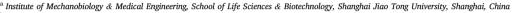
ELSEVIER

Contents lists available at ScienceDirect

Mechanobiology in Medicine


journal homepage: www.sciencedirect.com/journal/mechanobiology-in-medicine

Review

Changes of calcium cycling in HFrEF and HFpEF[™]

Jian Shou^a, Yunlong Huo^{a,b,*}

b PKU-HKUST Shenzhen-Hong Kong Institution, Shenzhen, Guangdong, China

Keywords: HFrEF HFpEF Mitochondria Calcium cycling

ABSTRACT

Dysfunctions of calcium cycling occur in heart failure with reduced and preserved ejection fraction (HFrEF and HFpEF). HFrEF and HFpEF showed Ca^{2+} leakage at diastole. The compensation of $\text{Na}^+/\text{Ca}^{2+}$ exchanger and the decrease of T-tubule density reduces cytoplasmic Ca^{2+} concentration in HFrEF and impairs systolic function. In contrast, HFpEF has the increase of cytoplasmic Ca^{2+} concentration and diastolic dysfunctions. The decrease of mitochondrial Ca^{2+} concentration weakens myocardial contractility in HFrEF while the increased concentration retains the contractility in HFpEF. Here, the changes of calcium cycling in HFrEF and HFpEF are summarized and the possibility of relevant therapeutic targets is discussed.

1. Introduction

Heart failure (HF) is a complex clinical syndrome characterized by systolic or diastolic dysfunctions [1–3], which leads to a decrease in the pumping capacity of the heart. Heart failure with reduced ejection fraction (HFrEF) and heart failure with preserved ejection fraction (HFpEF) are two major heart failures (HF) [4,5]. In comparison with HFrEF, HFpEF shows diastolic dysfunction, myocardial hypertrophy and interstitial fibrosis and has heterogenous pathogenesis factors of type 2 diabetes, obesity, hypertension and so on [5–8].

Myocardial calcium is cycling through the synergism of calcium channel, ATPase pump, transporter and calcium binding protein [9]. There are cytoplasmic-sarcoplasmic reticulum (SR) calcium cycling and mitochondrial calcium cycling, which are of importance in the progression of HFrEF and HFpEF. This review summarizes changes of calcium cycling in HFrEF and HFpEF and shows relevant therapeutic targets.

2. Calcium cycling

2.1. Cytoplasmic-SR calcium cycling

SR mainly relies on ryanodine receptor 2 (RyR2) to release Ca^{2+} into the cytoplasm to activate the excitation-contraction coupling (ECC) [10]. At the end of systole, sarcoplasmic reticulum calcium ATPase 2a

(SERCA2a) (Ga^{2+} -ATPase 2A) is activated and reuptakes calcium [9]. S100 calcium binding protein A1 (S100A1), an important Ga^{2+} binding protein, exists in SR, sarcomere and mitochondria [9]. S100A1 increases the release of Ga^{2+} in systole and enhances the closure of RyR2 in diastole to prevent calcium leakage as well as increases the activity of SERCA2a in diastole and promotes Ga^{2+} uptake [11]. S100A1 deletion attenuates cardiac contractility and Ga^{2+} processing ability [12].

2.2. Mitochondrial calcium cycling

Mitochondrial calcium participates in tricarboxylic acid cycle, promotes ATP production, and adapts to higher energy requirements [13]. Mitochondrial calcium overload can lead to mitochondrial swelling, increased oxidative stress, mitochondrial membrane potential collapse, ATP production damage, permeability transition pore opening and so on [14,15].

Mitochondrial calcium uptake from cytoplasm mainly depends on mitochondrial calcium uniporter (MCU) complex [16], which consists of 4 MCU, 4 EMRE, 1 MICU1, 1 MICU2 and 1 MICU3 [17–20]. Mitochondrial calcium uptake is inhibited after MCU knockout [21,22]. MCU has low affinity for Ca^{2+} and high ability to transport Ca^{2+} , which leads to an S-shaped relationship between mitochondrial Ca^{2+} uptake and cytoplasmic Ca^{2+} concentration [23]. Hence, MCU can rapidly absorb Ca^{2+} during the exciting period (cardiac systole), and prevent Ca^{2+} uptake in

E-mail address: huoyunlong@sjtu.edu.cn (Y. Huo).

Received 10 April 2023; Received in revised form 9 May 2023; Accepted 11 May 2023 Available online 5 July 2023

^{*} Given his role as an editor of this journal, Yunlong Huo had no involvement in the peer-review of this article and has no access to information regarding its peer-review. Full responsibility for the peer-review process for this article was delegated to Jie Zhao.

^{*} Corresponding author. Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China.

the resting period (cardiac diastole). For mitochondrial calcium release, there are two major pathways: Na^+ dependent pathway (mitochondrial Na^+/Ca^{2+} exchanger, (NCLX)) and Na^+ independent pathway (Ca^{2+}/H^+ exchanger) [24]. The releasing rate of Na^+ dependent pathway is slightly higher than that of Na^+ independent pathway [24,25].

