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Abstract

Vernalization is classically defined as the induction of flowering process by exposure of the

plants to a prolonged cold condition. Normally, it is considered as a precondition of flower-

ing. Vicia faba, commonly known as faba bean, belongs to family Fabaceae. It is one of the

plant species that has been cultivated in the earliest human settlements. In this study, an

iTRAQ-LC-MS/MS-based quantitative proteomic analysis has been conducted to compare

the vernalized faba bean seedlings and its corresponding control. In total, 91 proteins from

various functional categories were observed to be differentially accumulated in vernalized

faba bean seedlings. Subsequent gene ontology analysis indicated that several biological

processes or metabolic pathways including photosynthesis and phytic acid metabolism

were differentially respond to vernalization in comparison to the control sample. Further

investigation revealed that a family of proteins nominated as glycine-rich RNA-binding factor

was accumulated in vernalized seedlings, indicating an extra layer of regulation by alterna-

tive splicing on transcript abundance in response to vernalization. These findings raise a

possibility that these candidate proteins could be important to represent the responsive net-

work under vernalization process. Therefore, we propose that the regulation of vernalization

in faba bean not only occurs at the transcriptional level as previously reported, but also at

the post-transcriptional level.

Introduction

Faba bean (Vicia faba L.) is a common legume belonging to an annual or biennial herb [1]. It

originated in the central and western of Asia and has become the largest consumption of beans

in China [2]. Faba beans are widely cultivated in the world due to their rich nutrients for food
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and their multiple agronomic benefits including the improvement of soil sanitation, soil struc-

ture as well as the moisture retention [3], which was received increasing attention in legume

crops. Meanwhile, faba bean was also a winter-sown bean in the southern of china, which can

fully take advantage of larger numbers of idle arable lands and labor resources in winter, lead-

ing to increase the income of farmers and develop the agricultural economy as well as improv-

ing the soil environment.

Plant flowering is mediated by both endogenous hormone signals and exogenous environ-

mental cues including photoperiod and temperature [4]. Low-temperature stress is a critical

factor to limit crop production. However, nonfreezing temperatures during the vernalization

range with a long time exposure could greatly accelerate flowering in winter annual crops such

as wheat, barley, cabbage and faba bean [5,6]. Vernalization plays an important role in regula-

tion of flowering time in higher plants for flower transformation, which is an evolutionarily

adaptive mechanism preventing the plant growth transition from the vegetative to the repro-

ductive phase before winter and allowing flowering in the favorable conditions of spring [6,7].

The molecular basis of vernalization in plants is to repress flowering by down-regulating flow-

ering-related genes. In Arabidopsis, the effect of vernalization epigenetically modify the chro-

mation structure belong to a clade of strong flowering repressors such as FLOWERING
LOCUS C (FLC), from its active state to its silenced one, via histone modification [8,9]. In cere-

als, three vernalization response loci nominated as VRN1, VRN2 and VRN3 have been identi-

fied by genetic studies comparing winter and spring cultivars of wheat and barley [8,10,11].

Similar flowering repressing mechanism in the vernalization circuitry was observed between

Arabidopsis and cereals. Interestingly, a positive feedback loop created by the dual role of

VRN1 constitutes the new vernalization componenet in cereals which was not found in Arabi-

dopsis [8], indicating the respective vernalization pathways between Arabidopsis and cereals

evolved independently. However, the vernalization process has been thoroughly studied in

Arabidopsis and wheat during the past years but the molecular regulatory mechanisms of ver-

nalization in other plants including cabbage, maize and faba bean are still largely unknown.

Due to the striking differences between the circuitry and components of vernalization in Ara-

bidopsis and Wheat, it is therefore necessary to perform more extensive investigations to fur-

ther explore and dissect the range of vernalization mechanisms that exist in more flowering

plants, particularly the cereals possessing agronomic benefits such as faba bean described

above.

