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Abstract

In 2005, a human adenovirus strain (formerly known as HAdV-D22/H8 but renamed here HAdV-D53) was isolated from an
outbreak of epidemic keratoconjunctititis (EKC), a disease that is usually caused by HAdV-D8, -D19, or -D37, not HAdV-D22.
To date, a complete change of tropism compared to the prototype has never been observed, although apparent
recombinant strains of other viruses from species Human adenovirus D (HAdV-D) have been described. The complete
genome of HAdV-D53 was sequenced to elucidate recombination events that lead to the emergence of a viable and highly
virulent virus with a modified tropism. Bioinformatic and phylogenetic analyses of this genome demonstrate that this
adenovirus is a recombinant of HAdV-D8 (including the fiber gene encoding the primary cellular receptor binding site),
HAdV-D22, (the e determinant of the hexon gene), HAdV-D37 (including the penton base gene encoding the secondary
cellular receptor binding site), and at least one unknown or unsequenced HAdV-D strain. Bootscanning analysis of the
complete genomic sequence of this novel adenovirus, which we have re-named HAdV-D53, indicated at least five
recombination events between the aforementioned adenoviruses. Intrahexon recombination sites perfectly framed the e
neutralization determinant that was almost identical to the HAdV-D22 prototype. Additional bootscan analysis of all HAdV-
D hexon genes revealed recombinations in identical locations in several other adenoviruses. In addition, HAdV-D53 but not
HAdV-D22 induced corneal inflammation in a mouse model. Serological analysis confirmed previous results and
demonstrated that HAdV-D53 has a neutralization profile representative of the e determinant of its hexon (HAdV-D22) and
the fiber (HAdV-D8) proteins. Our recombinant hexon sequence is almost identical to the hexon sequences of the HAdV-D
strain causing EKC outbreaks in Japan, suggesting that HAdV-D53 is pandemic as an emerging EKC agent. This documents
the first genomic, bioinformatic, and biological descriptions of the molecular evolution events engendering an emerging
pathogenic adenovirus.
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Introduction

Epidemic keratoconjunctivitis (EKC), characterized by inflam-

mation of the conjunctiva and cornea, produces a sudden onset of

acute follicular conjunctivitis and stromal keratitis and is a

worldwide problem causing significant and sometime lasting

morbidity [1]. Human adenoviruses (HAdVs) HAdV-D8, -D19,

and -D37 are the most common pathogens causing EKC [1].

Adenoviruses were first isolated from civilians and military

trainees who had respiratory disease in the early 1950s [2,3]. They

were the first respiratory viruses to be isolated and characterized.

Epidemiological studies confirmed that adenoviruses are the cause

of acute febrile respiratory disease among military recruits [4,5]

and have been persistent in the global population. Since then, 52

human adenovirus (HAdV) genotypes have been characterized

and classified according to their immunochemical properties,

nucleic acid similarities, hexon and fiber protein characteristics,

biological properties, and phylogenetic analysis, and placed in the

genus Mastadenovirus [6,7]. These 52 adenovirus genotypes that

infect humans are classified into seven species (Human adenovirus A

to G) [6,8] and are known to cause a range of diseases specific to

the tropisms of the viruses: keratoconjunctivitis (HAdV-D8,

HAdV-D19, and HAdV-D37) [9,10], gastroenteritis (HAdV-

A31, HAdV-F40, HAdV-F41, and HAdV-G52) [6], acute
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respiratory disease (HAdV-B3, HAdV-E4, HAdV-B7, HAdV-

B14, and HAdV-B21) [5], and perhaps obesity (HAdV-D36) [11].

Adenoviruses have linear double-stranded DNA genomes that

generally range from 26 to 45 kb and are encapsidated in an

icosahedral protein shell that ranges from 70 to 100 nm [8]. The

primary components of the protein shell are the hexon, penton

base, and fiber proteins. Through genome sequence analysis, it has

been demonstrated that the genomes of all human adenoviruses

have similar genetic organization [12,13,14].

In the past, human adenovirus serotype and species classifica-

tion were defined by reactivity of outer coat proteins to

discriminating antibodies (e.g., immunochemistry/virus neutrali-

zation) as well as by other biological properties (e.g. oncogenic

potential, hemagglutination properties). Today, given the avail-

ability of DNA sequencing and analysis technology, phylogenetics

(based on comparative nucleic acid and amino acid sequence

analysis of informative viral proteins or/and their genes, as well as

analysis of genomic organization) is a highly quantitative, cost-

effective, expedient method and the preferred and reliable method

for classifying adenoviruses. It is a preferred and reliable method

for demonstrating how viruses are related through molecular

evolution as it provides and relies on the primary sequence data

[15,16,17,18].

In this study we sought to characterize a unique intermediate

recombinant HAdV isolate, at the molecular level. This novel

strain was isolated from a patient who, along with eleven other

patients, presented with highly contagious EKC outbreak in

Germany was described [19]. Since HAdV-D22 was never

associated with EKC, we performed whole genome sequencing,

complemented with bioinformatics, including phylogenetic and in

silico proteome analysis, as well as in vivo studies in a mouse model

to characterize this unique recombinant virus. To reflect this novel

and different genome and because of the multiple recombination

events and several unique sequence segments in the genome of this

virus, we renamed this virus HAdV-D53.

Results

Amplification and sequencing of the new adenovirus
Initial and partial sequencing of HAdV-D53 (previously HAdV-

D22/H8) demonstrated that portions of the penton and fiber

genes were similar to HAdV-D37 and HAdV-D8, respectively

[19]; thus suggesting that this disease causing virus was the result

of recombination. To understand clearly the genetic characteristics

and the nature of HAdV-D53, the entire genome has been

sequenced and analyzed.

