3. The GWA study size is shared in all plots, with n = 105. In (A), we

vary the detection threshold over the range of possible values, dℓ 2 {10, . . .105}. In (B), we compare our theoretical expectations with simulated

estimates of the approximate sample correlation coefficient ρ2(τ) (circles) and the statistic itself r2(τ) (crosses) for a threshold of d = 104 (a minimum

sample allele frequency of 0.05), and two values of heritability, h2 = 0.5, 1 (in blue and gold, respectively). The ancient sample size is na = 100. In the

inset of (B), we normalize the estimates by their initial (estimated) values. Theoretical expressions for ρ2(τ) are also plotted in (B). Each simulated point

is the average of K = 5000 simulations of L = 5000 iid loci.

https://doi.org/10.1371/journal.pgen.1010170.g003
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which the threshold model is a good approximation to the distribution of b̂. While the finding

that relative accuracy is insensitive to the GWA study parameters relies on the assumption that

all loci are iid and share a causal effect β, we provide preliminary theoretical evidence that our

results will hold when β varies across loci (see Equation 69 in S1 Text and ensuing comments).

Simulation results for recent directional selection

We use simulations to explore if and how the statistics under study deviate from their neutral

expectations in the presence of recent directional selection. Each copy of the A2 allele at the ℓ-
th site confers a fitness advantage of +sℓ, and so the fitness ratio of the three possible genotypes

A1A1:A1A2:A2A2 is 1:(1 + sℓ):(1 + 2sℓ). In our simulations, the population evolves neutrally

until the onset of selection at N generations (or τs = 0.5 in coalescent time units) before pres-

ent. Thereafter, the population evolves according to discrete Wright-Fisher dynamics with

selection.

In the presence of selection, the allele frequency distributionis no longer symmetric; rather,

it is skewed toward the beneficial allele. The severity of the skew depends on the selection coef-

ficient and mutation rate, as well as the amount of time that selection has been acting. As we

restrict sℓ to positive values, designatingthe A2 or + allele as beneficial, the allele frequency dis-

tribution will be skewed toward one. If we instead designated the A1 allele as the beneficial

allele, the allele frequency distribution would be skewed toward zero. The former models “pos-

itive” selection whereas the latter models “negative” selection. Because bias(τ) is proportional

to β, its sign will be sensitive to this choice, but its magnitude will be unaltered. The other sta-

tistics will not be affected as long as the detection thresholds are symmetric. Therefore, our

results are general up to the sign of bias(τ).
We conduct simulations over a range of selection coefficients, σ = 4Ns 2 {0, 0.1, 1, 10}, for a

mutation rate of a = 10−3. Under directional selection, σ is proportional to the locus effect size

β; mutations with larger effect sizes will be more likely to establish and achieve appreciable fre-

quencies [40]. In addition, we plot results for two different detection thresholds, d 2 {103, 104},

in a GWA study sample of size n = 104. More details on the simulation procedures are pro-

vided in Section 3 in S1 Text.

When σ� 1, the polygenic score is biased towards positive values for τ> 0 for both detec-

tion thresholds (Fig 4A). In other words, with directional selection acting to increase the trait

value, Ŷ ðtÞ tends to overestimate Y(τ). The magnitude of biasℓ(τ) depends critically on the

strength of selection relative to mutation: We observe a larger bias for σ = 10 relative to σ = 1,

and likewise the bias is larger for σ = 1 relative to σ = 0.1. In fact, the smaller selection coeffi-

cient σ = 0.1 is not distinguishable from neutral expectations. For 0� τ< τs, biasℓ(τ) increases

at an accelerating rate; for τ� τs, bias(τ) appears constant in this parameter regime.

A higher detection threshold decreases the detection probability. Thus, we expect that the

magnitude of biasℓ(τ) will increase with the detection threshold. Indeed, biasℓ(τ) is larger and

increases more quickly for the larger detection threshold d = 104 compared to d = 103 (Fig 4A).

Further, our simulations suggest that the detection threshold coupled with the time of the

onset of selection govern the magnitude of the bias for τ> τs. For some large τ, biasℓ(τ) will

reach an equilibrium value that depends approximately on the asymmetry of the detection

thresholds at the present day, which in turn, depends on both the timing and strength of selec-

tion (Section 10 in S1 Text).

The underlying allele frequency dynamics provide some insight into these patterns. Before

the onset of selection, the allele frequency distribution is stationary and symmetric around 0.5.