A proteomics approach proved to be a powerful methodology to characterize plant

responses to different biotic and abiotic stresses [12], which has been recently applied into

investigate the proteome changes under vernalization or chilling treatment in several crop spe-

cies including rice, maize and wheat[13–15]. However, the proteomics analysis of faba bean

after vernalization is rarely reported. In this study, the changes in proteome profile in faba

bean subject to the vernalization were examined using the Isobaric Tag for Relative and Abso-

lute Quantification (iTRAQ) LC-MS/MS approach, which can provide more accurate quantifi-

cation of differentially expressed proteins and large-scale identification of vernalization-

related proteins comparing with the traditional 2D-gel based proteomic approach [16]. A total

of 2766 proteins were quantitatively identified in seedlings of faba bean (Vicia faba L.), 91 of

which were found to be differentially expressed after vernalization (cut-off: ratio 1.5 or 0.67 at

P< 0.05). Following detailed data analysis revealed a down accumulation of several photosyn-

thesis-related proteins and up-regulation of phytic acid biosynthesis pathway as well as a clade

of glycine-rich RNA-binding proteins potentially critical for the vernalization response. Sub-

stantial information on the vernalization-responsive proteome changes was also acquired,

offering deeper understanding to elucidate and explore the potential molecular mechanism for

the adaptive ability of faba bean to the vernalization effects.
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Materials and methods

Plant materials and treatment conditions

Faba bean (Vicia Faba L.) cv. Tongxian 2 were grown in a greenhouse at a 12-h day/12-h night

cycle, at 20–25˚C. At the age of two weeks, the treatment group was transferred to 0–4˚C for

20 days. Stems of treatment group and blank control group were obtained for protein

extraction.

Antioxidant enzymes assay

Leaf and shoot tips were first sampled before treatment, and successively sampled at 6, 12,

18, 24 and 30 d after the treatment. The antioxidant enzyme activities including peroxidase

(POD), catalase (CAT) and superoxide dismutase (SOD) have then been determined accord-

ing to Wang et al.17 with minor modifications.

In brief, 0.2 g mass of fresh sample (FM) was homogenized in the extraction buffer consist-

ing of 50 mM sodium phosphate buffer, pH 7.8 and the supernatant for measuring POD and

CAT enzyme activities. POD activities were assayed by the oxidation of guaiacol in the pres-

ence of H2O2. The increase in absorbance was recorded at 470 nm. The reaction mixture of 4

ml containing 1 ml 50 mM phosphate buffer (pH 7.0), 1.95 ml 0.2% (w/v) H2O2, 0.95 ml 0.2%

(w/v) guaiacol and 0.1ml enzyme extract. CAT activity was assayed by measuring the decrease

in absorbance at 240 nm in a 3 ml reaction mixture consisting of 1.9 ml dd H2O, 1.0 ml 0.2%

(w/v) H2O2 and 0.1 ml of enzyme extract. The increase or decrease of 0.01 OD value per min

was defined as one Unit (U) activity of POD and CAT. The POD or CAT activity was thus

expressed as U mg–1(protein) min–1.

For SOD activity determination, approximately 0.5 g fresh sample was homogenized in

the extraction buffer consisting of 50 mM sodium phosphate buffer, pH 7.8, 0.1mM ethylene

diamine tetraacetic acid (EDTA), 0.3% (w/v) Triton X-100 and 4% (w/v) polyvinyl polypyrro-

lidone for determination SOD activity. The assay mixture of 3 ml contained 14.5 mM L-

methionine 2.7 ml, 3.0 μM EDTA 33.3μl, 2.25 mM nitroblue tetrazolium (NBT) 33.3μl, 60 μM

riboflavin 33.3μl and 10~50μl enzyme extract. The photoreduction of NBT (formation of pur-

ple formazan) was measured at 560 nm. One unit of SOD activity was defined as extract vol-

ume that caused 50% inhibition of the photoreduction of NBT and expressed in U g–1(FM)

h–1. Each result of SOD, POD and CAT was the mean of three replications.

SPAD measurement

All samples were measured the values of SPAD (SPAD-502 type, Konica Minolta, INC. Japan)

at 0, 6, 12, 18, 24 and 30 days after treatment. For every treatment, ten plants were selected for

the analysis. Top three functional leaves from every plant were used for measurement. Every

time point was measured five times to calculated the average values.