Physical features of new adenovirus genome
The genome length of HAdV-D53 is 34,909 base pairs, with a

base composition of 23% A, 20.8% T, 28.2% G, 28% C and the

GC content was 56.2%. The GC content is consistent with

members of species Human adenovirus D (HAdV-D) (57.0% mean).

The organization of the 36 open reading frames (ORF’s) that were

found had a genome organization similar to other mastadeno-

viruses (Fig. 1). The inverted terminal repeat (ITR) sequences for

HAdV-D53 were determined to be 212 bp in length.

The nucleotide and amino acid identities for selected genes in

the genome of HAdV-D53 to its nearest relatives are shown in

Tables 1 and 2, respectively. Interestingly, the pVII and protein V

genes were dissimilar to homologous genes in any adenovirus

species with 83 and 87% nucleotide identity, respectively to

HAdV-D37 (Table 1), the nearest relative in that region of the

HAdV-D53 genome. For pVII, the low nucleotide identity is

partially due to a 99 bp deletion, resulting in a 33 amino acid

deletion of the predicted pVII protein. When compared to HAdV-

D37, the protein V gene contains 2 deletions. The first deletion is

18 bp and the second is 93 bp.

Genomic recombination analysis
To determine if recombination occurred within the HAdV-D53

genome, several software tools were applied. A bootscanning

Figure 1. Genome organization of HAdV-D53. Genome is represented by a central black horizontal line marked at 5-kbp intervals. Protein-
encoding regions are shown as boxes. Boxes above the black line represent open reading frames (ORFs) that are encoded on the forward (or upper)
strand. Boxes underneath the black line represent ORFs that are encoded on the reverse (or lower) strand. The colors of the boxes correspond to
which adenovirus the protein is most likely descended from: red – HAdV-D8, aqua – HAdV-22, orange – HAdV-D37, white – dissimilar to all known
adenoviruses.
doi:10.1371/journal.pone.0005635.g001
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program [20] was used to determine the relationship of HAdV-D53

to all of the fully sequenced HAdV-D genotypes. According to the

alignments, several regions indicated recombination events; nucle-

otides (as genome coordinates) 1–1000, 1500–3250 (E1A, E1B,

55K), 8500–15,750 (52K, pIIIa, penton base), 17,000–17,750, (pX,

pVI) and 19,500–25,000 (second half of hexon, protease, DBP,

100K, 22K) showed a strong relationship to HAdV-D37; nucleotides

17,750–19,500 (first half of hexon) showed a strong relationship to

HAdV-D22; nucleotides 27,375–29,750 (CR1-b) and 30,500–

34,909 (14.7K, fiber, E4 ORFs) showed a strong relationship to

HAdV-D8 (Fig. 2). Although the bootscan analysis showed that

nucleotides 29750–30,500 have a strong relationship to HAdV-D49,

we believe that this region comes from an unsequenced HAdV-D8

strain, because that region (RIDb) in a partially sequenced HAdV-

D8 strain has 100% amino acid identity to the Hiroshima HAdV-D8

isolate (Table 2). These relationships were confirmed by comparison

with nucleotide identity in Table 1, as well as BLASTP similarity

analysis of the proteins (Table 2). In contrast, nucleotides 1000–

1500, 3250–8500, 15,750–17,000, and 25,000–27,375 showed

slightly lower similarity to several known adenoviruses, suggesting

that this region of species HAdV-D adenoviruses are both well

conserved and so far unique for the studied strain. Thus, bootscan

analysis of the HAdV-D53 genome shows evidence of multiple

recombination events.

Hexon recombination analysis
The results of our whole genome bootscan indicated that a

recombination event occurred inside the hexon gene. The hexon

contains loops 1 (L1) and 2 (L2), which are the most important

determinants of neutralization via antibodies as well as immune

escape. Since L1 and L2 are the most relevant for serotyping, we

performed bootscan analysis to pinpoint where the recombination

events occurred in the hexon gene of HAdV-D53. The results of

the bootscan analysis shown in Figure 3A and 3B reveal that a

recombination event occurred between nucleotide 380 and 1400–

1620 which are the amino terminus of L1 and the conserved C

terminus of the highly variable L2, respectively (Table 3). Thus,

the complete neutralization epitope e, which is nearly identical to

the sequenced HAdV-D22, is framed by non HAdV-D22

sequences in the recombinant strain HAdV-D53.

Based on the nucleotide identity of HAdV-D53 to other

adenoviruses, we believe that the previous name HAdV-D22/H8

is not appropriate due to the fact that the fully sequenced genome

and the bioinformatic analyses demonstrate that HAdV-D53 is the

Table 1. Percent identities of the nucleotide coding sequences of selected HAdV-D53 proteins and their homologsa.

