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Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the
leading cause of coronavirus disease-2019 (COVID-19), is an emerging global health
crisis. Lung cancer patients are at a higher risk of COVID-19 infection. With the increasing
number of non-small-cell lung cancer (NSCLC) patients with COVID-19, there is an urgent
need of efficacious drugs for the treatment of COVID-19/NSCLC.

Methods: Based on a comprehensive bioinformatic and systemic biological analysis, this
study investigated COVID-19/NSCLC interactional hub genes, detected common
pathways and molecular biomarkers, and predicted potential agents for COVID-19 and
NSCLC.

Results: A total of 122 COVID-19/NSCLC interactional genes and 21 interactional hub
genes were identified. The enrichment analysis indicated that COVID-19 and NSCLC
shared common signaling pathways, including cell cycle, viral carcinogenesis, and p53
signaling pathway. In total, 10 important transcription factors (TFs) and 44 microRNAs
(miRNAs) participated in regulations of 21 interactional hub genes. In addition, 23 potential
candidates were predicted for the treatment of COVID-19 and NSCLC.

Conclusion: This study increased our understanding of pathophysiology and screened
potential drugs for COVID-19 and NSCLC.

Keywords: COVID-19, non-small-cell lung cancer, interaction network, bioinformatic analysis, systemic biological
analysis

INTRODUCTION

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), responsible for pandemic
coronavirus disease-2019 (COVID-19), is a novel beta-coronavirus belonging to the subgenus
Sarbecovirus (Ciotti et al., 2020; Umakanthan et al., 2020). As an emerging global health crisis, SARS-
CoV-2 shares a similar transmission mode with other respiratory viruses, mainly through air
droplets and close contact (Shang et al., 2021). Due to the rapidly evolving nature of SARS-CoV-2, as
on 21 November 2021, there had been 257,788,585 confirmed cases with mortality calculated at 2%
(Worldometer, 2021). Recently, the development of Delta and Omicron variants has further
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complicated the control of the pandemic (Lopez Bernal et al.,
2021;Wang and Powell, 2021). About 80% of COVID-19 patients
exhibit mild to moderate clinical manifestations, including fever,
dyspnea, dry cough, and acute pneumonia (Liu et al., 2020;
Mallah et al., 2021; Shang et al., 2021). The case fatality rate
for COVID-19 shows a close connection between age, underlying
disease status, and immune state (Olloquequi, 2020). A growing
body of evidence shows that cancer patients harbor a higher risk
of COVID-19 infection, along with severe events and unfavorable
outcomes (Passaro et al., 2021; Sinha and Kundu, 2021). A cohort
study of 1,590 COVID-19 cases reported that lung cancer was the
most frequent type of cancer [5 (28%) of 18 cancer patients] due
to the inherent associated pulmonary fragility (Liang et al., 2020).
Moreover, lung cancer patients with smoking-related lung
damage, significant cardiovascular or respiratory comorbidities,
and older age are more likely to develop COVID-19 severity
(Berlin et al., 2020; Liang et al., 2020; Passaro et al., 2020).
According to the Global Cancer Statistics in 2020, lung cancer
remains to be the leading cause of cancer incidence andmortality,
representing 11.4% and 18.0% of all cases, respectively (Sung
et al., 2021). Accounting for approximately 85% of lung cancers,
non-small-cell lung cancer (NSCLC) is comprised of several
histological subtypes such as lung adenocarcinoma, squamous-

cell carcinoma, and large-cell carcinoma (Zappa and Mousa,
2016). Despite chemotherapy and targeted therapies being
widely applied for the treatment of NSCLC, the 5-year survival
rate has remained abysmally low (16%) for the last four decades
(Suresh et al., 2019).

Cell proliferation is a vital and fundamental mechanism for
growth, development, and regeneration of eukaryotic organisms
(Diaz-Moralli et al., 2013). Dysregulation of the cell cycle leads to
aberrant cell proliferation, which is found in various malignancies
(Williams and Stoeber, 2012). Most NSCLCs have detectable cell
cycle abnormalities, and the more defective the cell cycle
becomes, the more severe the consequences would be
(Sterlacci et al., 2012). Driven by complex interactions between
host factors, tumorigenesis creates an ideal tumor
microenvironment and promotes tumor formation (Dzobo,
2021). Prior studies have pointed out that the tumor
microenvironment not only played an important part in
tumor development at primary and metastatic sites but also
deteriorated viral infection (Tian et al., 2020; Malkani and
Rashid, 2021). In lung cancer patients, the tumor
microenvironment supports SARS-CoV-2 proteins by
activating cytokine storm- and cellular metabolic variation-
related pathways, which further accelerate infection and