Protein extraction

The vernalization-treated and untreated plants (approximately 1g) were ground in liquid

nitrogen and homogenized with lysis buffer (8 M urea, 2 mM EDTA, 10 mM DTT and 1%

Protease Inhibitor Cocktail). The samples were centrifuged by 20000g for 10 min at 4˚C. Sub-

sequently, the supernatants were acquired for protein precipitation with chilled 15% TCA for

2 h at -20˚C. After centrifugation and removing supernatant, the pellets were washed with

chilled acetone for three times. Finally, the proteins were dissolved in the buffer (8 M urea, 100

mM TEAB, pH 8.0). Protein concentrations were determined by the 2-D Quant kit. Three bio-

logical replicates were prepared from vernalization-treated and untreated plants.

Proteomic investigation of vernalization response in faba bean (Vicia faba L.)

PLOS ONE | https://doi.org/10.1371/journal.pone.0187436 November 9, 2017 3 / 18

https://doi.org/10.1371/journal.pone.0187436


For digestion, the protein samples (100 μg each) were reduced by 10 mM DTT at 37˚C for 1

h with gentle shaking. Reduced samples were alkylated by 20 mM iodocaetamide (IAA) for 45

min in darkness. Subsequently, they were then further diluted by adding 100 mM TEAB for

the urea concentration below 2M. Finally, trypsin digestion was conducted (1:50 w/w enzyme/

protein) overnight at 37˚C, followed by a second digestion (1:100 w/w enzyme/protein) for

4 hours.

iTRAQ labeling and strong cation exchange (SCX) chromatography

After trypsin digestion, peptides were desalted by the Strata X C18 SPE column (Phenomenex)

and vacuum evaporation. Peptides were reconstituted in 0.5 M TEAB and treated using 6-plex

TMT kit according to the manufacturer’s instructions. Briefly, Desalted peptides from

untreated samples including three biological replicates were labeled by the iTRAQ tags 129,

130 and 131, whereas peptides from vernalization-treated samples were labeled with the

iTRAQ tags 126, 127 and 128. Subsequently, the sufficient peptide mixtures harboring differ-

ent tags were pooled, desalted and evaporated by the vacuum centrifugation. The samples

were then fractionated using Agilent 300 Extend C18 column (5 μm particles, 4.6 mm ID, 250

mm length) by the strong cation exchange (SCX) chromatography. The eluted-peptides were

then combined into 18 fractions and vacuum-dried.

Peptides analysis by LC-MS/MS

Q Exactive™ plus hybrid quadrupole-Orbitrap mass spectrometer (ThermoFisher Scientific)

coupled to an EASY-nLC 1000 UPLC system equipped with a reversed-phase analytical col-

umn (Acclaim PepMap RSLC, Thermo Scientific) for peptides analysis. Peptides were sepa-

rated by a ladder gradient from 6%-36% of solvent B (0.1% formic acid in 98% acetonitrile)

including 6%-10% for 4min, 10%-23% for 22min, 23%-36% for 8min with a constant flow rate

of 300nl/min. The acquired peptides were analyzed by the Orbitrap with an electrospray volt-

age of 2000V. Data-dependent acquisition was conducted by a survey scan of 250ms in the

range 350 to1800 m/z for the collection of MS1 spectra. The top 20 precursor ions were

selected for the MS/MS fragmentation with 30s dynamic exclusion.

Peptides were dissolved in 0.1% FA, directly loaded onto a reversed-phase pre-column

(Acclaim PepMap 100, Thermo Scientific). Peptide separation was performed using a

reversed-phase analytical column (Acclaim PepMap RSLC, Thermo Scientific). The gradient

was comprised of an increase from 6% to 10% solvent B (0.1% FA in 98% ACN) over 4 min,

10% to 23% in 22 min, 23% to36% in 8 min and climbing to 85% in 5 min then holding at 85%

for the last 3 min, all at a constant flow rate of 300 nl/min on an EASY-nLC 1000 UPLC sys-

tem, The resulting peptides were analyzed by Q Exactive™ plus hybrid quadrupole-Orbitrap

mass spectrometer (ThermoFisher Scientific).