HAdV-D8pb HAdV-D19 HAdV-D22 HAdV-D37 HAdV-D48 HAdV-D49

E1B 19K 94.9 99.3 99 99.5 97.8 97.8

E1B 55K 96 99.2 98.3 99.3 97.4 96.9

IX 95.1 96.1 98.5 96.1 97.1 97.1

IVa2 96.7 98 97.4 98 98.3 91.3

DNA polymerase 95.2 98.1 97.6 98 98 98

pTP 93.3 97.6 96.8 97.9 96.4 96.8

52K 95.7 98 98.1 100 97.9 98.3

penton base 89.2 91.2 92.4 100 90.5 90.1

pVII 79.2 80.4 80.4 83.2 80 80.1

V 85.2 87 87.5 87.2 87.7 87.3

pX 95.1 100 100 100 98.7 99.6

hexon 89.4 90.2 98.4 90.5 90.6 90.4

protease 95.4 96 95.4 99.8 96.5 96.5

22K 89.9 100 98.8 100 99.3 99

pVIII 95.6 98.4 98.5 98.4 98.3 97.7

12.2K 93.2 96 97.5 96 96.9 96.9

CR1-a 52.5 80.5 97 80.5 75.4 77.6

18.4K 95.2 91.1 98.1 91.1 96.2 94.1

CR1-b 100 74.5 85.1 74.5 64.5 58

CR1-c 86.4 75.3 Ndc 75.3 75.1 80.5

RID-a 93.5 94.2 94.2 94.2 98.2 98.2

RID-b 90.6 87.4 93.2 87.4 94.2 99.2

14.7K 96.7 95.2 97.2 95.2 96.7 97.7

fiber 100 75.1 67.6 75 69 67.6

dTPase 100 48.4 88.9 48.4 85.1 85

Standard nomenclature has been applied so that orthologs have the same name (Davison et al., 2003). Numbers in bold reflect the proposed origin. Italics note the
gene with supposed double origin.
aPercent identities and similarities were determined by global alignment using the EMBOSS needle program with a gap penalty of 10.0 and a gap extension penalty of
5.0.

bNot present in the genome.
cPrototype HAdV-D8 strain is Trim isolate – ATCC VR-1604.
doi:10.1371/journal.pone.0005635.t001
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product of multiple recombinations of known and perhaps

undiscovered and/or yet unsequenced adenoviruses. Taken togeth-

er, we propose the name ‘‘HAdV-D53’’ for this novel recombinant

adenovirus, reflecting its genome divergence from other human

adenoviruses. We also believe this ‘‘genome type’’ designation is

more appropriate in light of the current and future DNA sequencing

Figure 2. Whole genome (A) bootscan and (B) simplot of HAdV-D53 compared to fully sequenced HAdV-D genomes.
doi:10.1371/journal.pone.0005635.g002
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and analysis technology, superseding the importance of the previous

classifications based on serology (e.g., serotypes).

Hexon recombination is common in species Human
adenovirus D

To determine whether or not this phenomenon was common in

other adenoviruses, the available hexon genes of all HAdV-D

genotypes were cross-examined. Recombination events at similar

nucleotide locations of the hexon gene in HAdV-D13, HAdV-

D32, and HAdV-D39 (Fig. 3C–E) were found. The HAdV-D13

recombination is especially interesting regarding the present study,

as HAdV-D13 acquired L1 and L2 from HAdV-D37 and the

same region in HAdV-D53 was presumably exchanged for L1 and

L2 of HAdV-D22. To demonstrate the validity of our recombi-

nation predictions, we included the bootscan analysis of the

HAdV-D49 hexon gene, which does not show evidence of any

recombination events (Fig. 3F). Taken together, these data suggest

that adenoviruses in HAdV-D species are susceptible to recom-

bination events at the amino terminus of L1 and the carboxy

terminus of L2 of the hexon gene; implicating a mechanism which

allows adenoviruses to switch neutralization epitopes.

In vivo HAdV-D53 induced keratitis
Since HAdV-D53 was isolated from a patient with EKC and

appeared to be corneotropic [19], we tested its ability to induce

corneal innate immune responses in a previously described mouse

model of adenovirus keratitis, in which EKC viruses induce a

keratitis similar to human EKC, but without viral replication [21].

HAdV-D53 infection induced a clinically evident keratitis (corneal

opacity) as early as 1 day post-infection (dpi) that peaked by 3–4

dpi (Fig. 4A). In contrast, mock and HAdV-D22 injection did not

induce corneal opacity at any time post-infection. Neither virus

replicated in the mouse cornea (data not shown). Hematoxylin and

eosin staining of corneal cross sections at 4 dpi with HAdV-D53

showed thinning of the epithelial cell layer, stromal edema, and

infiltration by leukocytes (Fig. 4B). In contrast, HAdV-D22

infection induced only modest cellular infiltration. We next

assessed corneal myeloperoxidase (MPO) levels after infection as

a measure of the presence of infiltrating neutrophils and

monocytes [22,23]. HAdV-D53 infection induced significantly

higher levels of MPO when compared to HAdV-D22 and mock

infected corneas (Fig. 4C). By flow cytometry, corneal infection

with HAdV-D53 caused a significantly greater number of

infiltrating neutrophils (Gr1+F4/802) [24,25], similar to previous

studies with HAdV-D37 [21], than with HAdV-D22 infection.

Inflammatory monocytes (Gr1+F4/80+) [26,27] and resident

macrophages (Gr1-F4/80+) [28] did not increase significantly

after infection with either virus (Figs. 4F and G). Because

neutrophils appeared by histology and flow cytometry to be the

predominant infiltrating cell in HAdV-D53 keratitis, we also tested

Table 2. Percent identities of selected amino acid sequences of HAdV-D53 proteins and their homologs.

