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Abstract

It has been well established that the formation of reactive metabolites of drugs is associated with drug toxicity.

Similarly, there are accumulating data suggesting the role of the formation of reactive metabolites/intermediates

through bioactivation in herbal toxicity and carcinogenicity. It has been hypothesized that the resultant reactive

metabolites following herbal bioactivation covalently bind to cellular proteins and DNA, leading to toxicity via

multiple mechanisms such as direct cytotoxicity, oncogene activation, and hypersensitivity reactions. This is

exemplified by aristolochic acids present in Aristolochia spp, undergoing reduction of the nitro group by hepatic

cytochrome P450 (CYP1A1/2) or peroxidases in extrahepatic tissues to reactive cyclic nitrenium ion. The latter

was capable of reacting with DNA and proteins, resulting in activation of H-ras oncogene, gene mutation and

finally carcinogenesis. Other examples are pulegone present in essential oils from many mint species; and teucrin

A, a diterpenoid found in germander (Teuchrium chamaedrys) used as an adjuvant to slimming diets. Extensive

pulegone metabolism generated p-cresol that was a glutathione depletory, and the furan ring of the diterpenoids in

germander was oxidized by CYP3A4 to reactive epoxide which reacts with proteins such as CYP3A and epoxide

hydrolase. On the other hand, some herbal/dietary constituents were shown to form reactive intermediates capable

of irreversibly inhibiting various CYPs. The resultant metabolites lead to CYP inactivation by chemical

modification of the heme, the apoprotein, or both as a result of covalent binding of modified heme to the

apoprotein. Some examples include bergamottin, a furanocoumarin of grapefruit juice; capsaicin from chili

peppers; glabridin, an isoflavan from licorice root; isothiocyanates found in all cruciferous vegetables; oleuropein

rich in olive oil; dially sulfone found in garlic; and resveratrol, a constituent of red wine. CYPs have been known

to metabolize more than 95% therapeutic drugs and activate a number of procarcinogens as well. Therefore,
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mechanism-based inhibition of CYPs may provide an explanation for some reported herb-drug interactions and

chemopreventive activity of herbs. Due to the wide use and easy availability of herbal medicines, there is

increasing concern about herbal toxicity. The safety and quality of herbal medicine should be ensured through

greater research, pharmacovigilance, greater regulatory control and better communication between patients and

health professionals.

D 2003 Elsevier Inc. All rights reserved.
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Introduction

There is resurgence in the use of herbal medicines worldwide. An estimated one third of adults in the

Western world use alternative therapies, including herbs. These herbs may be used either in their primary

forms or combined into mixtures. In contrast to chemical drugs, herbs have sometimes been claimed to

be non-toxic, because of their natural origin and long-term use as folk medicines. However, problems

may arise due to intrinsic toxicity, adulteration, substitution, contamination, misidentification, drug-herb

interactions, and lack of standardization (de Smet, 1995; Ernst, 2002; Ernst and Pittler, 2002; Koh and

Woo, 2000). Both adverse drug reactions and poisonings associated with the use of herbal medicines

have increasingly been reported (Deng, 2002; Ernst and Pittler, 2002; Klepser and Klepser, 1999).

Herbal use has been associated with organ toxicities of heart, liver, blood, kidneys, central nervous

system, and skin and carcinogenesis (Bensoussan et al., 2002; Ernst, 2000; Greensfelder, 2000; Haller

and Benowitz, 2000; Kessler, 2000; McRae et al., 2002; Stedman, 2002; Villegas et al., 2001; Zaacks et

al., 1999).

The human cytochrome P450 (CYP) (EC 1.14.14.1) superfamily, containing 57 genes (Nelson, 2003),

contributes to the metabolism of a variety of xenobiotics including therapeutic drugs, carcinogens,

steroids and eicosanoids (Gonzalez, 1990; Nebert and Russell, 2002; Nelson et al., 1996; Rendic, 2002;

Rendic and Di Carlo, 1997). The resultant increases in polarity usually facilitate excretion and are

considered to be a detoxification process, but in some instances, foreign compounds are converted to

products with much greater cytotoxicity, mutagenicity, or carcinogenicity (Guengerich and Liebler,

1985; Guengerich and Shimada, 1991; Zhou, 2003). Metabolic activation of procarcinogens is often

catalyzed by a limited number of human CYPs including CYP1A1, 1A2, 1B1, 2A6, 2B6 and 3A4

(Guengerich, 2001; Guengerich and Liebler, 1985; Guengerich and Shimada, 1991; Zhou, 2003).

Among them, CYP1A and 1B enzymes bioactivate polycyclic arylamines, polyaromatic hydrocarbons

and aflatoxin B1 (Gonzalez and Gelboin, 1994). These enzymes are regarded as the targets for blocking

tumor initiation and specific CYP inhibitors or inactivators could be beneficial for preventing tumor

formation (Guengerich and Shimada, 1991; Shimada et al., 1996; Shimada et al., 1989). It is likely that

constituents in herbal preparations may be substrates, inhibitors, or inducers of CYPs (Zhou et al., 2003),

and have an impact on the pharmacokinetics of any coadministered drugs metabolized by this system.

Herbal/dietary constituents may be metabolized by CYPs to nontoxic metabolites and excreted, but

the formation of toxic metabolites is possible (Yang et al., 1992). In addition, the inhibition of CYPs by

herbal constituents may decrease the formation of toxic metabolites and thus inhibit carcinogenesis, as

CYPs play an important role in procarcinogen activation. In some cases, the formation of a reactive

intermediate by CYP may also lead to the inactivation of the enzyme. CYP substrates, which are
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metabolized to reactive intermediates that inactivate the enzyme, are classified as mechanism-based

inhibitors. Thus, the inhibition of CYP-mediated carcinogen activation by herbal/dietary constituents has

been extensively studied.

The mechanism for herbal toxicity remains elusive, but there are accumulating data suggesting the

role of the formation of reactive metabolites/intermediates through the bioactivation of major herbal

constituents in herbal toxicity and carcinogenicity. It has been hypothesized that the resultant reactive

metabolites following herbal bioactivation covalently bind to cellular proteins and DNA, leading to

toxicity via multiple mechanisms such as direct cytotoxicity, oncogene activation, and hypersensitivity

reactions. This review highlights the role of formation of reactive intermediates via bioactivation in

herbal toxicity using aristolochic acids, pulegone and germander as examples. In addition, mechanism-

based inhibition of CYPs by many herbal constituents and the clinical and toxicological relevance are

discussed.
Herbal bioactivation: Formation of toxic metabolites

Aristolochic acid nephropathy

Aristolochic acids (AAs), a family of structurally related nitrophenanthrene carboxylic acids, are

primarily from herbal medicines such as Aristolochia spp. (e.g. A. fangchi (Guang Fangji), A. clematits,

and A. manshuriensis) (Ioset et al., 2003). The predominant AAs are AAI (8-methoxy-6-nitro-

phenanthro-(3,4-d)-1,3-dioxolo-5-carboxylic acid) and AAII (6-nitro-phenanthro-(3,4-d)-1,3-dioxolo-

5-carboxylic acid). The consumption of herbs containing AAs has been associated with severe

nephropathy which is characterized by unique renal fibrosis and development of urothelial cancer

(Abt et al., 1995; Arlt et al., 2002; Cosyns, 2003; Lord et al., 2001; Nortier and Vanherweghem, 2002;

Schwetz, 2001; Zhu, 2002). Approximately 200 cases of AA nephropathy have been reported

worldwide, with many of them needing renal replacement therapy (Arlt et al., 2002). A large cohort

of these patients with AA nephropathy have developed urothelial cancer (Cosyns, 2003; Nortier and

Vanherweghem, 2002).