Mitochondria exchange Ca²⁺ directly with the SR. The mitochondrial-associated endoplasmic reticulum membranes (MAMs) [26] has the width of 10–50 nm [27]. The RyR2 and Ca²⁺ channels on the outer mitochondrial membrane (voltage-dependent anion selective channel (VDAC)) regulate the SR-mitochondrial calcium cycling [28]. The impaired interaction between SR and mitochondria reduces ATP production and activates apoptotic pathways [29].

3. Cytoplasmic-SR calcium cycling in HFrEF and HFpEF

3.1. Cytoplasmic-SR calcium cycling in HFrEF

In HFrEF, both systolic and diastolic dysfunctions are accompanied by calcium cycling dysfunctions. Impaired systolic SR Ca²⁺ release is closely related to myocardial T-tubules, e.g., the density of T-tubules decreases and the distance to SR increases in HFrEF rats [30,31]. The decrease of SR receiving excitatory signals can result in slow Ca²⁺ release and weak myocardial contractility. Moreover, calcium binding proteins (Triadin and Junctin) form complexes with RyR2 to regulate Ca²⁺ release. The reduced expression of Triadin and Junctin weaken the Ca2+ release impairing myocardial contractility in HFrEF patients [9]. On the other hand, the increase of cytoplasmic Ca²⁺ concentration is associated with the weakening of SR calcium uptake and calcium leakage at diastole. The decreased expression of SERCA2a reduces the diastolic SR Ca²⁺ uptake in HFrEF patients and animals [32]. The overexpression of SERCA enhances the cardiac function and prevents the occurrence of heart failure [32]. SERCA2a activity is mainly regulated by phosphoprotein (PLN) and the decreased ratio of SERCA2a to PLN results in a decrease in SERCA2a activity in HFrEF [9].

The abnormal phosphorylation of RyR2 results in an increase of Ca²⁺ leakage at diastole in HFrEF [33–36]. PKA and CaMKII phosphorylate RyR2 Ser 2808 and separated FK506 binding protein (FKBP12.6) from RyR2 to cause calcium leakage [37]. Inhibition of RyR2 Ser 2808 phosphorylation limits RyR2 dissociation from FKBP12.6 and calcium leakage [38,39]. Ser 2030 is also a target of PKA [40]. Moreover, the up-regulated expression of nitric oxide synthase (NOS), xanthine oxidase and NADPH oxidase (NOX) increase ROS level and oxidize RyR2 and cause calcium leakage [41]. To alleviate calcium leakage, the up-regulated Na⁺/Ca²⁺ exchanger (NCX) expression promotes the release of Ca²⁺ in the cytoplasm at diastole [42].

3.2. Cytoplasmic-SR calcium cycling in HFpEF

In comparison with HFrEF, the increased density of T-tubules [30] promotes RyR2 Ca²⁺ release at systole in the myocardium of HFpEF patients [43]. This compensates for the increase of myocardial stiffness and avoids systolic impairments in a short term [44]. However, high Ca²⁺ concentration can induce myocardial hypertrophy in a long term, which could lead to subsequent decompensation. On the other hand, cytoplasmic Ca2+ concentration is increased and Ca2+ transient is disordered at diastole given the reduction of SR ${\rm Ca}^{2+}$ uptake and calcium leakage [45]. The reduction of SR Ca²⁺ uptake may be caused by the decreased SERCA2a/PLN ratio [46] despite no obvious abnormality in hypertensive-induced HFpEF [30]. The Ca²⁺ leakage depends on the phosphorylation of RyR2 Ser 2808 by PKA [44], but not CaMKII and the oxidation of RyR2 [30,47,48]. High Ca²⁺ concentration activates calcineurin NFAT, CaMKII histone deacetylase and other pathways to induce cardiac hypertrophy as well as continuously activates ECC to inhibit the relaxation of myocardial fibers resulting in the diastolic dysfunction.

The RyR2 activation pathways in HFrEF are more abundant than those in HFpEF, making them easier to activate, which is beneficial to

increase myocardial contractility during systole and compensate for the decrease in cardiac contractility caused by HFrEF. This denotes that RyR2 conformations are inconsistent between HFpEF and HFrEF and RyR2 exposes more activation sites in HFrEF, which can be proved by the following analysis of protein structure. The conformational change may be beneficial for the treatment of muscle fiber diseases such as muscle weakness.

4. Mitochondrial calcium cycling in HFrEF and HFpEF

4.1. Mitochondrial calcium cycling in HFrEF

Because of the decreased Ca^{2+} uptake and the increased Ca^{2+} release, a reduction of mitochondrial Ca^{2+} concentration increases reactive oxygen species (ROS) production, impairs myocardial energy supply, and lowers myocardial contractility in HFrEF [49,50]. The overexpression of MCU could increase Ca^{2+} uptake to increase mitochondrial Ca^{2+} concentration and further reduce RyR2 oxidation and ROS production [51]. The elevated activity of NCLX, however, accelerates mitochondrial Ca^{2+} release and reduces mitochondrial Ca^{2+} concentration [49].