After the onset of selection, trait-increasing alleles tend to increase in frequency, skewing the

distribution toward one. Thus, alleles not detected in the GWA study will tend be at higher

PLOS GENETICS Polygenic score accuracy in ancient samples

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1010170 May 6, 2022 16 / 23

https://doi.org/10.1371/journal.pgen.1010170


versus lower frequencies at t = 0, yielding E½�X ‘jb̂‘ ¼ 0� > 0 for σ> 0. For large τ, the allele fre-

quencies of sites not detected in the GWA study, i.e., with b̂‘ ¼ 0, may have been substantially

different in the ancient population. Each one of these sites will make a contribution to bias(τ)
that is proportional to b‘E½ð�X ‘ � X‘ðtÞÞjb̂‘ ¼ 0� (Eq 11). Looking backward in time, the shift

in the allele frequency distribution ensures that the conditional expectation of Xℓ(τ) is smaller

than that of �X ‘, yielding a positive biasℓ(τ) for τ> 0. Notably, the magnitude of biasℓ(τ)
induced by selection is several orders of magnitude larger than that induced by asymmetry in

the detection threshold alone (Fig S1a in S1 Text).

The effects of selection onmseℓ(τ) are qualitatively consistent with those on biasℓ(τ) (Fig

4B). Although, here, the only selection coefficient which induces significant deviations from

neutral expectations is σ = 10. And,mse(τ) is larger for d = 104 compared to d = 103. As with

bias(τ), for 0� τ< τs,mseℓ(τ) increases at an accelerating rate; before τs (τ� τs),mseℓ(τ)
appears to increase linearly. Values of σ< 10 do not induce noticeable deviations from neu-

trality for the correlation coefficient ρ2(τ) either (Fig 4C). However, strong selection (σ = 10)

Fig 4. Ancient polygenic scores in the presence of genic selection. We conduct K = 5000 simulations, each with a mutational target of L = 5000 loci, in

a population of size 2N = 2 � 103, with a population-scaled mutation rate, a = 10−3. We consider four selection coefficients, σ = 4Ns 2 {0, 0.1, 1, 10}

(indicated by color). The GWA study sample size is 2n = 2 � 105, with d equal to either 103 or 104. In (A-D), we plot the various simulated statistics along

with their neutral expectations (solid or dashed black lines). The vertical gray lines indicate the onset of selection at τs = 0.5 which corresponds to

N = 1000 generations. The ancient sample times are τ 2 [1, 0], corresponding to a time span of 2N = 2000 generations. We computed, but did not plot,

95% confidence intervals for bias(τ),mse(τ), and r2(τ), as they largely overlapped with the symbols. We note that the oscillations observed in (A) and (B)

are not statistically significant.

https://doi.org/10.1371/journal.pgen.1010170.g004
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does lead to substantially larger reductions in accuracy relative to our neutral expectations. In

addition, for σ = 10, relative accuracy is sensitive to the detection threshold, with accuracy

decreasing faster for the larger detection threshold (Fig 4D).

Discussion

In this work, we devised a theoretical framework to quantify the effect of allelic turnover on

the error and accuracy of out-of-sample polygenic scores. Unlike previous theoretical

approaches [16, 27], we averaged over the evolutionary process governing trait evolution, the

GWA study from which a polygenic score model is constructed, and the ancient individual’s

genotype and phenotype. In doing so, we found explicit expressions for several commonly

used metrics that depend on the focal individual’s sampling time, as well as the parameters

governing the population genetic dynamics and power to detect trait-associated loci in the

GWA study. Mathematical properties of the recurrent mutation model at stationarity enabled

us to compute analytical expressions for the metrics of interest under neutrality, and approxi-

mations thereof.

Our analytical expressions suggest that allelic turnover alone may be responsible for large

reductions in accuracy: For small mutation rates, ρ2(τ) (and r2(τ)) decreases substantially

within short time-spans, by about 20 percent in 0.2N generations (corresponding to approxi-

mately 120,000 years in humans). In addition, increasing the detection threshold yielded lower

polygenic score accuracy, as a locus was less likely to have a non-zero effect. These results are

broadly consistent with a concurrent study by Yair and Coop [41], in which the authors used

simulations to assess cross-population prediction accuracy, defined as the ratio of the variance

of and individual’s polygenic score to that of their genetic value, under neutrality and in the

presence of stabilizing selection. When Yair and Coop restricted the polygenic score to the top

one percent of SNPs, roughly analogous to altering the detection threshold, they similarly

found that the accuracy declined in the focal population.