FIGURE 1 | Overview of the workflow of the present study.
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weaken the immune system. Angiotensin-converting enzyme 2
(ACE2), an entry receptor for SARS-CoV-2, almost ubiquitously
present in human organs, but primarily expressed in alveolar
epithelial type II cells, secretes surfactant and plays a crucial part
in pulmonary gas exchange (Zhou P. et al., 2020; Walls et al.,
2020). In lung cancer tissues, significantly upregulated ACE2
caused lung parenchyma to become vulnerable to SARS-CoV-2
attack (Zhang L. et al., 2020; Mason, 2020). By triggering
associated cascades, SARS-CoV-2 infections increased
inflammatory mediators, which could induce paracrine
senescence through prolonging cytokine signaling.
Accumulative evidence suggests that cellular senescence
damages vascular functions persistently by impairing
endothelium and decreasing angiogenesis. Vascular
dysfunction strikes the balance between anti- and
procoagulant pathways and further increases the risk of
abnormal coagulation (thrombosis) (Bochenek et al., 2016;
Escher et al., 2020). To conclude, persistent inflammation and
cellular senescence are associated with pulmonary parenchyma
injury, which could potentially restrict blood flow to the lungs,
activate coagulation, induce capillary damage, and eventually
contribute to hypoxemia and acute respiratory distress in
COVID-19 and NSCLC patients.

In the context of the highly contagious COVID-19 pandemic,
the number of NSCLC patients with COVID-19 continues to rise
(Worldometer, 2021). Although remdesivir (Eastman et al., 2020;
Hung et al., 2020), ribavirin, and hydroxychloroquine (Yao et al.,
2020) have been approved for COVID-19, none of them have
been suggested to be specific. With the widespread application of
high-throughput technologies, a large amount of biological data
has been generated. We performed a comprehensive
bioinformatic and systemic biological analysis to further
understand mechanisms and seek potential efficacious drugs to
combat COVID-19/NSCLC (Figure 1).

MATERIALS AND METHODS

Identification of Genetic Interrelations
Between COVID-19 and Non-Small-Cell
Lung Cancer
To determine genetic interrelations shared by COVID-19 and
NSCLC, we searched a variety of databases to collect available
data for each disease. We searched six online databases for
COVID-19–related genes, including Online Mendelian
Inheritance in Man (OMIM, https://www.omim.org/)
(Hamosh et al., 2005), Therapeutic Target Database (TTD,
http://db.idrblab.net/ttd/) (Wang et al., 2020), PubChem
(https://pubchem.ncbi.nlm.nih.gov/) (Kim S. et al., 2019),
DisGeNET (https://www.disgenet.org/covid/diseases/summary/)
(Piñero et al., 2020), GeneCards (https://www.genecards.org/)
(Stelzer et al., 2016), and Comparative Toxicogenomics Database
(CTD, http://ctdbase.org/) (Davis et al., 2021). Transcriptomic
RNA-sequencing (RNA-seq) datasets of COVID-19 [GSE147507
(Daamen et al., 2021), GSE157103 (Overmyer et al., 2021), and
GSE166190 (Vono et al., 2021)] were downloaded from Gene

Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/)
(Clough and Barrett, 2016). Then, we used the R package Deseq2
(Love et al., 2014) to extract differentially expressed genes (DEGs)
at the threshold |log2FoldChange| >1 and adjusted the p-value
<0.05. COVID-19–related genes were identified by intersecting
related genes from online databases and GEO datasets.

In addition, five online platforms were searched for NSCLC-
related genes, including OMIM (Hamosh et al., 2005), CTD
(Davis et al., 2021), TTD (Wang et al., 2020), DisGeNET
(Piñero et al., 2020), and GeneCards (Stelzer et al., 2016).
RNA-seq datasets of NSCLC were obtained from The Cancer
Genome Atlas (TCGA) data portal on the UCSC Xena database
(https://xenabrowser.net/datapages/) (Goldman et al., 2020).
Data of 1,135 tissues (1,027 cancer tissues and 108 para-
cancerous tissues) from 1,016 NSCLC patients were obtained.