On the other hand, SR and mitochondria exchange Ca²⁺ directly through MAMs. The expression of MAMs related proteins (inositol 1,4,5-trisphosphate receptor type 2 (IP3r2), phosphofurin acidic cluster sorting protein 2 (PACS-2)) is decreased, the structure is destroyed and the number is reduced in HFrEF mice, which reduce the Ca²⁺ release of SR to mitochondria and weaken myocardial contractility [52]. Myocardial specific knockout of MAMs related protein (FUN14 domain containing 1, Fundc1) shows similar symptoms to HFrEF [52].

4.2. Mitochondrial calcium cycling in HFpEF

In contrast to HFrEF, there is an increase of mitochondrial Ca²⁺ concentration in HFpEF, which enhances mitochondrial function in a short term, but could open permeability transition pore to induce cardiomyocyte apoptosis in a long term [53]. Accordingly, there is no significant change in MCU expression [54]. The shorter distance between SR and mitochondria, the wider width of the junction, and the tighter MAMs are found in HFpEF mice with a high-fat and high sugar diet inducing diabetic cardiomyopathy [55]. Moreover, the expression of VDAC1, RyR2 and SERCA2 has neglectable changes, and the expression of mitofusin-2 is decreased. This denotes the changed shape and size of MAMs. In general, diabetic cardiomyopathy shows strong systolic dysfunctions, which is not the only feature of HFpEF [56]. Therefore, it is still required to investigate the role of MAMs in a more real animal model of HFpEF.

The reduction of various structural proteins in MAM leads to a decrease in the proportion of MAM in HFrEF. There is a close relationship between MAM and mitochondrial fusion and fission. Mitochondrial fission increased in HFrEF, showing fragmentation. Excessively small mitochondria result in a decrease in MAM. There is an increase in mitochondrial fusion in HFpEF, and larger mitochondria facilitate the formation of MAM, leading to an increase in MAM.

5. Treatment modalities targeting calcium cycling

5.1. Targeting cytoplasmic-SR calcium cycling

Targeting cytoplasmic-SR calcium cycling has attracted attention to the treatment of HF, which mainly focuses on regulation of SR Ca²⁺ uptake and calcium leakage at present. Overexpressing SERCA2a improves HF symptoms, reduces cardiovascular events after 12 months, and shortens the length of hospital stay [57]. The three-year follow-up shows the significantly decreased incidence of clinical events [58]. In animal models, inhibiting PLN and increasing SERCA2a activity inhibit the progression of HF [59,60]. Overexpression of small ubiquitin like modifier 1 (SUMO1) can enhance the activity and stability of SERCA2a to

alleviate HF [61]. On the other hand, FKBP12.6 is a RyR2 regulatory protein that enhances RyR2 stability. The HF progression is limited by increasing the interaction of RyR2 and FKBP12.6 with compounds such as Rycals (K201 derivatives) [62]. Moreover, overexpression of S100A1 improves HF by interacting with RyR2 and SERCA2a. Hence, SERCA2a and RyR2 are good therapeutic targets.

5.2. Targeting mitochondrial calcium cycling

Mitochondrial calcium cycling plays an important role. Over-expression of MCU increases the level of mitochondrial Ca^{2+} , alleviates SR Ca^{2+} leakage, and improves the HFrEF phenotype [63]. However, MCU has negligible effects on HFpEF. Because of its important role in calcium cycling and mitochondrial dynamics, MAMs can be a potential therapeutic target for HF, which needs to be confirmed in future studies. Our group has recently found that PTEN induced kinase 1 (PINK1) could phosphorylate dynamin 1 like \$^{616}\$ (Drp1\$^{616}\$) to improve mitochondrial fission and relieve mitochondrial dysfunctions, which highlights potential treatments of HFpEF [64].

6. Summary and prospect

Calcium cycling shows different changes between HFrEF and HFpEF, as shown in Fig. 1. HFrEF has strong contractile dysfunctions

relevant to abnormal SR ${\rm Ca}^{2+}$ release caused by the increased NCX expression and decreased T-tubule density and HFpEF has strong diastolic dysfunctions associated with high cytoplasmic ${\rm Ca}^{2+}$ concentration due to the unchanged NCX and increased density of T-tubules albeit they have decreased SERCA2a activity and RyR2 hyperactivation for leakage of SR ${\rm Ca}^{2+}$ at diastole. In the mitochondrial calcium cycling, the reduction of MCU activity and MAMs results in the decreased mitochondrial ${\rm Ca}^{2+}$ concentration and myocardial contractility in HFrEF while mitochondrial ${\rm Ca}^{2+}$ concentration increases in HFpEF.