As alkaloids, both AAI and AAII underwent reduction of the nitro group catalyzed by oxidative

enzymes to reactive cyclic nitrenium ions (Fig. 1) (Schmeiser et al., 1997; Stiborova et al., 2001a,b;

Stiborova et al., 2002). Hepatic microsomal CYP1A1/2, NADPH:CYP reductase, DT-diaphorase,

cyclooxydase-1 and other peroxidases have been found to catalyze the reaction. Addition of inhibitors

or inducers of CYP1A1/2 was found to decrease or increase the formation of DNA adducts (Stiborova et

al., 2001a,b). The resultant reactive cyclic nitrenium ions are capable of reacting with DNA and/or

proteins, leading to adduct formation. For example, the DNA adducts (e.g. 7-(deoxyadenosin-N6-

yl)aristolactam I or II and 7(deoxyguanosin-N2-yl)aristolactam I or II) have been detected in kidney and

ureter tissues of patients taking herbs containing AAs, several months or even years after cessation of the

herbal consumption (Pfau et al., 1990; Schmeiser et al., 1996; Stiborova et al., 1999). The former was

the most predominant DNA adduct in human and rat tissues (Pfau et al., 1990; Schmeiser et al., 1996;

Stiborova et al., 1999).

Studies in the mouse and rat indicated that H-ras protooncogenes were activated with high incidence

of an AT!TA transversion mutation in codon 61 of DNA from AAI-induced tumors (Schmeiser et al.,

1990; Schmeiser et al., 1991). This is consistent with the identification of an N6-deoxyadenosine-AAI



Fig. 1. Proposed bioactivation of aristolochic acids.

S. Zhou et al. / Life Sciences 74 (2004) 935–968938
adduct formed in vitro and in patients. All these results indicated that deoxyadenosine adduct formation

was a critical step in tumor initiation by AAs. A recent study using the E/lacZ transgenic mice has shown

that administration of AAs caused selective AT!TA mutations (Kohara et al., 2002), which is in

agreement with the extensive 7-(deoxyadenosin-N6-yl)aristolactam I adduct formation in rats and

humans. In rats treated with a single dose of AAI, the 7(deoxyguanosin-N2-yl)aristolactam I adduct

was removed continuously from the DNA, whereas the 7-(deoxyadenosin-N6-yl)aristolactam I adduct

persisted without proper repair of the DNA (Fernando et al., 1993), leading to mutations and oncogene

activation.

Pulegone toxicity

Pulegone is a monoterpene ketone present in essential oils from many mint species (e.g. Hedeoma

pulegoides and Mentha pulegium, both called pennyroyal) (Budavari, 1996; Grundschober, 1979).

Pennyroyal oil has been used as a flavoring agent in foods and beverages, a fragrant constituent and a

flea repellent (Hall and Oser, 1965). Pennyroyal has also been used to induce menstruation and abortion.

However, pennyroyal oil, especially at high doses, has been reported to cause hepatic failure, central

nervous system toxicity, gastritis, renal and pulmonary toxicity, and death (Anderson et al., 1996).
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Pulegone, constituting >80% of the terpenes in pennyroyal oils, was found to be hepatotoxic and

pneumotoxic in mice (Gordon et al., 1982).

The metabolites of pulegone have been considered to be responsible for its toxicity (Gordon et al.,

1987). Both menthofuran and p-cresol were potential candidates. Menthofuran is a naturally occurring

hepatotoxin (Thomassen et al., 1992) and p-cresol is a known glutathione depletory and toxin

(Thompson et al., 1994). In vitro studies have demonstrated CYP-mediated conversion of pulegone

to menthofuran which was then bioactivated to reactive g-ketoenal (Gordon et al., 1987; Thomassen et

al., 1991). g-Ketoenal was capable of covalently binding to cellular proteins and caused hepatic injury

(Thomassen et al., 1992). The g-ketoenal can be converted to mintlactones, as well as other reactive

intermediates in CYP-mediated oxidation of menthofuran.

The in vivo metabolism of pulegone is very complicated, with about 14 Phase I and 10 Phase II

metabolites being identified and characterized in rats (Chen et al., 2001; Madyastha and Raj, 1993;

McClanahan et al., 1989; Moorthy et al., 1989; Thomassen et al., 1991). These metabolites accounted

for only 3% of total radioactivity excreted in bile, and their structures could not be established solely by

mass spectral analysis. The metabolism of pulegone in rats involves three major metabolic pathways: a)

conjugation by glucuronic acid following C-5 or methyl group hydroxylation or by GSH; with the

conjugates being further metabolized; b) the formation of menthofuran; and c) the formation of

piperitenone beginning with 5-hydroxylation followed by dehydration (Fig. 2) (Chen et al., 2001;

Madyastha and Gaikwad, 1999; Madyastha and Raj, 1992; Madyastha and Raj, 1993). The CYP system

plays an important role in the metabolism of R-(+)-pulegone (Madyastha and Gaikwad, 1999;

Madyastha and Raj, 1992). Most of the metabolites of pulegone are derived from menthofuran and

piperitenone (Madyastha and Gaikwad, 1999; Madyastha and Raj, 1992; Madyastha and Raj, 1993).

Studies carried out in vivo have shown 4-methyl-2-cyclohexenone as one of the metabolites of R-(+)-

pulegone (Madyastha and Raj, 1993), and conversion of 4-methyl-2-cyclohexenone to p-cresol has been

demonstrated in vitro (Madyastha and Raj, 1990; Madyastha and Raj, 1993; Madyastha and Raj, 2002).

Germander hepatotoxicity

Germander (Teuchrium chamaedrys), a diterpenoid-containing herbal medicine, was traditionally

used as a folk medicine for its alleged choleretic and antiseptic effects. In 1991, germander teas or

capsules were promoted as an adjuvant to slimming diets. However, more than 30 cases of

hepatotoxicity (mainly cytolytic hepatitis, chronic hepatitis or cirrhosis) after consumption of germander

have been reported mainly in France, including cases with positive rechallenge (Ben Yahia et al., 1993;

Castot and Larrey, 1992; Dao et al., 1993; Laliberte and Villeneuve, 1996; Larrey et al., 1992; Mattei et

al., 1992), and a fatality due to fulminant hepatic necrosis (Mostefa-Kara et al., 1992). This medicinal

plant has been prohibited in France since 1992.