Yet, while the detection threshold influenced the magnitude of the polygenic score accu-

racy, relative accuracy was insensitive to this parameter. In other words, under neutrality, rela-

tive accuracy is insensitive to the magnitude of the per-locus effect and only depends on the

underlying allele frequency distribution. In addition, relative accuracy was independent of the

size of the mutational target when the constituent loci were iid. Our theory suggests that these

results will hold for arbitrary distributions of the true effect β. Consideration of several effect

size distributions in a parameter regime consistent with the UK Biobank further supports this

conjecture (Section 8 in S1 Text). Although more work is required to fully substantiate this

claim.

Selection, however, induces a dependency between an allele’s effect and its frequency, and

may thereby render relative accuracy sensitive to the detection threshold. Our simulations pro-

vide preliminary evidence in support of this claim. For a small mutation rate of a = 4Nμ = 10−3

and a large per-locus selection coefficient σ = 4Ns = 10, relative accuracy was lower for the

larger detection threshold of d = 104 compared to d = 103. Yet, the difference between detec-

tion thresholds was small relative to that induced by selection, and was negligible for smaller

selection coefficients. Indeed, smaller selection coefficients (σ� 1) did not yield appreciable

deviations from our neutral expectations for themse, accuracy, nor relative accuracy. There-

fore, excluding strong selection (σ> 1), our neutral expectations for these statistics appear to

be good approximations to their true values. Our theoretical results under neutrality thus may

prove an accurate description of temporally-resolved polygenic scores when polygenic adapta-

tion is achieved by concurrent small frequency changes at numerous small effect loci—a plau-

sible scenario [28, 35]. In addition, the simple patterns revealed by our simulations suggest
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that it may be possible to derive (approximate) analytic expressions for the given metrics in the

presence of strong selection, when loci exhibit selective sweep-like behavior.

It is unclear whether our neutral expectations will hold in the context of more sophisticated

polygenic trait modeling. In our simulation study, as in our theoretical work, we focus on

dynamics at a single locus. Thus, our results are most relevant to scenarios in which single

locus dynamics can be decoupled from the evolution of the mean phenotype and the genetic

background [40]. Namely, the effect of an individual locus must be small relative to the mean

phenotype [38, 40]. Future work will assess polygenic score accuracy under more sophisticated

models of polygenic adaptation (e.g., [38, 42]).

Of the two bias-inducing processes explored, detection threshold asymmetry and direc-

tional selection, the latter induced much larger deviations from our neutral expectation for the

bias, i.e., under neutrality bias(τ) = 0 for all ancient sampling times τ. In the presence of detec-

tion asymmetry, bias(τ) is approximately proportional to the difference between the one-sided

detection probabilities, which in turn is constrained by the shape of the allele frequency distri-

bution. Under neutrality, and for small mutation rates, most alleles are at very low frequencies

or fixed, such that changing the detection threshold minimally influences the one-sided detec-

tion probabilities. Selection, however, perturbs the underlying allele frequency density. At

equilibrium, this density is proportional to eσzz−1(1 − z)−1 for small a, where σ = 4Ns. Depend-

ing on σ, the one-sided detection probabilities may differ markedly, yielding larger values of

bias(τ). We thus suspect that detection asymmetry has the potential to further exacerbate any

bias induced by selection. These results are interesting in light of those of Chan et al. 2014 [34],

who demonstrated that polygenic disease inheritance under the liability threshold model

induced differences in the power to detect protective versus susceptible alleles. In Chan et al.,

this effect was further increased by imbalances in the case and control sample sizes in the

GWA study. Additional work is needed to incorporate these features of case-control studies

into our modeling framework.

The effects of selection on the bias have implications for assessments of mean differences

between ancient polygenic scores from distinct time points. In particular, our results suggest

that sufficiently strong positive directional selection will lead to overestimation of the differ-

ence between the polygenic scores of ancient individuals sampled before and after the onset of

selection. Likewise, in the presence of negative selection, the polygenic score will underesti-

mate this difference. At the same time, as discussed above, estimation error increases (as mea-

sured bymse(τ)) and accuracy (as measured by ρ2(τ)) decreases as the ancient sampling time

increases.