Overall, calcium cycling is closely related to the occurrence and development of heart failure, but there are limited studies on mitochondrial calcium cycling, especially for MAM. MAM is not only an important part of mitochondrial calcium cycling, but also participates in the regulation of mitochondrial dynamics. This suggests that there may be a close relationship between mitochondrial dynamics and calcium cycling, which will be a research direction of interest in the future.

Sources of funding

This work is supported by the National Key Research and Development Program of China 2021YFA1000200 and 2021YFA1000203 (Y. Huo), and Shenzhen Science and Technology R&D Grant KQTD20180411143400981 (Y. Huo).

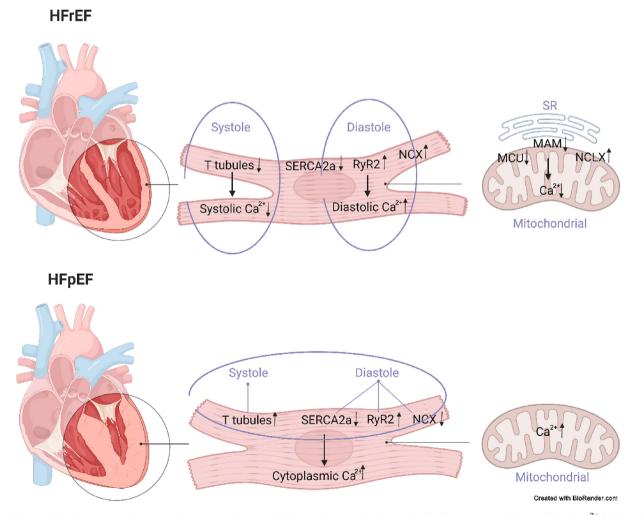


Fig. 1. Calcium cycling in HFrEF and HFpEF. Both HFrEF and HFpEF exhibit RyR2 hyperactivation and reduced SERCA2a activity, resulting in Ca²⁺ leakage during diastole. HFrEF shows increased NCX expression and decreased T-tubule density, resulting in decreased cytoplasmic Ca²⁺ during systole. In contrast, HFpEF shows decreased NCX expression and increased T-tubule density, resulting in increased cytoplasmic Ca²⁺. In the mitochondrial calcium cycling, MCU activity and MAMs content decreased in HFrEF, result in decreased mitochondrial Ca²⁺. In contrast, mitochondrial Ca²⁺ increases in HFpEF.

Conflicts of interest

The authors declare no conflict of interest.