Mascot search engine (v.2.3.0) was used to search all of the MS/MS data thoroughly against

the vicia protein database. Mass errors for the precursor and fragment ions were set as 0.05

and 0.02, respectively. Trypsin digestion and cysteine alkylation were specified as parameters

in the database searching. For protein quantification method, TMT-6-plex was selected in

Mascot. A global false discovery rate (FDR) of< 1% was used and peptide ion score of� 20

was preset. The full identification and quantification of protein list was shown in S2 Table.

Bioinformatics analysis

Gene Ontology annotation (GOA) database (http://www.ebi.ac.uk/GOA/) and InterPro plat-

form (http://www.ebi.ac.uk/interpro/) were coordinately used for the proteins functional

annotation. The functional classification based on three ontologies including biological
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process, cellular component and molecular function was performed by the Gene Ontology

annotation (http://www.geneontology.org/). Protein pathway analysis was commonly con-

ducted by the Kyoto Encyclopedia of Genes and Genomes (KEGG) (http://www.genome.jp/

kegg/) database. Meanwhile, the subcellular localization predication of proteins was used by

wolfpsort (http://wolfpsort.seq.cbrc.jp/) software. For the cluster analysis, the quantified pro-

teins in this study were divided into four quantitative categories according to the quantifica-

tion ratio to generated four quantitative categories: Q1 (0< Ratio <1/1.5), Q2 (1/1.5 < = Ratio

<1/1.3), Q3 (1.3< Ratio < = 1.5) and Q4 (Ratio >1.5). Then, the quantitative category based

clustering was performed by the heat map as previously described.

Quantitative real-time RT-PCR analysis

Transcriptional investigation of genes corresponding to vernalization-responsive proteins in

faba bean was conducted by quantitative real-time RT-PCR. RNA samples were prepared from

faba bean seedlings after 18 days of vernalization treatment. Total RNA was reverse-tran-

scribed into cDNA using M-MLV reverse transcriptase (Promega) according to the manufac-

turer’s instruction. The SYBR Green Mix (Applied Biosystems) was used for the qRT-PCR

analysis and the PCR was conducted on a StepOne Plus realtime PCR system under the opti-

mized program as followings: 95˚C for 5 min followed by 38 cycles of 95˚C for 15 sec and

58˚C for 45 sec. Fold changes in expression level was calculated by the comparative CT value

method [17].

Results

Sampling time evluation for vernalization fulfillment by the physiological

characterization

The appropriate time to vernalization fulfillment is essential for our proteomic investigation

on the vernalization-treated faba bean. The representative biological significance of vernaliza-

tion was able to influence the flowering time in plants [18]. Obviously, Around 80 days

advance of early flowering was observed in vernalization-treated faba bean seedlings compared

to the non-treated faba bean seedlings (Fig 1A), which confirm the effectiveness of vernaliza-

tion treatment in Faba bean. Furthermore, besides the shoot growth development variation

under different vernalization time, the endogenous antioxidant activity after vernalization pro-

cess was also considered as one of important physiological parameter to determine the vernali-

zation fulfillment in faba bean [19]. Therefore, the antioxidant enzymes including CAT, POD

as well as SOD assays from leaf and shoot tips were performed under different vernalization

treatment time. As shown in Fig 1B, both CAT and POD activity exhibited a growing increas-

ing subject to 18 days of vernalization treatment, followed with a gradually decreasing after 18

days till 30 days, while SOD activity reach a peak at 24 days in compared with the nonvenrnali-

zation-treated faba bean (Fig 1B). Thus, the vernalization fulfillment range of faba bean should

be 18 days to 24 days based on this antioxidant enzymes assay and the vernalization treatment

for 18 days was used in this proteome study.