Germander caused hepatotoxicity in animals (Kouzi et al., 1994; Loeper et al., 1994) and humans

(Laliberte and Villeneuve, 1996). Germander contains saponins, glycosides, flavonoids and furano

neoclerodane diterpenoids (Piozzi et al., 1987). The hepatotoxicity has been ascribed to the diterpenoids

including teucrin A and teuchamaedryn A. The furan ring of these diterpenoids is oxidized by CYP3A4

to reactive epoxide which reacts with proteins such as CYP3A and epoxide hydrolase (Fig. 3) (Fau et al.,

1997; Lekehal et al., 1996; Loeper et al., 2001; Loeper et al., 1994). The reactive epoxide led to

mitochondrial permeability transition, caspase activation, and apoptosis in rat and mouse hepatocytes

(Fau et al., 1997; Lekehal et al., 1996; Loeper et al., 1994). Teucrin A covalently bound to rat hepatocyte
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proteins, and the furano diterpenoid fraction decreased cell GSH and cytoskeleton-associated protein

thiols, but increased cytosolic levels of Ca2 + (Fau et al., 1997; Lekehal et al., 1996). All these events led

to the formation of plasma membrane blebs, DNA fragmentation, and cell apoptosis.

The diterpenoid-mediated cytotoxicity was modulated by many factors such as CYP3A inducers or

inhibitors. Pretreatment of male rats with troleandomycin (an inhibitor of CYP3A) reduced cellular GSH

depletion and cytotoxicity, whereas dexamethasone treatment (an inducer of CYP3A) had opposite

effects (Lekehal et al., 1996). Feeding male rats with a sulfur amino acid-deficient diet decreased cellular



Fig. 3. Proposed bioactivation of teucrin A from germander.
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GSH level and enhanced cytotoxicity, whereas supplementation of the standard diet with cystine had

opposite effects (Lekehal et al., 1996). Female rat hepatocytes exhibited little toxicity as they expressed

low levels of CYP3A, unless the animals were treated with dexamethasone (Lekehal et al., 1996).

Furthermore, the hepatotoxicity in mice was attenuated by pretreatment with butylated hydroxyanisole

or clofibrate (two inducers of microsomal epoxide hydrolase) and markedly increased by phorone-

induced GSH depletion (Loeper et al., 1994). Pretreatment of mice with either 3-methylcholanthrene or

phenobarbital had no effect (Loeper et al., 1994). In addition, genetic factors may be important for the

development of germander-induced hepatotoxicity. For example, polymorphism of CYP3A and major

histocompability complex molecule can affect the formation of toxic metabolite and antigen presenting

to T helper cells, respectively.

Epoxide hydrolase is a plasma membrane-located Phase II microsomal enzyme. It is catalytically

competent and may participate in the inactivation of reactive epoxides arising from teucrin A. Thus,

it may act as target for reactive metabolites from teucrin A. When incubated with teucrin A, epoxide

hydrolase was inactivated in a time-dependent manner, suggesting that a reactive oxide derived from

teucrin A could alkylate and inactivate the enzyme (De Berardinis et al., 2000). Interestingly, anti-

microsomal epoxide hydrolase autoantibodies were detected in the sera of patients taking germander

teas for a long period of time (De Berardinis et al., 2000; Loeper et al., 2001; Polymeros et al.,

2002). Dose-dependent immunoprecipitation of human epoxide hydrolase by these human sera

confirmed human epoxide hydrolase as the autoantigenic target (De Berardinis et al., 2000). It
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appeared that both direct toxicity and secondary immune reactions were involved in germander-

induced heaptotoxicity. The covalent binding of epoxide hydrolase on the outer surface of human

hepatocytes by teucrin A might trigger immune responses and induced the formation of autoanti-

body, leading to cell dealth.
Mechanism-based herbal inhibitors of cytochrome P450s

Many herbal constituents have been found to inhibit various CYPs (Zhou et al., 2003). The nature of

inhibition may be competitive, non-competitive, or mechanism-based. The latter is characterized by

NADPH-, time- and concentration-dependent enzyme inactivation, occurring when some herbal

constituents are converted by CYPs to reactive metabolites that are capable of irreversibly binding to

CYPs (Ortiz de Montellano and Correia, 1995; Osawa and Pohl, 1989; Silverman, 1998). Mechanism-

based inhibitors require at least one cycle of the CYP catalytic process to form reactive metabolites. The

resultant metabolites lead to CYP inactivation by chemical modification of the heme, the apoprotein, or

both as a result of covalent binding of modified heme to the apoprotein.

Capsaicin

Capsaicin (trans-8-methyl-N-vanillyl-6-nonenamide) is a major pungent phenolic constituent present

in a variety of capsicum fruits such as hot peppers, and thus represents an important ingredient of the

majority of spicy foods (Park et al., 1998; Surh and Lee, 1995). It has shown a wide range of

pharmacological properties, including pain-killing, antigenotoxic, antimutagenic, and anticarcinogenic

effects (Surh et al., 1998; Surh and Lee, 1995). Capsaicin has been used to treat various peripheral

painful conditions such as rheumatoid arthritis and diabetic neuropathy (Surh and Lee, 1995).However,

capsaicin has been reported to be a tumor promoter, carcinogen and potential mutagen (Agarwal et al.,

1986; Lopez-Carillo et al., 1994; Toth and Gannett, 1992; Ward and Lopez-Carrillo, 1999). It caused

strand scission in calf thymus and plasmid DNA in the presence of Cu(II). This breakage is mediated by

reactive oxygen species arising from capsaicin, especially the hydroxyl radical (Singh et al., 2001a,b).

Capsaicin undergoes bioactivation by CYP2E1 to reactive species (Gannett et al., 1990). The major

bioactivation pathways include: a) epoxidation of the vanillyl ring moiety to produce an arene oxide; b)

one-electron oxidation of the ring hydroxyl group to a phenoxy radical; and c) O-demethylation at the

aromatic ring and subsequent oxidation of the resulting catechol metabolite to semiquinone and quinone

derivatives (Fig. 4). The resultant reactive species are capable of binding covalently to the active site of

CYP2E1 as well as DNA (Surh and Lee, 1995). The interaction with target cell DNA would trigger

mutagenicity and malignant transformation. However, metabolism of capsaicinoids by CYPs may also

represent a detoxification process (in contrast to bioactivation), resulting in a reduction in cytotoxicity

(Reilly et al., 2003). For example, a novel dehydrogenation metabolic pathway of capsaicin yields

macrocyclic, diene and imide metabolites (Reilly et al., 2003).