To obtain the robust and biologically significant DEG list, we
extracted DEGs from TCGA-NSCLC–related genes by
combining data from lung cancers with different pathological
classifications, according to the previous studies (Han et al., 2019;
Zhang J. et al., 2020; Zhang et al., 2021). We employed the R
package Deseq2 (Love et al., 2014), set the threshold |
log2FoldChange| at >1, and adjusted the p-value at <0.05.
NSCLC-related genes were collected by intersecting related
genes from public platforms and TCGA data portal. After
intersecting the COVID-19–related genes and NSCLC-related
genes, we identified genes shared by COVID-19 and NSCLC as
interactional genes. These genes might play important roles in
pathophysiological processes of COVID-19 and NSCLC and
serve as important clues for screening candidate drugs for
NSCLC patients with COVID-19.

Protein–Protein Interaction Network
Analysis and Sub-Network Analysis
To interpret associated cellular machinery operations and explore
protein mechanisms, PPI network analysis was conducted using
STRING (https://string-db.org/) based on proteins derived from
COVID-19/NSCLC interactional genes. Active interaction
sources of the PPI mainly included text-mining, experiments,
databases, co-expression, neighborhood, gene fusion, and co-
occurrence. Moreover, to assure the highest confidence of the
network, the minimum confidence score was set at 0.90 for
network construction. Disconnected nodes were removed from
the network. Then Cytoscape 3.9.0 software (Shannon et al.,
2003) was applied for network visualization. In the network, the
significance of each node was evaluated by betweenness
centrality, degree and closeness centrality. In addition, a
network analysis module named cytoHubba (Chin et al., 2014)
was employed for detecting interactional hub genes. Analytical
methods including betweenness, bottleneck, closeness, degree,
density of maximum neighborhood component (DMNC),
eccentricity, edge-percoalated component (EPC), maximal
clique centrality (MCC), maximum neighborhood component
(MNC), radiality, and stress were applied to obtain top 10 genes
of each method. Based on previous studies, hub genes were
defined as genes with a degree value twice the median or
more in the whole network (Guo et al., 2015; Yu et al., 2018;
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TABLE 1 | DEGs in different RNA-seq datasets.

Source Platform Group
and sample count

DEGs
upregulated

DEGs
downregulated

DEGs
all

Total DEG
upregulated

Total DEG
downregulated

GSE147507 GPL18573 A549-ACE2 SARS-CoV-2 (6) vs.
A549-ACE2 mock (6)

1842 562 2,404 3064 1761

A549 SARS-CoV-2 (6) vs. A549
mock (13)

225 236 461

Calu3 SARS-CoV-2 (3) vs. Calu3
mock (3)

1,293 680 1973

COVID-19 lung biopsy (2) vs.
Healthy lung biopsy (2)

385 456 841

NHBE SARS-CoV-2 (3) vs. NHBE
mock (7)

69 49 118

GSE157103 GPL24676 Female-COVID-ICU (17) vs. female-
non COVID-ICU (7)

454 228 682 1,422 1,667

Female-COVID-non-ICU (21) vs.
female-non-COVID-non-ICU (6)

528 539 1,067

Male-COVID-ICU (33) vs. male-non-
COVID-ICU (8)

587 104 691

Male-COVID-non-ICU (29) vs. male-
non-COVID-non-ICU (4)

823 1,354 2,177

GSE166190 GPL20301 Adult-COVID-19-positive vs. Adult-
COVID-negative

242 202 444 278 216

Child-COVID-19-Positive vs.child-
COVID-19-negative

40 14 54

TCGA-
NSCLC

Illumina
HiSeq

Cancer (1,027) vs. normal (108) 8,229 2,139 10,368 8,229 2,139

FIGURE 2 | Identification of COVID-19/NSCLC interactional genes by intersecting COVID-19–related genes and NSCLC-related genes from public databases and
DEGs from RNA-seq datasets. (A) Identification of COVID-19-related genes. (B) Identification of NSCLC-related genes. (C) Identification of COVID-19/NSCLC
interactional genes.
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Zhuang et al., 2020). Hub genes and genes obtained by the
cytoHubba module were intersected, and duplication was
removed. By employing these 12 approaches, COVID-19/
NSCLC interactional hub genes were identified. Furthermore,
sub-network analyses were conducted by the Molecular Complex
Detection (MCODE) (Bader and Hogue, 2003) module of
Cytoscape 3.9.0 software (Shannon et al., 2003) to identify
important gene clusters in the whole PPI network. MCODE is
a useful tool for detecting densely connected regions in large
protein–protein interaction networks, which helps to identify

gene clusters and understand the connectivity and proximity of
genes. In the present study, the parameters of MCODEwere set as
follows: degree cutoff: 2; cluster finding method: haircut; node
score cutoff: 0.2; K-Core: 2; and maximal depth: 100.