HAdV-D8 HAdV-D8p HAdV-D19 HAdV-D22 HAdV-D37 HAdV-D48 HAdV-D49

E1B19K 92 99 99 100 97 97

E1B55K 96 99 98 99 97 96

IX 95 97 99 97 97 98

IVa2 97 99 99 99 99 98

DNA polymerase 96 98 98 98 99 98

pTP 94 97 97 98 97 97

52K 96 99 99 100 98 98

penton base 89 91 92 100 89 89

pVII 79 80 80 81 79 80

V 84 87 87 87 87 87

pX 100 100 100 100 100 100

hexon 92 90 99 90 92 90

protease 97 100 99 100 100 100

DBP 96 99 98 100 97 97

22K 81 100 99 100 99 98

pVIII 100 97 98 99 98 98 98

12.5K 100 95 95 99 95 98 98

CR1-a 99 54 73 94 73 67 71

18.4K 97 95 91 97 91 94 92

CR1-b 97 100 74 81 74 48 44

CR1-c 100 81 62 65 62 65 73

RID-a 100 94 29 96 96 100 100

RID-b 100 89 92 93 92 89 97

14.7K 100 96 94 97 94 97 98

fiber 100 100 74 62 74 63 59

dUTPase 100 92 87 92 84 82

Numbers in bold reflect the proposed origin. Italics note the gene with supposed double origin.
doi:10.1371/journal.pone.0005635.t002
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the expression of neutrophil chemokines CXCL1 and CXCL2

[29,30]. Both CXCL1 (Fig. 4D) and CXCL2 (Fig. 4E) were

expressed at significantly higher levels after infection with HAdV-

D53 than with HAdV-D22.

Phylogenetic analysis
Detailed phylogenetic analysis of selected proteins, performed

with nucleotide data and deduced amino acid sequences confirmed

that HAdV-D53 was an unusual recombinant adenovirus. The tree

topology of HAdV-D53 was different depending on which protein

was tested. The penton base had the closest relationship to HAdV-

D37, whereas the fiber gene was closest to HAdV-D8 (Fig. 5).

Interestingly, DNA polymerase, protein V, and pVII genes did not

cluster tightly with any other virus, which reflects their unique

sequences. As expected the L1 and L2, which are responsible for the

neutralization e determinant, clustered with HAdV-D22. In L1,

HAdV-D22 was 1.8% distant to HAdV-D53 and L2 was identical

to HAdV-D53. In the b-determinant, HAdV-D53, supported by a

strong bootstrap value (83%), clustered to HAdV-D37. Using

sequence data that was available in GenBank, the hexon sequences

of HAdV-D53 clustered tightly with the Japanese isolates 1/

Yamaguchi/2004, C075/Matsuyama/2003, and FS161/Fukui/

2004 suggesting that HAdV-D53 and the Japanese isolates

represent different isolates of the same HAdV genotype.

Viral neutralization
Since our sequence analysis shows that HAdV-D53 is

genetically similar to HAdV-D8, -D22, and -D37, we wanted to

determine its serum neutralization profile. Antisera to HAdV-D8

and HAdV-D22 neutralized HAdV-D53 at dilutions of 1:128 and

1:256, respectively. In contrast, antisera to HAdV-D37 was unable

to neutralize HAdV-D53 at a dilution of equal to or less than 1:8.

These results confirm previous results and demonstrated that

HAdV-D53 has a neutralization profile representative of its hexon

and fiber proteins whereas the penton base did not contribute to

neutralization.

Figure 3. Bootscan of HAdV-D species hexon genes demonstrating recombination events. Comparison of HAdV-D53 by (A) bootscan and
(B) simplot with the HAdV-D types which have a fully sequenced genome. (C) HAdV-D13, (D) HAdV-D32, (E) HAdV-D39, and (F) HAdV-D49 were
compared to all hexon genes in species HAdV-D by bootscan analysis.
doi:10.1371/journal.pone.0005635.g003
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Discussion

The initial report of HAdV-D53 described that this novel,

possibly emergent disease-causing, strain comprised a HAdV-D22

strain that had recombined with HAdV-D8 and HAdV-D37 [19].

Full genome sequencing of this isolate, HAdV-D53, and bioinfor-

matic analysis have demonstrated that this genome is so different

both from HAdV-D22 and all the other officially accepted

serotypes that it must be seen as a novel human adenovirus which

we have re-named HAdV-D53 based on its primary sequence data

and analyses.

This genome is based on a highly probable homologous

recombination between HAdV-D37 and HAdV-D8; however

(probably after the initial recombination event), other parts of the

genome have been replaced by genome parts from several known or

unknown HAdVs. Altogether, we assume the occurrence of at least

five major recombination events: (1) recombination of HAdV-D37

and HAdV-D8 (occurring between the end of the HAdV-D37 22K

gene and the beginning of the HAdV-8 pVIII gene); (2) exchange

with an unknown or unsequenced adenovirus from species HAdV-

D from the beginning of the protein IX gene to the end of the pTP

gene; (3) replacement of the pVII and protein V genes with the same

genome fragment from an unknown or unsequenced adenovirus

from species HAdV-D; (4) exchange of L1 and L2 between HAdV-

D22 and the recombinant virus; (5) and replacement of the 18.4K

gene from an unknown source.

Here we presented evidence that the neutralization epitope e of

HAdV-D53, highly homologous to HAdV-D22, was generated by

two recombination events which brought about the complete

exchange of L1 and L2. This phenomenon is apparent in three

other adenoviruses from HAdV-D (HAdV-D13, -D32, and -D39),

as well as HAdV-B16, which is a member of species HAdV-B [31].

This detailed analysis at the complete genome level demonstrates

that recombination may be a common event within adenoviruses,

especially in species HAdV-D, as a general mechanism driving

molecular evolution and immunogenicity. The neutralization

epitope is framed by highly conserved sequences, which are also

used for generic detection of most HAdVs by PCR [32,33,34].