To understand the effects of vernalization on proteome changes in faba bean seedlings,

iTRAQ-based proteomics investigation was performed. The samples were labeled with six

iTRAQ tags (T-1:126, T-2:127, T-3:128; CK-1:129, CK-2:130, CK-3:131) and pooled for frac-

tionation by SCX chromatography. A total of 12 selected fractions containing sufficient

amounts of labeled peptides were used for LC-MS/MS analysis. The schematic workflow of the

above experimental procedures is shown in Fig 2.
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Fig 1. Physiological characterization of vernalization-treated (T) and non-treated (CK) faba bean

seedlings. Analysis of antioxidant enzyme activities was performed in Faba bean seedlings of leaf and shoot

tips during different vernalization days. (A) CAT, (B) POD, (C) SOD. Values expressed are means ± SD of

three replicates. Student’s T test was conducted on the values between different vernalization time and non-

vernalization treatment. *P<0.05; **P<0.01; *** P<0.001 by Student’s t test.

https://doi.org/10.1371/journal.pone.0187436.g001
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Fig 2. Workflow for the iTRAQ-based quantitative proteomic experiment. Protein samples were

obtained from vernalization-treated (T) and non-treated (CK) faba bean seedlings. Three biological replicates

of T and CK samples were digested and labeled with iTRAQ tags, followed by the SCX fractionation. The

sufficient amounts of labeled peptides were used for LC-MS/MS analysis.

https://doi.org/10.1371/journal.pone.0187436.g002
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Global characterization of proteome changes between vernalization-

treated (T) and nonvernalization-treated (CK) faba bean seedlings

To obtain a comprehensive observation on faba bean responses to the vernalization, compara-

tive proteomic analysis was performed. After merging data from three biological replicates, a

total of 4172 proteins were identified, among which 2766 proteins were quantified. The distri-

bution of mass error and length of all the identified peptides as well as the repeatability of the

replicates were also provided (S1 and S2 Figs). The length of most peptides enriched on 8 to 16

with the mass error below 0.02 and a high performance of pearson correlation coefficient in

repeated samples, indicating a high quality of the MS data and sample preparation in this

iTRAQ-based experiment. For the vernalization-responsive proteins, only those showing a

fold change of above 1.5 or below 1/1.5 (P< 0.05) in the quantitative ratios were considered.

We totally identified 91 proteins showed significant changes in protein abundances with 29

up-regulated and 62 down-regulated proteins (S1 Table).

Those vernalization-responsive proteins were further assigned to several different catego-

ries including Gene Ontology, Subcellular Localization and Cluster analysis (Fig 3). Gene

Ontology (GO) analysis were conducted by three main ontologies including biological process,

cellular component as well as molecular function, among which biological processes accounted

for 7 GO terms, cellular component accounted for 5 GO terms, and molecular function

accounted for 5 terms. Functional GO enrichment analysis revealed that most of the identified

vernalization-responsive proteins concentrated into the metabolic processes with the feature

of RNA-binding or catalytic activity (Fig 3A). Subcellular localization analysis also revealed

that most of up-regulated proteins locate into cytosol whereas the down-regulated proteins

were enriched in the chloroplasts (Fig 3B), suggested that the specific cellular localization and

biochemistry characteristics among the differentially expressed proteins highly correlated with

the vernalization effects in Faba bean. In addition, the quantified proteins in this study were

further divided into four quantitative categories for the comprehensive evaluation on the iden-

tified proteins by cluster analysis. According to the quantification ratio to generate four quan-

titative categories: Q1 (0<Ratio<1/1.5), Q2 (1/1.5< = Ratio<1/1.3), Q3 (1.3<Ratio< = 1.5)

and Q4 (Ratio>1.5), the detailed cluster analysis based on the GO enrichment, Protein domain

as well as KEGG pathway enrichment were reported as shown in S3 and S4 Figs, which provide

a hierarchical view on the most significant proteome changes in faba bean after vernalization.

Photosynthesis-related proteins are down accumulated after

vernalization

Low temperatures can greatly inhibit the photosynthesis through the mediation of the photo-

oxidation [20]. Although photochemical processes such as the light energy trapping by the

photosystems are temperature independent, the redox reactions associated with electron trans-

port chain are temperatures dependent leading to an energy imbalance upon low temperature

[13,20]. Accordingly, our quantitative proteomic analysis announced all the six differentially

expressed photosynthesis-related proteins exhibited reduced abundance by approximately