Gene Ontology and Kyoto Encyclopedia of
Genes and Genomes Pathway Analysis
Based on COVID-19/NSCLC interactional genes, GO analysis
and KEGG pathway analyses were carried out by the R package

FIGURE 3 | Functional annotation of COVID-19/NSCLC interactional genes. (A)GO analysis of COVID-19/NSCLC interactional genes. (B) KEGG pathway analysis
of COVID-19/NSCLC interactional genes. Note: rich factor is defined as the ratio of input genes that are annotated in a term to all genes that are annotated in this term.
The computational formula of rich factor is as follows: Rich factor = number of input genes under this pathway term/number of all annotated genes under this pathway
term. The greater the rich factor, the greater the degree of pathway enrichment.
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clusterProfiler (Wu et al., 2021) to explore potential pathogenic
mechanisms of COVID-19 and NSCLC. GO analysis classified
associated mechanisms into three categories, including biological
processes (BP), cellular components (CC), and molecular
functions (MF), and then KEGG pathway analysis further
specified related mechanisms. p-value <0.05 was set as a

standard metric to quantify the most closely related GO and
KEGG terms. Furthermore, to explore the function of
interactional genes in the biggest sub-network, GO terms and
KEGG pathway terms (p-value < 0.05) relevant to interactional
genes were also identified by the R package clusterProfiler (Wu
et al., 2021).

FIGURE 4 | PPI network analysis based on COVID-19/NSCLC interactional genes. (A) PPI network containing 59 nodes and 347 edges. (B) Bubble chart of the
genes with degree value more than the two-fold median degree value in the whole network. Note: nodes represent interactional genes, and edges represent interaction
relationships in panel (A).
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Identification of Transcription Factors and
MiRNAs Interacting With Interactional Hub
Genes
To study underlying regulatory mechanisms at the transcriptional
level and identify hub protein’s regulatory molecules, a
comprehensive network-based method was employed to decipher
regulatory TFs and miRNAs. ChIP-X Enrichment Analysis 3
(ChEA3, https://amp.pharm.mssm.edu/chea3/) (Keenan et al.,
2019) is an open-access tool for identifying TFs that are in
control of observed alters in gene expression. ChEA3 assembles
TFs data fromENCODE (Davis et al., 2018), ReMap (Chèneby et al.,
2020), Genotype-Tissue Expression (GTEx) (Carithers and Moore,
2015), ARCHS4 (Lachmann et al., 2018), and Enrichr (Kuleshov
et al., 2016). Evidence mainly from ChIP-seq experiments assures
the interaction between TFs and customized input genes. The
integration method MeanRank performed the best in the ChEA3
benchmark and was recommended as the preferable method to
present results from different TFs libraries. Results from each library
were sorted in ascending order by score using ChEA3. The lower the
score, the closer the connection between a gene and a TF. In the
study, TFs of COVID-19/NSCLC interactional hub genes were
retrieved from ChEA3. Moreover, top 10 TFs with the lowest
scores were selected for each gene after removing duplication.
Experimentally supported data about the relation of miRNAs to

COVID-19/NSCLC interactional hub genes were obtained from
Tarbase (Karagkouni et al., 2018) and miRTarbase databases (Chou
et al., 2018). To assure the accuracy and robustness of results, we
searched the Tarbase database and selected miRNAs that were
identified by low-throughput experimental techniques. In the
miRTarbase database, the source of miRNAs included a reporter
assay, western blot, and qt-PCR. Species was set to Homo sapiens in
these two databases. Subsequently, regulatory networks of TFs,
miRNAs, and COVID-19/NSCLC interactional hub genes were
also constructed by Cytoscape 3.9.0 software (Shannon et al., 2003).

Evaluation of Applicant Drugs for COVID-19
and Non-Small-Cell Lung Cancer
Evaluation of protein–drug interactions is a crucial strategy to
detect structural features and respond to receptor sensitivity of
proteins, which can pave the way for drug development. To
explore promising drugs for COVID-19/NSCLC, drug–proteins
interactions were retrieved from the Enrichr database (https://
maayanlab.cloud/Enrichr/) (Kuleshov et al., 2016) and the
ShinyGO v0.75 web tool (http://bioinformatics.sdstate.edu/go/)
(Ge et al., 2020).