These conserved sequences allow homologous recombination

when a cell is infected with two different adenovirus types. Our

results demonstrate that within HAdV-D, the neutralization

epitopes e are exchangeable in nature leading to immune escape

of a highly virulent and prevalent HAdV type. This resembles the

antigenic shift mechanism of influenza A viruses which is caused

by reassortment, a more efficient way of gene transfer.

To date, this is the first fully sequenced recombinant adenovirus

to be associated with EKC. Bootscan analysis showed that several

regions of HAdV-D53 (IVa2, DNA polymerase, pTP, pVII, V,

and 18.4K) were dissimilar to any known adenovirus. These

sequences are either from an undiscovered adenovirus or a known

yet unsequenced HAdV-D isolate. Additional whole genome

sequencing studies of adenoviruses will shed light on this important

question.

In light of its association with EKC, it seems significant that

experimental corneal infection with HAdV-D53 induced inflam-

mation, while infection with HAdV-D22, a virus not associated

with EKC but highly related to HAdV-D53, did not. Those areas

of the genome unique to EKC-causing viruses represent likely

sources of corneal tropism. Full genome sequencing, bioinfor-

matics analysis, and genome wide comparisons between EKC and

non-EKC inducing HAdV-D strains are beginning to yield clues

to corneal tropism and pathogenesis [8,9]. Further experiments

recombining different adenovirus genes will determine which

genes are crucial for EKC.

Early genotyping of HAdV-D53 by sequencing of the hexon (the

major neutralization determinant) and other determinants (fiber and

penton) gave results of a recombinant strain HAdV-D22/H8 [19].

Thus, HAdV-D53 fulfilled the hexon L1 and L2 criteria for typing as

HAdV-D22 [18], with a fiber knob (hemagglutination determinant)

sequence identical to HAdV-D8. In contrast to the classical concept

of a recombinant strain, HAdV-D53 was cross reactive with a

HAdV-D8 specific antiserum (Table 4). This confirms that some of

the neutralization antibodies in the HAdV-D8 antiserum bind to the

HAdV-D8-like fiber of HAdV-D53 and block infectivity by

interfering with virus/primary cellular receptor interaction.

Phylogenetic analysis of the complete genomic sequence of

HAdV-D53 showed similar genetic distances to the other available

HAdV-D types (6.1% to 9.3% nucleic acid sequence divergence) as

observed between other prototypes of species HAdV-D (6.0% to

9.5%) (Fig. 5). This supports the idea that HAdV-D53 is the

prototype of a new genotype. Therefore, phylogeny deduced from

complete genomic sequence data supports that HAdV-D53 is a new

prototype. However, HAdV-D53 is a recombinant virus and its

genome is not of monophyletic origin. For most parts of its genome

the ancestors of its sequence (HAdV-D8, -D22, -D37) could be

identified by bootscan analysis and confirmed by building

phylogenetic trees of the corresponding sequence stretches. For

example, L1 and L2 of the neutralization determinant e are highly

variable and evolved rapidly by immune escape mechanisms. L1

and L2 of HAdV-D53 were (except for a single point mutation)

identical to HAdV-D22 suggesting a recent recombination event in

the phylogeny of HAdV-D53. However, bootscan analysis

suggested that several regions of HAdV-D53 (IX, IVa2, DNA

polymerase, pTP, pVII, protein V, and 18.4K) were dissimilar to all

Table 3. An excerpt from the plot values of a Simplot
Bootscan of the HAdV-22D and HAdV-D37 hexons.

Center Pos HAdV-D22 hexon HAdV-D37 hexon

1320 100 0

1340 100 0

1360 100 0

1380 100 0

1400 100 0

1420 100 0

1440 100 0

1460 80 0

1480 18 1

1500 1 12

1520 0 7

1540 0 7

1560 0 3

1580 0 2

1600 0 46

1620 0 51

1640 0 45

1660 0 51

1680 0 60

1700 0 57

1720 0 50

1740 0 80

doi:10.1371/journal.pone.0005635.t003
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known adenoviruses. Construction of phylogenetic trees supported