References

- [1] E.J. Benjamin, M.J. Blaha, S.E. Chiuve, M. Cushman, S.R. Das, R. Deo, S.D. de Ferranti, J. Floyd, M. Fornage, C. Gillespie, et al., Heart disease and stroke statistics-2017 update: a report from the American heart association, Circulation 135 (2017) e146–e603, https://doi.org/10.1161/CIR.0000000000000485.
- [2] J.J. McMurray, M.A. Pfeffer, Heart failure, Lancet 365 (2005) 1877–1889, https://doi.org/10.1016/S0140-6736(05)66621-4.
- [3] E. Tanai, S. Frantz, Pathophysiology of heart failure, Compr. Physiol. 6 (2015) 187–214, https://doi.org/10.1002/cphy.c140055.
- [4] Y.T. Chen, L.L. Wong, O.W. Liew, A.M. Richards, Heart failure with reduced ejection fraction (HFrEF) and preserved ejection fraction (HFpEF): the diagnostic value of circulating MicroRNAs, Cells 8 (2019), https://doi.org/10.3390/ cells8121651.
- [5] S.J. Simmonds, I. Cuijpers, S. Heymans, E.A.V. Jones, Cellular and molecular differences between HFpEF and HFrEF: a step ahead in an improved pathological understanding, Cells 9 (2020), https://doi.org/10.3390/cells9010242.
- [6] G.A. Lewis, E.B. Schelbert, S.G. Williams, C. Cunnington, F. Ahmed, T.A. McDonagh, C.A. Miller, Biological phenotypes of heart failure with preserved ejection fraction, J. Am. Coll. Cardiol. 70 (2017) 2186–2200, https://doi.org/10.1016/ i.iacc.2017.09.006.
- [7] W.J. Paulus, C. Tschope, A novel paradigm for heart failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation, J. Am. Coll. Cardiol. 62 (2013) 263–271, https://doi.org/10.1016/j.jacc.2013.02.092.
- [8] S.J. Shah, D.W. Kitzman, B.A. Borlaug, L. van Heerebeek, M.R. Zile, D.A. Kass, W.J. Paulus, Phenotype-specific treatment of heart failure with preserved ejection fraction: a multiorgan roadmap, Circulation 134 (2016) 73–90, https://doi.org/ 10.1161/CIRCULATIONAHA.116.021884.
- [9] C. Kho, A. Lee, R.J. Hajjar, Altered sarcoplasmic reticulum calcium cycling-targets for heart failure therapy, Nat. Rev. Cardiol. 9 (2012) 717–733, https://doi.org/ 10.1038/nrcardio.2012.145.
- [10] G. Santulli, L. D'Ascia S, C. D'Ascia, Development of atrial fibrillation in recipients of cardiac resynchronization therapy: the role of atrial reverse remodelling, Can. J. Cardiol. 28 (2012) 245–248, https://doi.org/10.1016/j.cjca.2011.11.001, e217; author reply 245 e217.
- [11] S. Kettlewell, P. Most, S. Currie, W.J. Koch, G.L. Smith, S100A1 increases the gain of excitation-contraction coupling in isolated rabbit ventricular cardiomyocytes, J. Mol. Cell. Cardiol. 39 (2005) 900–910, https://doi.org/10.1016/ i.vimcc. 2005.06.018
- [12] X.J. Du, T.J. Cole, N. Tenis, X.M. Gao, F. Kontgen, B.E. Kemp, J. Heierhorst, Impaired cardiac contractility response to hemodynamic stress in S100A1-deficient mice, Mol. Cell Biol. 22 (2002) 2821–2829, https://doi.org/10.1128/ MCB 22 8 2821.2829 2002
- [13] A.H. Chaanine, Metabolic remodeling and implicated calcium and signal transduction pathways in the pathogenesis of heart failure, Int. J. Mol. Sci. (2021) 22, https://doi.org/10.3390/ijms221910579.
- [14] P. Bernardi, F. Di Lisa, The mitochondrial permeability transition pore: molecular nature and role as a target in cardioprotection, J. Mol. Cell. Cardiol. 78 (2015) 100–106, https://doi.org/10.1016/j.yjmcc.2014.09.023.
- [15] G. Santulli, W. Xie, S.R. Reiken, A.R. Marks, Mitochondrial calcium overload is a key determinant in heart failure, Proc. Natl. Acad. Sci. U. S. A. 112 (2015) 11389–11394, https://doi.org/10.1073/pnas.1513047112.
- [16] D. De Stefani, A. Raffaello, E. Teardo, I. Szabo, R. Rizzuto, A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter, Nature 476 (2011) 336–340, https://doi.org/10.1038/nature10230.
- [17] N.X. Nguyen, J.P. Armache, C. Lee, Y. Yang, W. Zeng, V.K. Mootha, Y. Cheng, X.C. Bai, Y. Jiang, Cryo-EM structure of a fungal mitochondrial calcium uniporter, Nature 559 (2018) 570–574, https://doi.org/10.1038/s41586-018-0333-6.
- [18] R. Baradaran, C. Wang, A.F. Siliciano, S.B. Long, Cryo-EM structures of fungal and metazoan mitochondrial calcium uniporters, Nature 559 (2018) 580–584, https://doi.org/10.1038/s41586-018-0331-8.
- [19] J. Yoo, M. Wu, Y. Yin, M.A. Herzik Jr., G.C. Lander, S.Y. Lee, Cryo-EM structure of a mitochondrial calcium uniporter, Science 361 (2018) 506–511, https://doi.org/ 10.1126/science.aar4056.
- [20] M. Fan, J. Zhang, C.W. Tsai, B.J. Orlando, M. Rodriguez, Y. Xu, M. Liao, M.F. Tsai, L. Feng, Structure and mechanism of the mitochondrial Ca(2+) uniporter holocomplex, Nature 582 (2020) 129–133, https://doi.org/10.1038/s41586-020-2309-6.
- [21] K.M. Holmstrom, X. Pan, J.C. Liu, S. Menazza, J. Liu, T.T. Nguyen, H. Pan, R.J. Parks, S. Anderson, A. Noguchi, et al., Assessment of cardiac function in mice lacking the mitochondrial calcium uniporter, J. Mol. Cell. Cardiol. 85 (2015) 178–182, https://doi.org/10.1016/j.yjmcc.2015.05.022.
- [22] X. Pan, J. Liu, T. Nguyen, C. Liu, J. Sun, Y. Teng, M.M. Fergusson, Rovira II, M. Allen, D.A. Springer, et al., The physiological role of mitochondrial calcium revealed by mice lacking the mitochondrial calcium uniporter, Nat. Cell Biol. 15 (2013) 1464–1472, https://doi.org/10.1038/ncb2868.
- [23] M. Patron, V. Checchetto, A. Raffaello, E. Teardo, D. Vecellio Reane, M. Mantoan, V. Granatiero, I. Szabo, D. De Stefani, R. Rizzuto, MICU1 and MICU2 finely tune the mitochondrial Ca2+ uniporter by exerting opposite