Enrichr, containing 192 gene-set libraries and counting, is a
comprehensive web portal for gene-set enrichment analysis

FIGURE 5 | PPI network analysis and sub-network analysis based on identified COVID-19/NSCLC interactional genes. (A) PPI network containing 59 nodes and
347 edges. (B) Biggest sub-network of the PPI network. (C) Small sub-network of the PPI network. Note: nodes represent interactional genes, and edges represent
interaction relationships. The depth of the color of the node is positively correlated with the degree value in panel (A).
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(Kuleshov et al., 2016). Two series of Enrichr library were
downloaded and analyzed, including drug perturbations from
GEO (DPFG) and a collection of Drug Signatures Database
(DSigDB). DPFG was built based on experimentally supported
data from GEO in which gene expression levels were assessed
before and after drug administration. Two types of data were
retrieved from DPFG for subsequent analyses, including data on
the relation of a drug to upregulated genes and data on the
relation of a drug to downregulated genes. Species was set to
Homo sapiens for filtering data. DSigDB is a collection of
22,527 drug-related gene sets with 17,389 compounds
covering genes (Yoo et al., 2015). ShinyGO v0.75 is a
graphical tool for gene-set enrichment analysis, which is
accessible to KEGG and STRING. It applies false discovery
rate (FDR) as an adjustment method for p-values of
enrichment terms. To obtain robust protein–drug
interactions, we merely selected drug molecules which
targeted more than half of COVID-19/NSCLC interactional
hub genes. Enrichment terms from ShinyGO v0.75 with an

adjusted p-value <0.05 were included. Finally, drug molecules
obtained from Enrichr libraries and ShinyGO v0.75 were
carefully searched on PubChem and PubMed databases. Drug
molecules with anticancer and/or antivirus effect were finally
selected by browsing relevant articles carefully.

RESULT

Identification of Interactional Genes
Between COVID-19 and Non-Small-Cell
Lung Cancer
COVID-19–related genes retrieved from OMIM, TTD, PubChem,
DisGeNET, GeneCards, and CTDwere 2, 78, 628, 1,832, 2,572, and
9,860, respectively (Supplementary File S1). After removing
duplication, a total of 11,392 related genes of COVID-19 were
obtained from these online databases. COVID-19–related DEGs
obtained from the RNA-seq dataset GSE147507, GSE157103, and

TABLE 2 | Top 10 important genes identified by different analytical methods.

Method Gene Gene count

Betweenness AURKB, BIRC5, CCNA2, CCNB2, CDC20, FOXM1, MYBL2, PLK1, TOP2A, and UBE2C 10
Bottleneck BIRC5, CCNA2, CDC20, FOXM1, MYBL2, PLK1, TOP2A, and UBE2C 8
Closeness AURKB, BIRC5, BUB1B, CCNA2, CCNB2, CDC20, DLGAP5, PLK1, TOP2A, and TPX2 10
Degree AURKB, BIRC5, BUB1B, CCNA2, CCNB2, CDC20, DLGAP5, PLK1, TOP2A, and TPX2 10
DMNC BIRC5, HJURP, KIF2C, KIF4A, NCAPH, NDC80, NEK2, SPAG5, TTK, and UBE2C 10
Eccentricity BIRC5, CCNA2, CCNB2, CDKN3, E2F8, FOXM1, NEK2, PLK1, RAD51, and UHRF1 10
EPC AURKB, BUB1B, CCNA2, CCNB2, CDC20, DLGAP5, TOP2A, TPX2, TTK, and UBE2C 10
MCC AURKB, BUB1B, CCNA2, CCNB2, CDC20, DLGAP5, NDC80, TOP2A, TPX2, and TTK 10
MNC AURKB, BUB1B, CCNA2, CCNB2, CDC20, DLGAP5, RRM2, TOP2A, TPX2, and TTK 10
Radiality AURKB, BIRC5, BUB1B, CCNA2, CCNB2, CDC20, DLGAP5, PLK1, TOP2A, and TPX2 10
Stress AURKB, BIRC5, BUB1B, CCNA2, CCNB2, CDC20, FOXM1, PLK1, TOP2A, and UBE2C 10

TABLE 3 | COVID-19/NSCLC interactional hub genes.