that these parts of the genome are either from an undiscovered

adenovirus or a known yet unsequenced HAdV-D isolate. However,

these genome regions are well conserved in HAdV-D and thus led

to low, non significant bootstrap values (see Fig. 5 polymerase,

protein V and pVII). Additional whole genome sequencing studies

of adenovirus prototypes may elucidate whether some of these parts

of the HAdV-D53 genome are also derived from recombination

Figure 4. HAdV-D53 induces keratitis. (A) Clinical appearance of HAdV-D53 keratitis. Virus-free buffer (mock), 104 TCID of HAdV-D22, or HAdV-
D53 was injected in the corneal stroma of C57BL/6 mice (n = 8 corneas/group). Corneas were examined under a surgical microscope up to 4 days
post-infection. One representative picture from each group is shown at the indicated time points. (B) Histopathology of HAdV-D53 keratitis.
Representative histopathological sections at 4 days post-infection of mouse corneas injected with buffer, HAdV-D22, or HAdV-D53 are shown
(hematoxylin and eosin stain; scale bar = 50 m). (C) Myeloperoxidase (MPO) expression in HAdV-D53 keratitis. Mock, HAdV-D22, and HAdV-D53
infected corneas were analyzed by ELISA at 24 hours post-infection for the expression of myeloperoxidase enzyme. (D, E) Chemokine expression in
HAdV-D53 keratitis. Expression of CXCL1 (D) and CXCL2 (E) in mock, HAdV-D22, and HAdV-D53 infected corneas were analyzed by ELISA at 16 hpi.
Data is mean6SEM from three individual experiments (n = 9 corneas/group). (F, G) Phenotypic analysis of inflammatory cells in HAdV-D53 keratitis.
Mock, HAdV-D22, and HAdV-D53 infected corneas at 24 hours post-infection were homogenized and single cell preparations were stained with anti-
CD45, anti-Gr1, and anti-F4/80 antibodies. Cells were gated on CD45-positive staining. (F) Representative dot plots or (G) quantification of three
separate experiments is shown for each group (mean cells/cornea6SEM, n = 9 corneas/group). In all experiments statistical significance is denoted by
*, P,.05 as determined by ANOVA with Scheffe’s multiple comparison test.
doi:10.1371/journal.pone.0005635.g004
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Figure 5. Phylogenetic analysis of HAdV-D53. Analysis of HAdV-D53 is based on the nucleic acid sequence of (A) complete genomes, as well as
the predicted amino acid sequences of (B) polymerase, (C) L1 and (D) L2 of the hexon protein penton, (E) b-determinant, (F) c-determinant, (G) pV
and (H) pVII. Numbers denote human adenovirus serotypes. HAdV-D53 (in bold) shows the new isolate. The numbers close to the nodes represents
bootstrap pseudoreplicates.
doi:10.1371/journal.pone.0005635.g005
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events. Interestingly, protein V, a minor capsid protein, was

significantly smaller than the homologous proteins of all other

members of HAdV-D (e.g. 297 aa vs. 334 aa in HAdV-D46).

Moreover, pVII also contained several deletions, nevertheless

phylogenetic trees clearly supported clustering of HAdV-D53

protein V and pVII with species HAdV-D in spite of these deletions.

The 59-ITR sequence contains highly conserved critical motifs

that are required for adenovirus replication [37]. These motifs

include the canonical ‘core origin,’ defined as the minimal DNA

requirement for the initiation of replication, binding the terminal

protein-DNA polymerase complex [38], and several host transcrip-

tion factor binding sequences which are required for efficient

adenovirus replication [39,40]. For example, it has been shown that

Oct-1 binds to the NF III motif to stimulate transcription by 6–8

fold [41]. Within most HAdV species, both NF I and NF III binding

sites are conserved except for species HAdV-E as seen in HAdV-E4

and HAdV-E4 vaccine strain [42,43] and simian AdV-21 (SAdV-

B21), SAdV-E22 through E25 (unpublished observations) which

lack the NF I binding site. Significantly, HAdV-D53 is also missing

the NF I motif, like the other members of the sequenced HAdV-D

types (Fig. 6). Previous annotations of the sequenced HAdV-D

members do not remark upon this absence of the NF I. Perhaps this

absence of an NF I site is an indication of a different evolutionary

line of origin for species HAdV-D, as opposed to the other HAdVs

with both NF I and NF III motifs. The latter half of the ITR

contains motifs for binding Sp1 (GGG GGT GG) and ATF (TGA

CGT). These motifs are also reported to contribute to the efficiency

of viral DNA replication [44]. While the Sp1 motif seems to be less

conserved (GGG CGg/t gg), they are similar for HAdV-D types.

The ATF motif is conserved and present in HAdV-D (Fig. 6).

As new strains of adenoviruses appear and are isolated, usually

with an accompanying pathology, initial attempts at understanding

the clinical relevance involves characterizing the isolate with respect

to structural features. These include the traditional serological

methods and reagents. However, in some cases the isolates are

difficult to culture and/or the reagents are not readily available. In

the past, the isolate is either characterized as much as possible or

archived in a laboratory as an unculturable, yet interesting isolate.

Today, when an interesting adenovirus isolate arises, full-genome

sequencing, phylogenetic analysis, and other state-of-the-art

methodology and technology provide alternatives to these limita-

tions. As a recent example, when HAdV-G52 was discovered, it was

found that the virus grew too slowly in tissue culture to be ‘properly’

serotyped. This and the lack of readily available serotyping reagents

limited a ‘traditional’ characterization. However, phylogenetic

analysis, only made possible through whole genome sequencing,

demonstrated that it was a novel adenovirus isolate that was quite

divergent from all other species of human adenoviruses [6].

Similarly, if serology and limited sequence analysis, e.g., limited

hexon, penton and fiber data, were the only tools that we had

available for the original characterization of this proposed HAdV-

D53, the reported original conclusion in regards to HAdV-D53,

that it is a variant of HAdV-D22 albeit with minor genetic

modifications in the penton and fiber genes [19], would have been

and remained incorrect. In order to conclusively characterize a

suspected novel adenovirus, whole genome sequencing and

bioinformatics analysis of the resultant and complete reference

primary nucleotide sequence should be performed.

The fact that the genes associated with serum neutralization are

from known viruses raises a central question, ‘‘What are the

criteria for defining and naming a new ‘‘type’’ of adenovirus?’’

Although serology has been crucial in the pre-genomic era, it can

not be used as the gold-standard for the typing of novel

adenoviruses that will be sequenced and characterized in the

future. If serology was the only tool that we had in our typing

toolbox, we would not have determined that HAdV-D53 was due

to several recombinations of known and perhaps unknown

adenoviruses. In the past, the ‘‘serotype’’ designation was used

to distinguish different and separate adenoviruses. However, due

to the fact that there are about 200 known adenovirus types, this

approach is impractical. Moreover, the neutralization of recom-

binants such as HAdV-B16, and -D53 would yield inconclusive

data. Full-genome sequencing and bioinformatic analyses should

be the primary methods used when proclaiming novel adenovirus

genotypes as it is quicker and a less cumbersome alternative for

adenovirus typing, especially given the cost-effective technology to

obtain genome sequences rapidly and the growing array of

bioinformatics tools, along with the growing adenovirus database.