Furanocoumarins (bergamottin and 8-methoxypsoralen)

Bergamottin is a major furanocoumarin in grapefruit juice. It reversibly inhibited the activities of

CYP1A2, 2A6, 2C9, 2C19, 2D6, 2E1, and 3A4 in human liver microsomes (He et al., 1998). It also



Fig. 4. Proposed bioactivation of capsaicin.
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inactivated CYP3A4 following metabolic activation in a time- and concentration-dependent manner,

with kinact and KI values of 0.3 min� 1 and 7.7 AM, respectively (He et al., 1998). The loss of catalytic

activity exhibited pseudo-first-order kinetics. During bergamottin-induced inactivation, CYP3A4

retained more than 90% of the heme, but 50% of the apoprotein in the inactivated CYP3A4 could

not be recovered. This suggests that the inactivation may involve apoprotein modification in the active

site of the enzyme instead of heme adduct formation or heme fragmentation (He et al., 1998). The

reactive metabolites of bergamottin remain unknown, but it may undergo oxidation to form a reactive

furanoepoxide that covalently binds to CYP3A4 (Fig. 5).

8-Methoxypsoralen is a natural furanocoumarin rich in many foodstuffs such as parsnips and

parsley. It is used in combination with long wavelength ultraviolet light to treat psoriasis, vitiligo

and T cell lymphoma (Anderson and Voorhees, 1980; Edelson et al., 1987; Parrish et al., 1974). The

usefulness of 8-methoxypsoralen in treating these diseases resides in its ability to be photoactivated

to a species capable of binding covalently to nucleic acids and lymphocytes, and thus inhibiting

DNA synthesis and cellular proliferation. Early studies indicated that 8-methoxypsoralen was a

potent mechanism-based inhibitor of CYPs in rodents (Fouin-Fortunet et al., 1986; Labbe et al.,

1989; Letteron et al., 1986; Mays et al., 1990) and humans (Tinel et al., 1987). Further studies

found that 8-methoxypsoralen was a potent mechanism-based inhibitor of CYP2A6, with KI of 0.8–

1.9 AM and kinact of 1–2 min� 1 in a reconstituted and native liver microsomes (Koenigs et al.,

1997; Koenigs and Trager, 1998a,b; Maenpaa et al., 1993). 8-Methoxypsoralen was also a potent

inactivator of CYP2B1, with a KI of 2.9 AM and kinact of 0.34 min� 1 (Koenigs and Trager,

1998a,b). However, the reactive species of 8-methoxypsoralen remains unknown, but it is suggested

that 8-methoxypsoralen as a furanocoumarin undergoes CYP2A6/2B1-mediated oxidation to form a

furanoepoxide (Fig. 6). The resultant epoxide is then converted to dihydrofuranocoumarin products

following hydrolytic attack or direct attack by exogenous nucleophiles (Koenigs and Trager,

1998a,b).



Fig. 5. Proposed bioactivation of bergamottin.
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Glabridin

The dried roots of the licorice (Glycyrrhiza glabra) have been consumed for the past 6000 years

and are used as flavoring and sweating agents, as demulcents and expectorants in the Western world

and as antiallergic and antiinflammatory agents in Asian countries including Japan and China

(Chandler, 1985). Licorice contains glycyrrhizin (glycyrrhizic acid, a glycoside which is 50 times

sweeter than sugar), oleane triterpenoids, glucose, ammonia, polyphenols, flavonoids, and sucrose

(Hatano et al., 1991a,b). Flavanoid components of licorice root have been shown to have

antitumorigenic, antimicrobial, antiviral, antiinflammatory, estrogen-like, and antioxidative activity

(Fujisawa et al., 2000; Fukai et al., 2002; Shibata, 2000; Tamir et al., 2001). Licorice root extract, as

well as its major flavanoid, the isoflavan glabridin, are potent antioxidants against LDL oxidation in

mice and humans (Rosenblat et al., 1999). Glabridin was also shown to inhibit the activity of

macrophage NADPH-oxidase presumably by inhibiting protein kinase C and serotonin re-uptake (Ofir

et al., 2003; Rosenblat et al., 1999). In addition, glycyrrhizin was recently found to be a potent

inhibitor of the SARS-associated coronavirus in vitro (Cinatl et al., 2003). However, licorice may

cause hypermineralocorticoidism (Nobata et al., 2001), arrhythmia (Bocker and Breithardt, 1991),

pseudoaldosteronism (Ferrari et al., 2001), and hypertension (Astrup, 2001). These toxicities have



Fig. 6. Proposed bioactivation of 8-methoxypsoralen.
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been ascribed to the inhibitory activity of glycyrrhizin and glycyrrhetic acid from licorice on 11-

hydroxy-steroid dehydrogenase (Ferrari et al., 2001).

An in vitro study indicated that glabridin inactivated CYP3A4 and 2B6 in a time- and concentration-

dependent manner, but CYP2C9 was competitively inhibited (Kent et al., 2002). Metabolism of glabridin

by CYP3A4 resulted in the destruction of the heme moiety, as the loss in activity with different

concentrations of glabridin correlated well with the loss in the CYP3A4-reduced carbon oxide spectrum

and detectable heme at 405 nm (Kent et al., 2002). No other peaks indicative of glabridin-alkylated heme

eluting after the native heme were detected at 405 nm. Presumably glabridin undergoes metabolism,

forming reactive intermediates causing heme fragmentation. Incubations with 2,4-dimethylglabridin did

not lead to a loss in the enzymatic activity of CYP3A4. Incubation of glabridin with CYP3A4 and NADPH

resulted in a metabolites, suggesting that the two hydroxyl groups on the 2Vand 4Vposition of the flavonoid
B ring of glabridin are required for CYP3A4 inactivation (Fig. 7) (Kent et al., 2002). Indeed, these two

hydroxyl groups are also believed to be essential for its antioxidative activity (Belinky et al., 1998).

Isothiocyanates

Isothiocyanates are released upon chewing or maceration of cruciferous vegetables, such as cabbage,

cauliflower, and broccoli where they occur as thioglucoside conjugates called glucosinolates (Fenwick et



Fig. 7. Chemical structure of glabridin.
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al., 1983). The enzyme myrosinase is released at the same time and hydrolyzes the glucosinolate with

rearrangement of intermediates producing the isothiocyanates, hydrogen sulfate, and glucose as the

major products. Typical isothiocyanates include benzyl isothiocyanate (BITC) and phenethyl isothio-

cyanate (PEITC). These compounds have been shown to be potent modulators of CYPs in vitro and in

vivo.

Isothiocyanates inhibited CYP1A1, 1A2, 2A1, 2B1, and 2E1 which are involved in carcinogen

activation (Yang et al., 1994). BITC and PEITC have been shown to inhibit N-nitrosodimethylamine

demethylation activity. BITC is a potent mechanism-based inactivator of rat CYP1A1, 1A2, 2B1, and

2E1, as well as human CYP2B6 and 2D6 (Goosen et al., 2000; Moreno et al., 1999). The KI for

CYP1A1, 1A2, 2B1, and 2E1 were 35, 28, 16, and 18 AM, respectively; and the corresponding kinact
values were 0.26, 0.09, 0.18, and 0.05 min� 1, respectively (Goosen et al., 2001; Moreno et al., 1999).