Our results clarify relationships between various commonly used metrics of prediction

error and accuracy. For example, we demonstrated an approximate functional relationship

between the mean-squared errormse(τ) and the expected additive genetic variance V̂ AðtÞ that

applies for small ancient sampling times and mutation rates. This shared initial rate emerged

despite fundamental differences between these statistics:mse(τ) measures error due to variants

near or at fixation in the contemporary sample, which were segregating at intermediate fre-

quencies in the ancient sample. In contrast, V̂ AðtÞmeasures error due to variants segregating

in the contemporary sample, which were near or at fixation in the ancient sample. This con-

ceptual result does not rely on any of our population genetic or GWA modeling assumptions,

and perhaps could be exploited to learn about the genetic architecture of quantitative traits

from multi-population data. In addition, we showed formally that polygenic score accuracy

ρ2(τ), an approximation to the expectation of the sample correlation coefficient r2(τ), is pro-

portional to the ratio of V̂ AðtÞ to the total phenotypic variance. We believe that these relations,

and their evolutionary and GWA study dependent forms, may facilitate the development of
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novel, more principled statistical procedures for the analysis of out-of-sample polygenic

scores.

At the same time, the simplifying assumptions underlying our results indicate that signifi-

cant challenges remain. For one, our model does not incorporate the complex demographic

processes, such as admixture and population size changes, inherent in human history. This

implies that an ancient sampling time of t years in the past likely does not correspond to a sam-

pling time of τ = t/2N in our model, where 2N is the contemporary population size. Indeed,

allelic turnover cannot explain all of the reductions in accuracy observed in out-of-sample pre-

dictions in humans. For example, our neutral theory predicts an approximately fifty percent

reduction in accuracy when FST between the focal and GWA study populations is comparable

to African-European divergence (FST� 0.1). This more severely overestimates the prediction

accuracy of height in a sample of individuals with African ancestry compared to the Wang

et al. predictions, which take into account both LD and allele frequency changes (Section 12 in

S1 Text). Thus, to achieve the same accuracy reductions observed in both simulated, e.g., [15,

16] and empirical, e.g., [14, 16, 43], studies of cross-population polygenic scores for contempo-

rary humans, allelic turnover under neutrality would require population divergence times that

far exceed their estimated values (Fig S7 in S1 Text).

Differences in LD between contemporary human populations may largely explain this dis-

crepancy as most trait-associated loci are likely to be tagging rather than causal sites [12, 16].

As with geographically distinct populations, if LD between the genotyped and causal sites dif-

fered in the ancient population, then polygenic score accuracy would suffer [1]. We did not

model this effect and assumed that the genotyped site was the causal site. This assumption may

be justified when ancient sampling or population divergence times are recent, as high marker

density in the GWA study may mitigate accuracy losses due to LD decay, but more theoretical

work is required to substantiate this claim. While our framework can readily incorporate LD,

it is difficult to obtain analytical results when the genotyped marker is not the causal site. In

lieu of theoretical results, large-scale simulations in simple population genetic scenarios may

provide insight into the relative contributions of LD—which depends on the allele frequencies

of the tagging and causal sites—and allelic turnover to declines in polygenic score accuracy.

Furthermore, our assumption of linkage equilibrium between loci roughly equates to

assuming that each LD block contains only a single causal site. Thus, our results will be most

applicable to traits with relatively sparse genetic architectures for which the distance between

any two causal loci is large compared to the scale of LD. In contrast, when the trait architecture

is dense, a large number of variants have non-zero effect on the trait. Causal sites in close prox-

imity are necessarily linked, and our assumption of linkage equilibrium would be violated. In

addition, under a dense trait architecture, the “prune and threshold” polygenic score described

herein may achieve lower accuracy than a best linear unbiased predictor (BLUP) that allows all

segregating loci to have non-zero effects. In Section 4 in S1 Text, we speculate on the accuracy

of BLUP in the context of our modeling framework when the trait has a dense architecture.

In addition, we assumed that per-locus causal effects were shared by the ancient and con-

temporary samples. Differences in causal effects across contemporary populations, perhaps

due to changes in the environment, epistasis, or gene-by-environment interactions, likely con-

tribute to accuracy reductions [8, 12]. Indeed, Cox et al. [18] found that trends in the polygenic

scores of temporally disparate ancient samples did not always recapitulate those of the true

phenotype. We conjecture that fluctuations in the per-locus effects would increasemse(τ) and

decrease accuracy, but not profoundly alter our conclusions. Perhaps, if the fluctuations were

asymmetric, e.g., effect sizes tended to increase in time, then bias(τ) may be non-zero under

neutrality. Population stratification in the GWA study population may also lead to biased

ancient polygenic scores, as has been observed in cross-population predictions in humans [9,
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10]. Lastly, technical challenges inherent to the extraction and sequencing of ancient DNA

often result in noisy estimates of the ancient genotypes. This additional source of randomness

is likely to reduce accuracy and increasemse(τ), but otherwise should not substantially alter

our conclusions.

Supporting information

S1 Text. Extended model, methods, and results. This supplementary text contains detailed

derivations and additional analyses.

(PDF)
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