Hub gene Description Ensembl gene ID Entrez Gene type Chr Position (Mbp)

CDC20 Cell division cycle 20 ENSG00000117399 991 Protein coding 1 43.358981
KIF2C Kinesin family member 2C ENSG00000142945 11,004 Protein coding 1 44.739818
NEK2 NIMA-related kinase 2 ENSG00000117650 4,751 Protein coding 1 211.658657
RRM2 Ribonucleotide reductase regulatory subunit M2 ENSG00000171848 6,241 Protein coding 2 10.120698
NCAPH Non-SMC condensin I complex subunit ENSG00000121152 23,397 Protein coding 2 96.335766
HJURP Holliday junction recognition protein ENSG00000123485 55,355 Protein coding 2 233.833416
CCNA2 Cyclin A2 ENSG00000145386 890 Protein coding 4 121.816444
TTK TTK protein kinase ENSG00000112742 7,272 Protein coding 6 80.003887
FOXM1 Forkhead box M1 ENSG00000111206 2,305 Protein coding 12 2.85768
DLGAP5 DLG-associated protein 5 ENSG00000126787 9,787 Protein coding 14 55.148112
BUB1B BUB1 mitotic checkpoint serine/threonine kinase B ENSG00000156970 701 Protein coding 15 40.161023
CCNB2 Cyclin B2 ENSG00000157456 9,133 Protein coding 15 59.105126
PLK1 Polo-like kinase 1 ENSG00000166851 5,347 Protein coding 16 23.677656
AURKB Aurora kinase B ENSG00000178999 9,212 Protein coding 17 8.204733
SPAG5 Sperm-associated antigen 5 ENSG00000076382 10,615 Protein coding 17 28.577565
TOP2A DNA topoisomerase II alpha ENSG00000131747 7,153 Protein coding 17 40.388525
BIRC5 Baculoviral IAP repeat-containing 5 ENSG00000089685 332 Protein coding 17 78.214186
NDC80 NDC80 kinetochore complex component ENSG00000080986 10,403 Protein coding 18 2.571557
TPX2 TPX2 microtubule nucleation factor ENSG00000088325 22,974 Protein coding 20 31.739271
UBE2C Ubiquitin-conjugating enzyme E2 C ENSG00000175063 11,065 Protein coding 20 45.812576
KIF4A Kinesin family member 4A ENSG00000090889 24,137 Protein coding X 70.290104
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GSE166190 were 4,825 (3,064 upregulated and 1,761
downregulated), 3,089 (1,422 upregulated and 1,667
downregulated), and 494 (278 upregulated and 216
downregulated), respectively (Table 1; Supplementary File S2).
By intersecting COVID-19–related genes from online databases
and DEGs from RNA-seq datasets, we obtained 3,795 COVID-
19–related genes (Figure 2A).

NSCLC-related genes collected from OMIM, CTD, TTD,
DisGeNET, and GeneCards were 15, 144, 167, 447, and 4,536,

respectively (Supplementary File S3). After removing duplication,
a total of 4,725 related genes of NSCLC were obtained. A total of
10,368 DEGs (8,229 upregulated and 2,139 downregulated) of
NSCLC were identified from the TCGA (Supplementary File S4).
By intersecting NSCLC-related genes from online platforms and
DEGs from the TCGA, we obtained 618 NSCLC-related target genes
(Figure 2B). Finally, a total of 122 COVID-19/NSCLC interactional
genes were identified by intersecting COVID-19–related genes and
NSCLC-related genes (Figure 2C).