Human CYP2C9 and rat CYP3A2 were not inactivated by BITC. BITC was also a potent inactivator of

CYP2B1, as indicated by a partition ratio of approximately 11:1 (Goosen et al., 2001).

The mechanism of CYP inhibition by isothiocyanates involves both competitive and mechanims-

based inhibition. The competitive inhibition involves competition with substrates at the active site of

CYP (Ishizaki et al., 1990; Smith et al., 1993), while mechanism-based inhibition would involve the

metabolic activation of isothiocyanates (Goosen et al., 2000; Ishizaki et al., 1990; Lee, 1996; Moreno et

al., 1999; Smith et al., 1996). The metabolic activation of isothiocyanates results in reactive

intermediates that could ultimately bind to the heme moiety or apoprotein, thereby inactivating the

enzyme. For example, BITC was metabolized to a reactive benzyl isocyanate intermediate that is capable

of binding covalently to CYP apoprotein or hydrolyzed to form benzylamine (Fig. 8) (Goosen et al.,

2001). BITC may be oxidized at the a-carbon to benzaldehyde, instead of being desulfurated to benzyl

isocyanate. Alternatively, benzylamine could be deaminated to give benzaldehyde and ammonia. The

subsequent oxidation of benzaldehyde would yield benzoic acid. The formation of benzoic acid was also



Fig. 8. Proposed bioactivation of benzyl isothiocyanate (BITC).
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observed in dogs, where administration of BITC resulted in the excretion of hippuric acid, the glycine

conjugate of benzoic acid (Brüsewitz et al., 1997). In humans and rats, BITC is metabolized through

conjugation with GSH and finally excreted as mercapturic acid. In addition, oxidative desulfuration of

the isothiocyanate could also release elemental sulfur, which could further contribute to enzymatic

modification and possibly inactivation, as in the case of parathion (Butler and Murray, 1993).

The in vivo administration of isothiocyanates to rodents also modulate CYP content and activity

(Guo et al., 1992; Smith et al., 1993). The effects appeared to depend on the experimental conditions,

the isothiocyanate used and treatment regimen, the target tissue, and the specific CYP evaluated

(Zhang and Talalay, 1994). For example, acute administration of PEITC to rats decreased liver

CYP2E1 activity, whereas CYP2B1 activity and content increased approximately 10-fold, but without

any significant effect on lung CYP1A2 and 2B1 activities (Guo et al., 1992). However, chronic

administration of PEITC induced both CYP2B1 and 2E1 with related increases in carcinogenesis

(Smith et al., 1993).

Kavalactones (methysticin and dihydromethysticin)

Kava (Piper methysticum, found in Polynesia, Melanesia, and Micronesia) is an effective herbal

medicine for the therapy of anxiety and insomnia (Pittler and Ernst, 2000; Rouse, 1998; Singh and

Singh, 2002; Volz and Kieser, 1997). Clinical studies have shown that kava and kavalactones are

effective in the treatment of anxiety at subclinical and clinical levels, anxiety associated with

menopause and various other medical conditions (Bilia et al., 2002; Pittler and Ernst, 2000; Stevinson

et al., 2002; Volz and Kieser, 1997; Wheatley, 2001) The major constituents of kava are pharmaco-

logically active kavalactones which are responsible for about 95% of the total activity of kava (Singh

and Singh, 2002). Yangonin, desmethoxyyangonin, methysticin, 7,8-dihydromethysticin, kawain, and
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7,8-dihydrokawain are present in the highest levels of kavalactones, accounting for approximately

96% of lipidic extracts (Lebot and Lévesque, 1989).

Both methysticin and dihydromethysticin (Fig. 9) were mechanism-based inhibitors of CYPs, as

indicated by the unidentified metabolic intermediate complexes at 455 nm when incubation with human

liver microsomes (Mathews et al., 2002). This 455-nm absorbing complex was both NADPH- and time-

dependent, with absorption increasing with increasing incubation time. Methysticin analogs in kava

extract have been shown to inhibit multiple CYPs after metabolic activation through the formation of

metabolic intermediate complexes (Murray and Reidy, 1989; Murray et al., 1983). Preincubation of

whole kava extract with human liver microsomes inhibited CYP1A2, 2C9, 2C19, 2D6, 3A4, and 4A9/

11; whereas CYP2A6, 2C8, and 2E1 were unaffected (Mathews et al., 2002). Various kavalactones

inhibited different CYPs. Kava extract and kavalactones inhibited CYP3A4 in cDNA-expressed

microsomes (Unger et al., 2002).

Oleuropein

The Mediterranean diet has been associated with longevity and low rates of coronary artery disease

and cancers despite its high dietary fat content (Braga et al., 1998; Owen et al., 2000; Roche et al., 1998).

The Mediterranean diet includes the consumption of large amounts of olive oil. Olive oil is a source of at

least 30 phenolic compounds (total: 60–1000 mg/kg) (Tuck and Hayball, 2002). The beneficial effect of

olive oil has been mainly attributable to oleuropein and its two major metabolites, hydroxytyrosol and

tyrosol. Oleuropein is the major phenolic compound in olive fruit, which can be as much as 14% in dried

fruit. It is an ester consisting of hydroxytyrosol and elenolic acid which are potent antioxidant agents

(Briante et al., 2001).

The phenolic components in olive oil are believed to play a vital role in the prevention of

coronary artery disease and atherosclerosis. These compounds, in particular hydroxytyrosol, are

potent antioxidants and radical scavengers (Tuck and Hayball, 2002; Visiol and Galli, 2002; Visioli

and Galli, 1994; Visioli et al., 2002). They exert protective effects on cardiovascular system mainly

by inhibiting platelet aggregation and endothelial activation (Carluccio et al., 2003), modulating

arachidonic acid metabolism (Kohyama et al., 1997) and preventing the oxidation of low density

lipids (Visiol and Galli, 2002; Visioli et al., 1995; Visioli et al., 2002). It is presumed that

hydroxytyrosol as water and lipid soluble molecule can penetrate in cell membranes and thus inhibit

the production of leukotriene B4 effectively from endogenous arachidonic acid (Kohyama et al.,

1997).
Fig. 9. Chemical structures of methysticin and dihydromethysticin from kava.
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In vitro studies indicated that oleuropein inactivated androstenedione 6h-hydroxylase (CYP3A4)

activity in human liver microsomes, with kinact and KI of 0.09 min� 1 and 22.2 AM, respectively

(Stupans et al., 2001; Stupans et al., 2000). The reactive metabolites of oleuropein remain

undetermined, but oleuropein might undergo CYP3A-mediated oxidation to unidentified metabolite(s)

capable of binding and inactivating CYP3A4 (Fig. 10). In addition, hydroxytyrosol and tyrosol and/or
 

 

Fig. 10. Metabolism of oleuropein.
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their metabolites may be involved. Metabolism studies have indicated that hydroxytyosol is excreted

into the urine unchanged and as its glucuronide and sulfate conjugates (Fig. 10) (Miro-Casas et al.,

2003; Tsarbopoulos et al., 2003; Tuck and Hayball, 2002). Hydroxytyrosol can also be sequentially

oxidized to 3,4-dihydroxyphenylacetic acid and 3,4-dihydroxyphenylacetaldehyde by alcohol and

aldehyde dehydrogenase, or methylated by catechol methyltransferase to homovanillic acid and then

oxidized to homovanillic alcohol (D’Angelo et al., 2001).