30–40% after vernalization treatment (S1 Table). Those proteins are main components of pho-

tosynthetic enzymes complexes including photosystem (PSI), photosynthetic electron trans-

port and ATP synthase (Fig 4), suggesting that the photosynthetic functions were strongly

impaired. For example, one core protein of PSI-PSII complex (Uni_22005), two in electron

transport (Uni_7317 and VF_7131) as well as an ATP synthases (VF_6886) are important sub-

units involving the photosynthesis process, which contribute together to the transformation

from light energy to chemical energy in plants [21]. The down accumulation of chlorophyll a-

b binding proteins including Uni_1055 and VF_3912 besides affect chlorophyll synthesis in
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Fig 3. Gene Ontology (GO) analysis in the vernalization-responsive proteins. (A) Plots reveal the GO distribution of differentially

expressed proteins identified in the vernalization-responsive proteins in Faba bean. (B) Subcellular location analysis of up- and down-

regulated proteins showing the distribution in cellular component.

https://doi.org/10.1371/journal.pone.0187436.g003
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plants [22], may also alleviate the photo-damage due to the elevation of ROS [14]. Consistently,

the decreased chlorophyll contents changes were also observed in faba bean under different

vernalization days (Fig 4), further suggested that the retardation of photosynthesis was one

kind of conserved vernalization effect in plants. Taken together, the overall down-regulation

of photosynthetic metabolism in faba bean seedling after vernalization possibly induced an

exclusive environment, which influences the activity of downstream enzymes involving the

glycolysis and sucrose metabolism, thus adversely affect the energy balance and flowering pro-

cess in plants.

Fig 4. The down accumulation of photosynthesis-related proteins and metabolic process after vernalization. List of photosynthesis

proteins exhibited decreased abundances in response to vernalization in Faba bean seedlings. Analysis of SPAD in faba bean after different

vernalization time was also performed. Values expressed are means ± SD of three replicates.

https://doi.org/10.1371/journal.pone.0187436.g004
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Phytic acid biosynthesis pathway is induced by the vernalziation

treatment

The phytic acid biosynthesis pathway was highly represented in the vernalization-treated pro-

teome and several enzymes involved in phytic acid biosynthesis showed increased abundance

upon vernalization treatment, suggesting a potential role for phytic acid in faba bean in

response to vernlization (S1 Table and Fig 5). For example, MIPS (VF_4569) catalyses the con-

version from D-glucose-6-PO4 into D-myo-inositol-3-PO4, which is the crucial product essen-

tial for the biosynthesis of inositol and phytic acid [23]. Such myo-inositol possess multiple

functions and involved in many important biological processes including stresses responses,

developmental growth regulation as well as signal transduction [24]. Subsequently, D-myo-

inositol-3-PO4 is directly transformed to phytic acid through the sequential phosphorylation

by a clade of kinases including Ins (1,3,4,5,6)P(5) 2-kinase (Uni_12222) (Fig 5). The phytic

acid is mainly accumulated in legumes grains, tubers, pollens, which contains an inositol ring

accompany with six phosphate groups and consider as the main and the most stable storage

form of phosphorus in plants [25]. The reduction of MIPS activity and phytic acid contents in

cereals mutant including rice, maize, potato, barley and soybean causes severe restriction of

plant growth, indicating their essential role in plant physiology and growth development[26–

29]. For an instance, transgenic potato using RNAi approach for the suppression of MIPS

activity exhibited reduced apical dominance, precocious leaf senescence as well as a reduction

Fig 5. Up-regulation of phytic acid biosynthesis pathway upon vernalization treatment. Two enzymes

involved in phytic acid biosynthesis are up-regulated (indicated by up-arrow symbol). MIPS (VF_4569) is

responsible for the conversion of D-glucose-6-PO4 to D-myo-inositol-3-PO4, and Ins(1,3,4,5,6)P(5) 2-kinase

(Uni_12222) participate in the sequential phosphorylation for the biosynthesis of phytic acid.

https://doi.org/10.1371/journal.pone.0187436.g005

Proteomic investigation of vernalization response in faba bean (Vicia faba L.)

PLOS ONE | https://doi.org/10.1371/journal.pone.0187436 November 9, 2017 11 / 18

https://doi.org/10.1371/journal.pone.0187436.g005
https://doi.org/10.1371/journal.pone.0187436


in overall tuber field [27]. Interestingly, the phosphorus derived from phytic acid are impor-

tant nutrient source contributing to the plants flowering [30,31]. Therefore, the vernalization

induced a series of predominant physiological performances such as the early flowering and

fast growth in plants probably depend on these crucial primary metabolites by the up-regula-

tion of phytic acid biosynthesis pathway as our quantitative proteomic data revealed.