- effects on MCU activity, Mol Cell 53 (2014) 726–737, https://doi.org/10.1016/j.molcel.2014.01.013.
- [24] E. Murphy, C. Steenbergen, Regulation of mitochondrial Ca(2+) uptake, Annu. Rev. Physiol. 83 (2021) 107–126, https://doi.org/10.1146/annurev-physiol-031920-092419
- [25] M.F. Tsai, D. Jiang, L. Zhao, D. Clapham, C. Miller, Functional reconstitution of the mitochondrial Ca2+/H+ antiporter Letm1, J. Gen. Physiol. 143 (2014) 67–73, https://doi.org/10.1085/jgp.201311096.
- [26] N. Wiedemann, N. Pfanner, Mitochondrial machineries for protein import and assembly, Annu. Rev. Biochem. 86 (2017) 685–714, https://doi.org/10.1146/ annurev-biochem-060815-014352.
- [27] B. Zhou, R. Tian, Mitochondrial dysfunction in pathophysiology of heart failure, J. Clin. Invest. 128 (2018) 3716–3726, https://doi.org/10.1172/JCI120849.
- [28] V. Eisner, G. Csordas, G. Hajnoczky, Interactions between sarco-endoplasmic reticulum and mitochondria in cardiac and skeletal muscle - pivotal roles in Ca(2)(+) and reactive oxygen species signaling, J. Cell Sci. 126 (2013) 2965–2978, https://doi.org/10.1242/jcs.093609.
- [29] Y. Chen, G.W. Dorn, 2nd. PINK1-phosphorylated mitofusin 2 is a Parkin receptor for culling damaged mitochondria, Science 340 (2013) 471–475, https://doi.org/ 10.1126/science.1231031.
- [30] M. Frisk, C. Le, X. Shen, A.T. Roe, Y. Hou, O. Manfra, G.J.J. Silva, I. van Hout, E.S. Norden, J.M. Aronsen, et al., Etiology-dependent impairment of diastolic cardiomyocyte calcium homeostasis in heart failure with preserved ejection fraction, J. Am. Coll. Cardiol. 77 (2021) 405–419, https://doi.org/10.1016/j.jacc.2020.11.044.
- [31] D.J. Crossman, X. Shen, M. Jullig, M. Munro, Y. Hou, M. Middleditch, D. Shrestha, A. Li, S. Lal, C.G. Dos Remedios, et al., Increased collagen within the transverse tubules in human heart failure, Cardiovasc. Res. 113 (2017) 879–891, https:// doi.org/10.1093/cvr/cvx0555.
- [32] Z. Ge, A. Li, J. McNamara, C. Dos Remedios, S. Lal, Pathogenesis and pathophysiology of heart failure with reduced ejection fraction: translation to human studies, Heart Fail. Rev. 24 (2019) 743–758, https://doi.org/10.1007/ s10741-019-09806-0.
- [33] Y. Fu, S.A. Shaw, R. Naami, C.L. Vuong, W.A. Basheer, X. Guo, T. Hong, Isoproterenol promotes rapid ryanodine receptor movement to bridging integrator 1 (BIN1)-organized dyads, Circulation 133 (2016) 388–397, https://doi.org/ 10.1161/CIRCULATIONAHA.115.018535.
- [34] H. Uchinoumi, Y. Yang, T. Oda, N. Li, K.M. Alsina, J.L. Puglisi, Y. Chen-Izu, R.L. Cornea, X.H.T. Wehrens, D.M. Bers, CaMKII-dependent phosphorylation of RyR2 promotes targetable pathological RyR2 conformational shift, J. Mol. Cell. Cardiol. 98 (2016) 62–72. https://doi.org/10.1016/j.vjmcc.2016.06.007.
- [35] K. Walweel, P. Molenaar, M.S. Imtiaz, A. Denniss, C. Dos Remedios, D.F. van Helden, A.F. Dulhunty, D.R. Laver, N.A. Beard, Ryanodine receptor modification and regulation by intracellular Ca(2+) and Mg(2+) in healthy and failing human hearts, J. Mol. Cell. Cardiol. 104 (2017) 53–62, https://doi.org/10.1016/ i.vimcc.2017.01.016.
- [36] E. Dries, D.J. Santiago, G. Gilbert, I. Lenaerts, B. Vandenberk, C.K. Nagaraju, D.M. Johnson, P. Holemans, H.L. Roderick, N. Macquaide, et al., Hyperactive ryanodine receptors in human heart failure and ischaemic cardiomyopathy reside outside of couplons, Cardiovasc. Res. 114 (2018) 1512–1524, https://doi.org/ 10.1093/cvr/cvv088.
- [37] J.P. Benitah, R. Perrier, J.J. Mercadier, L. Pereira, A.M. Gomez, RyR2 and calcium release in heart failure, Front. Physiol. 12 (2021), 734210, https://doi.org/ 10.3389/fphys.2021.734210.
- [38] J. Shan, M.J. Betzenhauser, A. Kushnir, S. Reiken, A.C. Meli, A. Wronska, M. Dura, B.X. Chen, A.R. Marks, Role of chronic ryanodine receptor phosphorylation in heart failure and beta-adrenergic receptor blockade in mice, J. Clin. Invest. 120 (2010) 4375–4387, https://doi.org/10.1172/JCI37649.
- [39] J. Chen, S. Xu, W. Zhou, L. Wu, L. Wang, W. Li, Exendin-4 reduces ventricular arrhythmia activity and calcium sparks-mediated sarcoplasmic reticulum Ca leak in rats with heart failure, Int. Heart J. 61 (2020) 145–152, https://doi.org/10.1536/ ibi.19-327.
- [40] D.M. Potenza, R. Janicek, M. Fernandez-Tenorio, E. Camors, R. Ramos-Mondragon, H.H. Valdivia, E. Niggli, Phosphorylation of the ryanodine receptor 2 at serine 2030 is required for a complete beta-adrenergic response, J. Gen. Physiol. 151 (2019) 131–145, https://doi.org/10.1085/jgp.201812155.
- [41] R. Nikolaienko, E. Bovo, A.V. Zima, Redox dependent modifications of ryanodine receptor: basic mechanisms and implications in heart diseases, Front. Physiol. 9 (2018) 1775, https://doi.org/10.3389/fphys.2018.01775.
- [42] A. Val-Blasco, M. Gil-Fernandez, A. Rueda, L. Pereira, C. Delgado, T. Smani, G. Ruiz Hurtado, M. Fernandez-Velasco, Ca(2+) mishandling in heart failure: potential targets, Acta Physiol. 232 (2021), e13691, https://doi.org/10.1111/apha.13691.
- [43] P.J. Kilfoil, S. Lotteau, R. Zhang, X. Yue, S. Aynaszyan, R.E. Solymani, E. Cingolani, E. Marban, J.I. Goldhaber, Distinct features of calcium handling and betaadrenergic sensitivity in heart failure with preserved versus reduced ejection fraction, J Physiol 598 (2020) 5091–5108, https://doi.org/10.1113/JP280425.
- [44] L. Durland, Distinguishing HF with reduced and preserved ejection fraction at the level of individual cardiomyocytes: implications for therapeutic development, J Physiol 599 (2021) 1027–1029, https://doi.org/10.1113/JP280739.
- [45] S. Rouhana, C. Farah, J. Roy, A. Finan, G. Rodrigues de Araujo, P. Bideaux, V. Scheuermann, Y. Saliba, C. Reboul, O. Cazorla, et al., Early calcium handling imbalance in pressure overload-induced heart failure with nearly normal left ventricular ejection fraction, Biochim. Biophys. Acta, Mol. Basis Dis. 1865 (2019) 230–242, https://doi.org/10.1016/j.bbadis.2018.08.005.
- [46] D. Miranda-Silva, R.C.I. Wust, G. Conceicao, P. Goncalves-Rodrigues, N. Goncalves, A. Goncalves, D.W.D. Kuster, A.F. Leite-Moreira, J. van der Velden, J.M. de Sousa Beleza, et al., Disturbed cardiac mitochondrial and cytosolic calcium handling in a