Organosulfur compounds

Garlic is frequently used as a flavor-enhancing ingredient in food preparation and healthy

supplement in the practice of folk medicine. Organosulfur compounds are the major active

components of garlic. Garlic also contains numerous flavonoids/isoflavonoids (such as nobiletin,

quercetin, rutin, and tangeretin), polysaccharides, prostaglandins, saponins, and terpenes (such as

citral, geraniol, linalool, a- and h-phellandrene) (Dausch and Nixon, 1990; Singh et al., 2001a,b).

Alliin (S-allylcysteine sulfoxide) is one major component of garlic, which is converted by alliinase to

allicin. Allicin is further transformed to other garlic compounds, including diallyl sulfide. Organo-

sulfur compounds have been reported to have hypolipidemic, antiplatelet, immune-enhancing,

anticancer, chemopreventive, hepatoprotective, antihypertension, and procirculatory effects (Rahman,

2001; Spigelski and Jones, 2001).

Organosulfar compounds modulated CYPs in vitro and in vivo (Brady et al., 1991). For example,

extracts of fresh garlic, and samples of garlic oil, freeze dried garlic, and aged garlic inhibited human

CYP2C9, 2C19, 3A4, 3A5 and 3A7 activity, whereas the CYP2D6 activity was unaltered (Foster et al.,

2001). The organosulfur compounds 4,4V-dipyridyl disulfide, di-n-propyl disulfide and diallyl sulfide

were also potent competitive inhibitors of coumarin 7-hydroxylase (CYP2A6), with a Ki value of 0.06,

1.7 and 2.1 AM respectively (Fujita and Kamataki, 2001). In vivo studies in the mouse indicated that

garlic administration increased CYP2E1 and 1A2 levels (Kishimoto et al., 1999), whereas the

administration of garlic constituents in the rat decreased the CYP2E1 activity and/or protein level,

but increased or did not alter the CYP1A, CYP2B and CYP3A activities (Dalvi, 1992; Haber et al.,

1995; Haber et al., 1994). A single dose of garlic oil in the rat resulted in a significant inhibition of

hepatic CYP-catalyzed reactions including aminopyrine N-demethylase (CYP2C) and aniline hydrox-

ylase (CYP2E1) activity, but administration of garlic for 5 days led to a significant increase in these

hepatic CYP activities (Fitzsimmons and Collins, 1997). In addition, administration of garlic oil to

healthy subjects for 28 days reduced CYP2E1 activity by 39% when chlorzoxazone was used as a probe

compound (Gurley et al., 2002).

Diallyl sulfide is converted by CYP2E1 to diallyl sulfoxide and sequentially to diallyl sulfone (Fig.

11) (Teyssier et al., 1999). All these compounds are competitive inhibitors of CYP2E1 (Brady et al.,

1991). A single oral dose of diallyl sulfone inactivated CYP2E1- and 1A-dependent activities in mouse

liver microsomes (Lin et al., 1996). Diallyl sulfone is also a mechanism-based inhibitor of CYP2E1,

involving the formation of a reactive metabolite which forms a CYP complex leading to autocatalytic

destruction (Brady et al., 1991; Jin and Baillie, 1997; Premdas et al., 2000). A recent study has

demonstrated that diallyl sulfone was oxidized at one of the terminal double bonds, yielding the

monoallyleopoxide that inactivated CYP2E1 (Fig. 11) (Premdas et al., 2000). This monoallyleopoxide

was conjugated by GSH. It appeared that the reactive intermediate from diallyl sulfone might initially

affect the heme and/or apoprotein.



Fig. 11. Metabolism of diallyl sulfide by CYP2E1.
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Resveratrol

Resveratrol is a polyphenolic phytoalexin found in red wine, grapes and peanuts. It has been reported

to have antioxidant, cardioprotective, antimutagenic, antiinflammatory, chemopreventive and antiplatelet

effects (Aziz et al., 2003; Cal et al., 2003; Gusman et al., 2001; Kimura, 2003; Orallo et al., 2002;

Roemer and Mahyar-Roemer, 2002). Resveratrol has also been reported to possess substantial cytotoxic

activities in different tumour cell lines (El-Mowafy and Alkhalaf, 2003; Ferry-Dumazet et al., 2002; Kuo

et al., 2002; Roman et al., 2002). The cytotoxicity may be ascribed to suppressed activation of NF-nB
and cell proliferation, inhibition of DNA synthesis (Kuwajerwala et al., 2002), and induction of G2 arrest

and apoptosis of tumour cells (Estrov et al., 2003; Liang et al., 2003; Niles et al., 2003; Pozo-Guisado et

al., 2002; Roman et al., 2002). In addition, resveratrol is able to activate estrogen receptor (Bhat et al.,

2001; Klinge et al., 2003; Levenson et al., 2003; Mueller et al., 2003; Ratna and Simonelli, 2002), inhibit

eicosanoid synthesis and cyclooxygenase-1 and 2 (Johnson and Maddipati, 1998; Martinez and Moreno,

2000; Moreno, 2000; Pace-Asciak et al., 1995), activate adenylyl and guanylyl cyclase (El-Mowafy,

2002; El-Mowafy and Alkhalaf, 2003), and enhance the expression and activity of endothelial nitric

oxide synthase (Hattori et al., 2002; Wallerath et al., 2002).

Resveratrol was shown to be an irreversible (mechanism-based) inhibitor for CYP3A4 and a non-

competitive reversible inhibitor for CYP2E1, with IC50 values of 4-150 AM in microsomes from rat

liver, human liver or cells containing cDNA-expressed CYPs (Chan and Delucchi, 2000; Chan et al.,

1998; Piver et al., 2001). In a study using Sf9 insect microsomes containing baculovirus-derived human

CYP3A4 and NADPH-cytochrome CYP reductase, resveratrol inactivated CYP3A4 in a time- and

NADPH-dependent manner, with kinact and KI of 0.20 min� 1 and 20 AM, respectively (Chan and



Fig. 12. Proposed bioactivation of resveratrol.
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Delucchi, 2000; Chan et al., 1998). Resveratrol is an electron-rich molecule with two aromatic benzene

rings linked by an ethylene bridge. CYP3A-mediated aromatic hydroxylation and epoxidation of this

compound are possible, resulting in a reactive p-benzoquinone methide metabolite which is capable of

binding covalently to CYP3A4 and inactivating it (Fig. 12).