The glycine-rich RNA binding proteins contribute to the vernalization-

induced flowering process

The glycine-rich RNA binding proteins (GRPs) are composed of the RNA-recognition motifs

at the N-terminus and a glycine-rich region at the C-terminus [32]. It was well known that the

cellular transcript levels for GRPs in different plants are significantly increased by the out layer

of stimuli such as cold, drought and pathogen infection [33–36]. Accordingly, a total of seven

GRPs were identified and quantified with consistent increasing protein abundance in the ver-

nalization-treated proteomes of faba bean (S2 Table). Such up-regulation of GRPs was also

observed among other proteomic investigations on Arabidopsis and wheat after vernalization

[5,13], suggesting an important and conserved role in plants response to vernalization. Inter-

estingly, a number of RNA binding proteins act as suppressor of the FLOWERING LOCUS C
(FLC) that is a flowering repressor and a crucial signaling element of vernalization response in

Arabidopsis [8,37]. Meanwhile, the glycine-rich RNA binding protein AtGRP7 play an impor-

tant role in promoting floral transition in Arabidopsis, further strongly indicating that the

GRPs probably participate in flowering-time regulation response to the vernalization effects in

faba bean.

qRT-PCR expression analysis of selected genes with corresponding

protein changes in faba bean upon the vernalization treatment

To determine whether the differentially expressed proteins are associated with transcriptional

changes, qRT-PCR analysis was performed to detect the correlation between protein and gene

expression in this study. As shown in Fig 6, approximately 80% of the selected genes showed

down-regulated and up-regulated expression levels in Faba bean seedlings after the vernaliza-

tion treatment, consistent with the changes in abundances of the corresponding proteins as

revealed from the iTRAQ-based experiment (S1 Table), indicating a high congruency between

protein and gene expression and a high quality of the quantification results in this study. Inter-

estingly, the expression levels of VF_9725 and Uni_13160 were found to have down-regulated

and no significant changes in the vernalization-treated plants compared to non-treated plants

(Fig 6). However, increased abundance of VF_9725 and decreased abundance of Uni_13160

were detected in the vernalization-responsive proteome of this study. Therefore, the differen-

tial expression levels of their corresponding proteins are probably regulated by various post-

transcriptional modification such as alternative splicing, RNA processing or other effects on

translation efficiency [16], indicating the existence of a highly complex regulatory network in

faba bean seedlings upon the vernalization treatment.

Discussion

Little changes have been detected in transcription factor family by

iTRAQ-based quantitative proteomics

Transcriptome profiling detected substantial transcript changes in response to vernalization

process [38,39]. Subsequently, transcription factors (TFs), a large group of proteins which are

responsible for this transcriptional regulation have drawn much attention in last decade [40].
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Fig 6. qRT-PCR expression analysis of selected genes with corresponding protein changes in Faba

bean upon the vernalization treatment. Faba bean seedlings were analyzed following 18 days of

vernalization treatments. Relative expression levels in vernalization-treated plants were normalized against

the non-treated WT plants. Bars represent SE (n = 3); The relative protein expression levels of selected

proteins were derived from proteomics data of this iTRAQ-based experiment. G1: VF_4569; G2: VF_1775;

G3: VF_5337; G4: Uni_12222; G5: Uni_15562; G6: VF_9725; G7: Uni_10551; G8: VF_4918; G9: Uni_13160;

G10: VF_6886; G11: Uni_1350; G12: VF_6654.

https://doi.org/10.1371/journal.pone.0187436.g006
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In higher plants, over 1,000 putative genes encoding transcription factors have been reported

in each species [40], indicating the complexity of transcription regulatory hierarchy. Although

many TFs have been documented to regulate flowering [41–43], few of them have been

reported to participate in vernalization regulation. One example is the famous TF FLC has

been demonstrated to induce flowering under vernalization by triggering systemic responses

in Arabidopsis meristem [44]. In this study, two putative transcription factor encoding genes,