- metabolic risk-related rat model of heart failure with preserved ejection fraction, Acta Physiol. 228 (2020), e13378, https://doi.org/10.1111/apha.13378.
- [47] I. Adeniran, D.H. MacIver, J.C. Hancox, H. Zhang, Abnormal calcium homeostasis in heart failure with preserved ejection fraction is related to both reduced contractile function and incomplete relaxation: an electromechanically detailed biophysical modeling study, Front. Physiol. 6 (2015) 78, https://doi.org/10.3389/ fphys.2015.00078.
- [48] H. Dridi, A. Kushnir, R. Zalk, Q. Yuan, Z. Melville, A.R. Marks, Intracellular calcium leak in heart failure and atrial fibrillation: a unifying mechanism and therapeutic target, Nat. Rev. Cardiol. 17 (2020) 732–747, https://doi.org/10.1038/s41569-020-0394-8.
- [49] T.H. Kuo, L. Zhu, K. Golden, J.D. Marsh, S.K. Bhattacharya, B.F. Liu, Altered Ca2+ homeostasis and impaired mitochondrial function in cardiomyopathy, Mol. Cell. Biochem. 238 (2002) 119–127, https://doi.org/10.1023/a:1019967323419.
- [50] G. Michels, I.F. Khan, J. Endres-Becker, D. Rottlaender, S. Herzig, A. Ruhparwar, T. Wahlers, U.C. Hoppe, Regulation of the human cardiac mitochondrial Ca2+ uptake by 2 different voltage-gated Ca2+ channels, Circulation 119 (2009) 2435–2443, https://doi.org/10.1161/CIRCULATIONAHA.108.835389.
- [51] T. Liu, N. Yang, A. Sidor, B. O'Rourke, MCU overexpression rescues inotropy and reverses heart failure by reducing SR Ca(2+) leak, Circ. Res. 128 (2021) 1191–1204, https://doi.org/10.1161/CIRCRESAHA.120.318562.
- [52] S. Wu, Q. Lu, Q. Wang, Y. Ding, Z. Ma, X. Mao, K. Huang, Z. Xie, M.H. Zou, Binding of FUN14 domain containing 1 with inositol 1,4,5-trisphosphate receptor in mitochondria-associated endoplasmic reticulum membranes maintains mitochondrial dynamics and function in hearts in vivo, Circulation 136 (2017) 2248–2266, https://doi.org/10.1161/CIRCULATIONAHA.117.030235.
- [53] T. Liu, B. O'Rourke, Enhancing mitochondrial Ca2+ uptake in myocytes from failing hearts restores energy supply and demand matching, Circ. Res. 103 (2008) 279–288, https://doi.org/10.1161/CIRCRESAHA.108.175919.
- [54] J.Q. Kwong, X. Lu, R.N. Correll, J.A. Schwanekamp, R.J. Vagnozzi, M.A. Sargent, A.J. York, J. Zhang, D.M. Bers, J.D. Molkentin, The mitochondrial calcium uniporter selectively matches metabolic output to acute contractile stress in the heart, Cell Rep. 12 (2015) 15–22, https://doi.org/10.1016/j.celrep.2015.06.002.
- [55] M. Dia, L. Gomez, H. Thibault, N. Tessier, C. Leon, C. Chouabe, S. Ducreux, N. Gallo-Bona, E. Tubbs, N. Bendridi, et al., Reduced reticulum-mitochondria Ca(2+) transfer is an early and reversible trigger of mitochondrial dysfunctions in diabetic cardiomyopathy, Basic Res. Cardiol. 115 (2020) 74, https://doi.org/10.1007/s00395-020-00835-7.