We propose using ‘‘genotype’’ rather than ‘‘serotype’’ as a

means for identifying, characterizing and differentiating adenovi-

ruses, based on genome sequence analyses. This fits into the

currently accepted classification of adenovirus ‘‘genome types,’’ in

which substrains of adenoviruses are designated by lower case

alphabetic designations in addition to their primary designation,

e.g., HAdV-7a, b, c…, if their restriction enzyme digestion

patterns differ from the reference prototype genome, ‘‘HAdV-7p.’’

Recently, partial genome sequences from HAdV-D strains

causing EKC outbreaks in Japan were published [35,36]. These

were almost identical to HAdV-D53 (including the intrahexon

recombination sites) suggesting that HAdV-D53 has already spread

around the globe as an emerging EKC agent, reflecting the

epidemiology of a globally connected population and a newly

emergent pathogen.

Materials and Methods

Ethics Statement
The animals involved in this study were procured, maintained,

and used in accordance with the Laboratory Animal Welfare Act

of 1966, as amended, and NIH 80-23, Guide for the Care and Use

of Laboratory Animals, National Research Council.

Nucleotide sequence accession numbers
The HAdV-D53 genome and annotation have been deposited

in GenBank prior to manuscript submission; accession number

FJ169625. The following HAdV genomes (GenBank accession

numbers) were used: HAdV-A12 (AC_000005), HAdV-B7

(AY594255), HAdV-D8 (AB110079), HAdV-B11 (AY163756),

HAdV-C5 (AC_000008), HAdV-E4 (AY599837), HAdV-D49

(DQ393829), HAdV-D53 (FJ169625), HAdV-D9 (AJ854486),

HAdV-B16 (AY601636), HAdV-D17 (AC_000006), HAdV-D19

(ER121005), HAdV-D22 (FJ404771) HAdV-D26 (EF153474),

HAdV-D37 (DQ900900), HAdV-D46 (AY875648), HAdV-D48

(EF153473), HAdV-D22 (unpublished genome sequence), HAdV-

D8 (published partial sequences (AB110079) and unpublished

whole genome sequence).

Table 4. Neutralization of HAdV-D53 with hyper immune
serum.

Antiserum HAdV-D53 HAdV-D8 HAdV-D22 HAdV-D37

aHAdV-D8 1/128 1/1024 ,1/8 ,1/8

aHAdV-D22 1/256 ,1/8 1/128 ,1/8

aHAdV-D37 ,1/8 ,1/8 ,1/8 1/4096

doi:10.1371/journal.pone.0005635.t004
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Figure 6. Analysis of the HAdV-D53 inverted terminal repeat (ITR). NF I, NF III, SpI, and pTP binding motifs are marked. The ATF binding site
is TGACGT.
doi:10.1371/journal.pone.0005635.g006
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Amplification of the HAdV-D53 genome
To amplify regions of HAdV-D53 flanking the sequences

described by Engelmann et al. [19], we designed primers based on

conserved adenovirus sequences of types in HAdV-D. All

amplicons were then sequenced using primer walking.

Viruses, cells and neutralization test
Viral neutralization assays were run as previously described

[45]. Rabbit antisera to prototype strains were standardized in

cross-neutralization tests against adenovirus prototype viruses 1–

49. Prototype viruses were from archives maintained at the State

of California, Department of Public Health, Viral and Rickettsial

Disease Laboratory.

Nucleic Acid Isolation
Viral DNA was extracted from tissue culture and processed

stool samples using the MagNA Pure LC DNA Isolation Kit I

(Roche, Indianapolis, IN) according to the manufacturers’

recommendations for the MagNA Pure LC automated nucleic

acid extraction system.

Bioinformatics
Percent idenitities for HAdV-53 genes/proteins. The global

alignment were performed using the EMBOSS [46] needle

program. The proteins and genes of HAdV-53 were compared

to homologs in other HAdV-D genomes. In cases were a genome

lacked sufficient annotation, genes and proteins were found

manually using the Artemis [47] annotation program. The percent

identities for the proteins (Table 2) of the HAdV-D sequences were

obtained via BLASTP [48]. The percent identities for the

nucleotide sequences (Table 2) that code for these proteins were

determined using a BioJava [49] implementation of a Needleman-

Wunsch algorithm.

Recombination analysis of hexon genes (Figure 3). Hexons

genes from the HAdV-D genomes were aligned using ClustalW

[50] alignment option available in the MEGA 4 program [51].

The default gap opening and gap extension penalties were used

(15.0 and 6.66). SimPlot [20] software was used to complete a

bootscan analysis of the aligned hexon genes of the available

HAdV-D genomes. The default settings for window size, a step

size, replicates used, gap stripping, distance model, and tree model

were, respectively, 200, 20, 100, ‘‘on’’, ‘‘Kimura’’, and ‘‘Neighbor

Joining’’. The HAdV-53 hexon was chosen as the reference

sequence for the analysis.

Recombination analysis of HAdV-D whole genomes (Figure 2).

The available HAdV-D genomes were aligned using the MAFFT

[52] alignment method which is available through a web interface

at http://www.ebi.ac.uk/Tools/mafft/. The default parameters

for gap open penalty, gap extension penalty, and perform fft were

used (1.53, 0.12, ‘‘localpair’’).