Interestingly, q-viniferin, a dimer of resveratrol, was not a mechanism-based inhibitor of human CYPs

(Piver et al., 2003). It showed mixed-type inhibitions for various CYPs with Ki of 0.5–20 AM, except for

CYP2E1 (non-competitive). q-Viniferin was isolated in wine at concentration of 0.5–5 AM (Landrault et

al., 2002). It is generated by oxidation from resveratrol, the parent compound and produced by grapevine

in response to fungal infection. q-Viniferin has been shown to have better antifungal and antioxidant

activity than resveratrol (Baderschneider and Winterhalter, 2000; Bala et al., 2000). q-Viniferin also had

hepatoprotective activity (Oshima et al., 1995).
Mechanism-based inhibition of CYPs and herb-drug interactions

Herbs are often administered in combination with therapeutic drugs, raising the potential of

pharmacokinetic and/or pharmacodynamic herb-drug interactions. A number of clinically important

herb-drug interactions have been documented and many of them led to altered efficacy and/or adverse

events (Fugh-Berman, 2000; Fugh-Berman and Ernst, 2001). Pharmacokinetic herb-drug interactions are

due to altered absorption, metabolism, distribution and excretion of drugs. Frequently, one of the

underlying mechanisms of altered drug concentrations by concomitant herbal medicines is the induction
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or inhibition of hepatic and intestinal CYPs. CYP3A4 are expressed at high levels in the villus tip of

enterocytes, the primary site of absorption for orally administered drugs. Thus, the modulation of

intestinal CYP3A represents an important mechanism for the enhanced or reduced bioavailability of

coadministered drugs. In particular, the mechanism-based inhibition of CYPs (in particular CYP3A4) by

herbal constituents may have important pharmacokinetic implications.

Administration of garlic extract for 3 months in healthy volunteers did not alter the oxidative

metabolism of acetaminophen, but caused a slight increase in sulfation (Gwilt et al., 1994). However, a

study in mice indicated that diallyl sulfone decreased the plasma levels of oxidative acetaminophen

metabolites, but not nonoxidative acetaminophen metabolites (Lin et al., 1996). This is considered to be

due to the inhibition of CYP2E1 that is the major enzyme responsible for acetaminophen bioactivation

(Manyike et al., 2000). In liver microsomes, diallyl sulfone significantly inhibited the acetaminophen

oxidation to N-acetyl-p-benzoquinone imine (the toxic metabolite of acetamoniphen) (Lin et al., 1996).

All these results provide an explanation for the protective effect of diallyl sulfone on acetaminophen-

induced hepatotoxicity (Lin et al., 1996). When administered orally 1 hr prior to, immediately after, or

20 min after a toxic dose of acetaminophen, diallyl sulfone (25 mg/kg) completely protected mice from

development of hepatotoxicity (Lin et al., 1996).

Case reports and pharmacologic studies have indicated a potentiation of the central nervous system

effects of benzodiazepines, including alprazolam (Almeida and Grimsley, 1996), in the presence of kava

extract and/or kavalactones. Since alprazolam is a substrate of CYP3A4 (Gorski et al., 1999) and

kavalactones are potent inhibitors of CYP3A4 (Zou et al., 2002), decreased elimination of alprazolam by

kava may contribute to the additive effects reported upon coadministration of kava and alprazolam.

Coadministration of kava markedly increased hexobarbital sleep time (Meyer, 1962) and ethanol-

induced hypnotic effect (Jamieson and Duffield, 1990) in mice, indicative of inhibition of CYP2C and

CYP2E1.

In a crossover study in healthy human volunteers, oral ingestion of aqueous licorice extract for 7 days

did not significantly alter the pharmacokinetic parameters and sedative effects of midazolam (Shon et al.,

2001). Midazolam is a typical substrate of CYP3A4 (Gorski et al., 1994). The discrepancy between in

vitro and animal and human studies may reflect the importance of herbal dosing and regimen in the

modulation of CYPs.

Grapefruit juice has been found to significantly increase oral bioavailability of most dihydropyr-

idines (e.g. felodipine), terfenadine, saquinavir, cyclosporine, midazolam, triazolam and verapamil

(Bailey et al., 2000; Bailey et al., 1998; Bailey et al., 1991; Ducharme et al., 1995; He et al., 1998;

Kane and Lipsky, 2000; Mohri and Uesawa, 2001; Yee et al., 1995). The plasma concentrations or

area under the concentration-time curve (AUC) of lovastatin, cisapride and astemizole can also be

markedly increased by grapefruit juice (Bailey et al., 2000; Bailey et al., 1998). As the duration of

effect of grapefruit juice can last 24 hr, repeated consumption of grapejuice can lead to a cumulative

increase in the AUC and Cmax of coadministered drugs. The inhibition of CYP3A4 activity with no

change of CYP3A4 mRNA and P-glycoprotein is believed to be the primary mechanism (Bailey et al.,

1998; Kane and Lipsky, 2000). However, the pharmacokinetics of many other drugs were not altered

by grapefruit juice. For example, grapefruit juice did not alter the bioavailability of digoxin, diltiazem

and amlodipine in human volunteers, and indinavir in HIV-positive patients (Becquemont et al., 2001;

Sigusch et al., 1994; Vincent et al., 2000). Although these drugs undergo presystemic metabolism,

CYP3A4 is a minor contributor. These finding indicate the difficulty in predicting herb-drug

interactions.
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The clinical outcome of herb-drug interactions depends on factors that are related to coadministered

drugs (dose, dosing regimen, administration route, pharmacokinetic and therapeutic range), herbs

(species, dose, dosing regimen, and administration route) and patients (genetic polymorphism, age,

gender and pathological conditions) (Dresser et al., 2000). Generally, a doubling or more in drug plasma

concentration has the potential for enhanced adverse effects. However, less marked changes may still be

clinically important for drugs with a steep concentration-response relationship or a narrow therapeutic

index.
Mechanism-based inhibition of CYPs and herbal chemoprevention

Chemoprevention refers to the application of natural or synthetic compounds to block, reverse, or

prevent the development of invasive cancers (Shureiqi et al., 2000; Sporn and Suh, 2000; Tamimi et al.,

2002; Young and Wilson, 2002). Clinical evidence has indicated the feasibility of this approach in

reducing the risk of major human cancers. For example, tamoxifen and raloxifene (both oestrogen

receptor modulators) reduce the risk of developing breast cancer in women at increased risk (Fisher et

al., 1998; Salih and Fentiman, 2001). Results with aspirin and non-steroidal anti-inflammatory agents

have proved consistently encouraging in epidemiological studies in lowering the incidence of colorectal

cancer (Jolly et al., 2002). However, although these compounds have shown a potential to reduce cancer

incidence, several problems have been associated with them. These include severe side effects due to

long-term use, high costs and non-compliance. Therefore, safer and more selective chemopreventive

agents are needed.