- [56] M.G. McCandless, R. Altara, G.W. Booz, M. Kurdi, What role do mitochondria have in diastolic dysfunction? Implications for diabetic cardiomyopathy and heart failure with preserved ejection function, J. Cardiovasc. Pharmacol. 79 (2022) 399–406, https://doi.org/10.1097/FJC.000000000001228.
- [57] M. Jessup, B. Greenberg, D. Mancini, T. Cappola, D.F. Pauly, B. Jaski, A. Yaroshinsky, K.M. Zsebo, H. Dittrich, R.J. Hajjar, et al., Calcium Upregulation by Percutaneous Administration of Gene Therapy in Cardiac Disease (CUPID): a phase 2 trial of intracoronary gene therapy of sarcoplasmic reticulum Ca2+-ATPase in patients with advanced heart failure, Circulation 124 (2011) 304–313, https:// doi.org/10.1161/CIRCULATIONAHA.111.022889.
- [58] K. Zsebo, A. Yaroshinsky, J.J. Rudy, K. Wagner, B. Greenberg, M. Jessup, R.J. Hajjar, Long-term effects of AAV1/SERCA2a gene transfer in patients with severe heart failure: analysis of recurrent cardiovascular events and mortality, Circ. Res. 114 (2014) 101–108, https://doi.org/10.1161/ CIRCRESAHA.113.302421.
- [59] K. Wittkopper, D. Dobrev, T. Eschenhagen, A. El-Armouche, Phosphatase-1 inhibitor-1 in physiological and pathological beta-adrenoceptor signalling, Cardiovasc. Res. 91 (2011) 392–401, https://doi.org/10.1093/cvr/cvr058.
- [60] P. Nicolaou, P. Rodriguez, X. Ren, X. Zhou, J. Qian, S. Sadayappan, B. Mitton, A. Pathak, J. Robbins, R.J. Hajjar, et al., Inducible expression of active protein phosphatase-1 inhibitor-1 enhances basal cardiac function and protects against ischemia/reperfusion injury, Circ. Res. 104 (2009) 1012–1020, https://doi.org/ 10.1161/CIRCRESAHA.108.189811.
- [61] A. Lee, D. Jeong, S. Mitsuyama, J.G. Oh, L. Liang, Y. Ikeda, J. Sadoshima, R.J. Hajjar, C. Kho, The role of SUMO-1 in cardiac oxidative stress and hypertrophy, Antioxid Redox Signal 21 (2014) 1986–2001, https://doi.org/10.1089/ ars.2014.5983.
- [62] A.M. Bellinger, S. Reiken, C. Carlson, M. Mongillo, X. Liu, L. Rothman, S. Matecki, A. Lacampagne, A.R. Marks, Hypernitrosylated ryanodine receptor calcium release channels are leaky in dystrophic muscle, Nat. Med. 15 (2009) 325–330, https:// doi.org/10.1038/nm.1916.
- [63] S.C. Kolwicz Jr., D.P. Olson, L.C. Marney, L. Garcia-Menendez, R.E. Synovec, R. Tian, Cardiac-specific deletion of acetyl CoA carboxylase 2 prevents metabolic remodeling during pressure-overload hypertrophy, Circ. Res. 111 (2012) 728–738, https://doi.org/10.1161/CIRCRESAHA.112.268128.
- [64] J. Shou, Y. Huo, PINK1 phosphorylates Drp1(S616) to improve mitochondrial fission and inhibit the progression of hypertension-induced HFpEF, Int. J. Mol. Sci. (2022) 23, https://doi.org/10.3390/ijms231911934.