Simplot [20] software was used to complete a bootscan analysis

of the aligned HAdV-D genomes. The default parameters for

window size and step size were altered (1000, 200). All other

default parameters were left unchanged.

Recombination Analysis
Two groups of hexon coding nucleotide sequences were analyzed

for recombination events. The first group consisted of the hexon

genes of the human adenovirus D species (HAdV-D8, -D9, -D17, -

D22, -D26, -D37, -D46, -D48, -D49, -D53). This group is referred

to as the HAdV-D53 hexon group. The second group consisted of

hexon genes from HAdV-B16, -C5, -E4, -B7, -B11, and -C2. The

following accession numbers were used for the hexon recombina-

tion analyses. HAdV-A12 (AC_000005), HAdV-B7 (AY594255),

HAdV-B11 (AY163756), HAdV-C5 (AC_000008), HAdV-E4

(AY599837), HAdV-D49 (DQ393829), HAdV-D22, (AB330103),

HAdV-D53 (FJ169625), HAdV-D9 (AJ854486), HAdV-16/B1

(AY601636), HAdV-D17 (AC_000006), HAdV-D26 (EF153474),

HAdV-D37 (DQ900900), HAdV-D46 (AY875648), HAdV-D48

(EF153473). The two groups of sequences were aligned using the

ClustalW [50] alignment option available in the MEGA 4 program

[51]. The default gap opening and gap extension penalties were

used. Those penalties were 15.0 and 6.66 respectively.

Two different programs were used to analyze the two

alignments for recombination events. The first program is SimPlot

[20]. The bootscan option of SimPlot was used to analyze the

alignments. The default settings were used. These included a

window size = 200, a step size = 20, replicates used = 100, gap

stripping = ‘‘on’’, distance model = ‘‘Kimura’’, tree model = ‘‘-

Neighbor Joining’’. The HAdV-D53 hexon was chosen as the

reference sequence HAdV-D53 hexon group. HAdV-D16’s hexon

was chosen as the reference in the HAdV-16 hexon group.

The second program is the Recombination Detection Program

(RDP) [53]. This program uses several different algorithms

(including bootscanning) to determine the presence of recombi-

nation events. 1 of the ‘‘general recombination detection options’’

was changed so that the program would recognize that the

sequences in the alignment were linear and not circular. No other

default options were changed.

Phylogenetic analysis of HAdV-D53
DNA polymerase, penton base (b-determinant), pVII, protein V,

L1 and L2 of the hexon, and fiber knob (c-determinant) nucleotide

sequences were compared by sequential pairwise alignment with the

Clustal Algorithm implemented in the BioEdit software package

(version 6.0.5) and adjusted manually to conform to the optimized

alignment of deduced amino acid sequences. Phylogenetic relation-

ships were inferred from the aligned nucleic acid as well as from the

amino acid sequences by the neighbour-joining method imple-

mented in the programs DNAdist and Neighbor integrated in the

MEGA software package (version 3.1) using the Kimura two-

parameter substitution model and a transition/transversion ratio of

10. Support for specific tree topologies was estimated by bootstrap

analysis with 1000 pseudoreplicate data sets.

In vivo model of adenovirus keratitis
Eight to 12 week old C57BL/6J mice (stock # 000664) were

purchased from Jackson Laboratory (Bar Harbor, ME). Animal

housing and care were in accordance with Animal Care and Use

Committee guidelines. Mice were anesthetized for virus infection by

intramuscular injection of ketamine (85 mg/kg) and xylazine

(14 mg/kg) and later euthanized by CO2 inhalation. For infection,

1 microliter of virus-free dialysis buffer, cesium chloride gradient

purified HAdV-D22, or purified HAdV-D53 (104 tissue culture

infectious dose) was injected in the central corneal stroma as

previously described [21]. After euthanasia, corneas were removed

and fixed in 10% neutral buffered formalin, embedded in paraffin,

and sections cut at 5 m thick prior to staining. For ELISA, corneas

were harvested at indicated time points and homogenized using

phosphate buffered saline (PBS) with protease inhibitors, and the

reactions performed as per manufacturer’s instructions (R&D

Systems, Minneapolis, MN). ELISA plates were analyzed on a

microplate reader (Molecular Devices, Sunnyvale, CA) with limits

of detection of ,2 pg/mL for CXCL1 and ,1.5 pg/mL for

CXCL2. Flow cytometry was performed as described by Carr and

coworkers [54]. Corneas were dissected at indicated time points,

and digested with 1 mg/ml collagenase type I (Sigma, St. Louis,
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MO). Non-specific binding was blocked by anti-mouse Fc (BD

Pharmingen, San Diego, CA) and 5% normal rat serum (Jackson

Immuno Research, West Grove, PA). Cells were labeled with

FITC-conjugated anti-mouse F4/80 (clone CI:A3-1), phycoery-

thrin-Cy5-conjugated anti-CD45 (clone 30-F11), and PE-conjugat-

ed anti-mouse Gr-1 (clone RB6-8C5) (all from BD Biosciences, San

Jose, CA). and incubated in the dark on ice for 30 min, washed 36
with PBS/1% BSA, resuspended in PBS containing 1% parafor-

maldehyde, and incubated overnight. CountBright absolute

counting beads (Invitrogen, Eugene, OR) were added (21,600

beads/sample), cell suspensions gated on CD45high labeled cells,

and the numbers of each cell type determined at this gate setting. A

second gate was established to count the number of beads that

passed through during each run (300 sec). The absolute number of

cells per cornea was determined by calculating the number of input

beads/21,6006number of cells in the CD45high-gated sample.
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