A number of naturally occurring products from herbs have shown chemopreventive properties against

carcinogenesis using in vitro and animal models (Chen et al., 1998; Fukutake et al., 2000; Fukutake et

al., 1998; Lahiri-Chatterjee et al., 1999; Zheng et al., 1997). The mechanisms for the chemopreventive

effects of herbal preparations are not fully elucidated, but inhibition of activating enzymes and other

enzyme systems, protective effects from toxic xenobiotics, beneficial regulation of cell cycles and

cellular signalling pathways have all been suggested (Wargovich et al., 2001).

Naturally occurring isothiocyanates have been shown to be potent and selective inhibitors of

carcinogenesis induced by a number of chemical carcinogens (Boysen et al., 2003; Hecht et al.,

2002; Yang et al., 2002). In most studies, the chemopreventative activity of isothiocyanates required

administration either before or during exposure to the carcinogen. PEITC inhibits lung carcinogenesis

induced by the tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone, whereas

BITC is ineffective in this regard (Staretz and Hecht, 1995). In turn, BITC effectively inhibits

benzo(a)pyrene-induced lung tumors in A/J mice, whereas PEITC is ineffective (Lin et al., 1993).

These effects might be related to the inhibitory mechanisms and potencies for CYP2B1 and 1A,

respectively. Some isothiocyanates such as PEITC are able to induce CYP2B1 and 2E1 following

chronic administration, with increased toxicity (Smith et al., 1993). The extensive conjugation of BITC

with GSH might also be important for the in vivo effects of BITC. The conjugation with GSH has been

shown to decrease potency, and could contribute to mutagenicity (Raulf-Heimsoth and Baur, 1998). It

appears that local release of the conjugated product might also contribute to the toxicity of BITC (Hirose

et al., 1998).

Epidemiological studies suggest that the consumption of fruit and vegetables decreases the risk for

cancer development (Block et al., 1992). The combination of BITC and PEITC has recently also been
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proposed for the chemoprevention of lung cancer in individuals resistant to smoking cessation (Hecht,

1997; Kelloff et al., 1996). These effects appear to be mediated through modulation of both Phase I and

Phase II enzymes involved in carcinogen metabolism by isothiocyanates. In particular, the isothiocyanate-

mediated inactivation of CYP1A and 2B responsible for carcinogen activation would inhibit carcino-

genesis (Boysen et al., 2003; Scharf et al., 2003; Zhang and Talalay, 1994). In addition, the induction of

detoxifying Phase II enzymes may also contribute to the beneficial effects of isothiocyanates.

Organosulfur compounds from garlic showed chemopreventive effects at several organ sites in

rodents after administration of chemical carcinogens, perhaps by inhibiting CYP2E1-mediated carcin-

ogen activation (Reddy et al., 1993; Yang et al., 2001). These compounds have also been shown to

reduce the incidence of a multitude of chemically induced tumors in animal models. Pretreatment with

aqueous garlic extract significantly reduced the frequencies of N-methyl-NV-nitro-N-nitrosoguanidine-
induced micronuclei and chromosomal aberrations (Arivazhagan et al., 2001). These compounds have

also been shown to reduce toxicity induced by thioacetamide, carbon tetrachloride, N-nitrosodimethyl-

amine- and acetaminophen (all CYP2E1 substrates) in rodents (Ramaiah et al., 2001; Wang et al., 2001;

Wang et al., 2000). The protective effect was observed when the organosulfur compounds were given

before, during or soon after chemical treatment.

Diallyl sulfide also has been shown to induce other CYP and phase II enzymes as well as decrease

hepatic catalase activity (Yang et al., 2001). The preventive effects of garlic extract on bromobenzene-

induced hepatotoxicity in precision-cut liver slices was related to an elevation of hepatic glutathione

content, and a glutathione sparing effect, possibly due to conjugation of organosulphur compounds in

garlic extract with toxic bromobenzene metabolites (Guyonnet et al., 2001; Wang et al., 1999).

Organosulfur compounds also inhibit the formation of DNA adducts in several target tissues.

Antiproliferative activity has been described in several tumor cell lines (Hirsch et al., 2000; Nakagawa

et al., 2001), and may be due to induction of apoptosis and alterations of the cell cycle (Frantz et al.,

2000; Kwon et al., 2002). However, all of these effects are observed at concentrations much higher than

what is normally ingested by humans and clinical trials will be needed to define the effective dose that

has no toxicity in humans.

Resveratrol seems to be a promising cancer chemopreventive agent and it has been shown to afford

protection against several cancer types in several bioassay systems (Aziz et al., 2003; Banerjee et al.,

2002; Li et al., 2002). The mechanism for these effects is not completely understood, but multiple effects

of resveratrol may be involved. Inhibition of Phase I enzymes and induction of Phase II enzymes will

contribute to the chemopreventive activity of resveratrol (Dubuisson et al., 2002; Jang et al., 1997). It

also has activity in the regulation of multiple cellular events associated with carcinogenesis. However, it

is not known whether resveratrol inhibits the catalytic activity of CYP1A1, 1A2, and 1A2 in vivo. The

potential in vivo effect of resveratrol on the bioactivation of CYP1 substrates may depend not only on

the pharmacokinetics of resveratrol but also the tissue of interest (Schwedhelm et al., 2003). It is known

that the expression of many CYPs such as CYP1A1, 1A2, and 1B1 is tissue-dependent (Omiecinski

et al., 1999).
Conclusions

Bioactivation of herbal constituents appears a critical step for the toxicity induction of some herbs.

The resultant reactive intermediates bind covalently to DNA and proteins, leading to organ toxicity and
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even carcinogenicity. On the other hand, some herbal/dietary constituents were shown to form reactive

intermediates capable of irreversibly inhibiting various CYPs. The resultant metabolites lead to CYP

inactivation by chemical modification of the heme, the apoprotein, or both as a result of covalent binding

of modified heme to the apoprotein. The mechanism-based inhibition of CYPs may provide an

explanation for some reported herb-drug interactions. Naturally occurring compounds that inactivate

CYPs may represent a novel type of chemopreventive agents with higher selectivity and lower toxicity

compared to synthetic compounds.

Herbal medicines often contain multiple active substances and multiple cellular molecules might be

the targets of herbal medicine. The identification of these targets may provide molecular evidence for the

herb’s pharmacological activity and toxicity. Recently, there is an increasing application of genomic

approaches (e.g. high-density microarray analysis) to examine the genomic responses to herbal

medicines (Afshari et al., 1999; Gohil, 2002; Gohil et al., 2000; Owuor and Kong, 2002; Watanabe

et al., 2001; Yang et al., 2003). These approaches can identify a huge number (e.g. 1000–12000) of

genes which are repressed or stimulated by a herbal compound of interest. The genomic approaches may

offer a powerful tool for defining and predicting pharmacological activity and toxicity of herbal

medicines.

Due to the wide use and easy availability of herbal medicines, herbal toxicity has become an issue of

concern. The safety and quality of herbal medicine should be ensured through greater research,

pharmacovigilance, greater regulatory control and better communication between patients and health

professionals.
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