VF_6231.Contig1_All and VF_5961.Contig2_All, have been short-listed as differential

expressed proteins during vernalization. The VF_6231.Contig1_All encodes a protein which is

homologous to rice BTF3 transcription factor. The down-regulation of this protein resulted in

embryo lethal phenotype in rice, suggesting its role in plant development[45]. However, its

role in vernalization remains to be elucidated. Another gene, VF_5961.Contig2_All, encodes a

bZIP transcription factor with unknown function. Further physiological and biochemical

studies are needed to unravel the molecular mechanisms of these TFs in regulating transcrip-

tion networks during vernalization. Meanwhile, the presence of only two TFs in the list of dif-

ferential expressed protein may also indicate that the regulations of these TFs are not confined

to the protein level. Post-transcriptional regulations such as alternative splicing and post-trans-

lational regulations including phosphorylation and N/O-glycosylation may exist as well.

RNA splicing may contribute to an extra layer of regulation during

vernalization

In addition to 5’-capping and 3’-polyadenylation, RNA splicing is considered to be one of the

most important post-transcriptional checkpoints. It is processed by a complex of proteins

which are preferentially aggregated in spliceosome. Amongst these spliceosome-associated

proteins, increasing attention has been drawn to a category of proteins named as splicing fac-

tors (SFs) [46]. Alternative splicing (AS) can generate multiple transcript variants from a single

pre-mRNA, and it accounts for over 95% of intron-containing genes in mammals [47], which

in turn to amplify the potential proteome diversity. Considerable evidence indicated that AS

may regulate a brand new pathway other than conventional transcriptional control [46,48–50].

Furthermore, recent transcriptome profiling analysis indicated that approximately over 60%

intron-containing genes undergo AS in several plant species including maize, Arabidopsis and

soybean [44, 47], suggesting the similar AS regulation may exist in faba bean. In this study, a

number of glycine-rich RNA-binding proteins have been observed to be up-regulated during

vernalization, indicating the possibility that AS-regulated mechanism play an important role

during this process. However, further investigation is needed to unravel the function of these

proteins such as their target transcripts and RNA binding sites in faba bean.

Omics approaches are powerful tools to resolve the molecular regulatory

circuits of vernalization

Given that the complex nature of the vernalization process, utilization of a single proteomic

approach is hard to fully understand the molecular profiles. Furthermore, labeling proteomics

also share common drawbacks including insufficient label caused loss of detection, the com-

plexity of PSM identification and relatively low reproducibility etc. Label-free method such as

SWATH-MS based proteomics may increase the number of identified differential expressed

proteins and the reproducibility at the same time [51,52]. In addition, the proteomic methods

are limited by their low coverage and throughput, which is can be complemented by tran-

scriptome analysis such as the next-generation of RNA sequencing. Using proteogenomics

approach [53], an combined analytical flow that can analyze transcriptomic and proteomic

data simultaneously, maybe more informative to look at the alternation of both transcripts
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and proteins. Definitely, functional characterization is required to validate the findings from

bioinformatic analysis. The combinatory approaches will deeper our insights of vernalization

process in faba bean.

Conclusion

There already have sufficient proteomics investigations on the proteome changes in a variety

of plant species responding to diverse biological and environmental cues. However, the prote-

ome information on vernalization response is rarely reported and only limited research have

been investigated on Arabidopsis and wheat through the traditional gel-based proteomics

methods [5,13]. Our study employs the iTRAQ-LC-MS/MS platform to accurately identify

and quantify proteome changes in faba bean upon vernalization treatment. Evaluation of dif-

ferentially expressed protein profiling indicated several potential regulators of vernalization

responses in faba bean. Down acuumulation of photosynthesis-related proteins during vernali-

zation, increased phytic acid biosynthesis, which would provide protein evidence that how

faba bean regulate its biological process during vernalization. In addition, the accumulation

of several glycine-rich RNA-binding proteins after vernalization may also shed light on the

potential AS regulation on this process. Therefore, our iTRAQ-based quantitative proteomic

profiling in combination with further molecular and genetic characterization would offer deep

insights into the regulatory mechanism of vernalization and pinpoint major regulators for

potential agricultural applications in future.
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