FIGURE 6 | GO and KEGG pathway analysis based on the interactional genes in the biggest sub-network. (A) Top 10 BP terms of GO analysis. (B) Top 10 CC
terms of GO analysis. (C)Top 10MF terms of GO analysis. (D) Twelve pathway terms of KEGG analysis. Note: nodes represent genes or pathways, and edges represent
enrichment relationships. The size of term nodes is positively correlated with the number of enriched genes. The size of gene nodes is positively correlated with the
number of enriched terms.
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Systemic Biological Significance of
Interactional COVID-19/Non-Small-Cell
Lung Cancer Genes
Systemic biology provides multivariate approaches to analyze the
larger interactive network of biological pathways holistically and
identify important players in disease onset and progression
(Starchenko and Lauffenburger, 2018). To reveal
characteristics shared by COVID-19 and NSCLC at the genetic
level based on systemic biology, GO and KEGG pathway
enrichment analyses were performed based on 122 COVID-
19/NSCLC interactional genes. As a result, 392 GO terms (BP:
352; CC: 26; and MF: 14) and 23 KEGG pathways were
highlighted. The top 10 GO terms of each ontology and 23
KEGG pathways are shown in Figure 3. Representative BP
terms included cell aging, regulation of mitotic cell cycle phase
transition, and regulation of cell cycle phase transition;
representative CC terms included condensed chromosome
kinetochore, kinetochore, and condensed chromosome;
representative MF terms included cytokine activity, receptor
ligand activity, and DNA binding and bending. In addition,
representative pathways included the Janus kinase/signal
transducers and activators of transcription (JAK/STAT)
signaling pathway, interleukin (IL)-17 signaling pathway,
chemical carcinogenesis receptor activation, cell cycle, and
cellular senescence. These GO terms and KEGG pathways may
exert a synergistic effect in the morbidity of COVID-19/NSCLC,
which could be clues of therapeutic strategies for these two
diseases.

Identification of Hub Genes and Exploration
of Their Interactions
To explore interrelationships of 122 COVID-19/NSCLC
interactional genes, a PPI network containing 59 nodes and
347 edges with the highest confidence scores has been
visualized (Figures 4A, 5A). Key parameters of the network
were as follows: mean betweenness: 0.05, mean degree: 11.7,
and mean closeness: 0.59. A total of 25 DEGs with a degree
twice the median or more were identified by the PPI network
(Figure 4B). In addition, the other 11 analytical network
approaches were employed to identify the top 10 genes for
each approach (Table 2). After intersecting genes identified by
different approaches, a total of 21 COVID-19/NSCLC
interactional hub genes were finally obtained for subsequent
analyses. The detail information of these 21 genes is shown in
Table 3.

To further understand the main systemic biological
significance of the network, a sub-network analysis based on
nodes of the whole network was conducted. With the
recommended parameters in the molecular complex detection
(MCODE) module (degree cutoff: 2, node score cutoff: 0.2,
K-Core: 2, and maximum depth = 100), two sub-networks
were extracted from the primary one (Figures 5B,C). Based
on the biggest sub-network containing 23 nodes and 232 edges
(Figure 5B), 283 GO terms (BP: 235; CC: 35; and MF: 13) and 12
KEGG pathways were highlighted (Supplementary File S5). The

top 10 terms of each GO and all the KEGG pathways are shown in
Figures 6A–D. Typical BP terms mainly involved mitotic spindle
organization, organelle fission, and chromosome segregation;
typical CC terms mainly involved chromosomal region,
midbody, and spindle; typical MF terms mainly involved
protein threonine kinase activity, microtubule binding, and
kinase regulator activity. In addition, the main KEGG
pathways involved cell cycle, viral carcinogenesis, p53
signaling pathway, and cellular senescence. By comparing the
KEGG pathways from the whole PPI network and the main sub-
network, functions of COVID-19/NSCLC interactional genes in
cell cycle, cellular senescence, and p53 signaling pathway were
underlined.

Determination of Regulatory Signatures
A network-based approach was employed to identify regulatory
TFs and miRNAs and to have a glimpse of changes happening at
the transcriptional level. A total of 1,632 TFs were filtered from
the ChEA3 database and sorted by theMeanRankmethod for the
most robust result (Supplementary File S6). The data source of
TFs of each COVID-19/NSCLC interactional hub gene is shown
in Figure 7A. The top 10 TFs of the interactional hub gene
recommended by the ChEA3 database were retrieved for
subsequent analyses (Figure 7B). Next, a TF–gene interaction
network containing 30 nodes and 186 edges was constructed
(Figure 7C). Centromere protein A (CENPA), DNA
methyltransferase 1 (DNMT1), MYB proto-oncogene-like 2
(MYBL2), transcription factor Dp-1 (TFDP1), and zinc finger
protein 367 (ZNF367) were identified as the most influential
regulatory factors since they targeted all interactional hub genes.

Furthermore, we obtained 17 and 40 miRNAs from Tarbase
and mirTarbase, respectively (Supplementary File S7). After
removing duplicated outcomes, a total of 44 miRNAs engaged
with interactional hub genes of COVID-19 and NSCLC were
identified. A miRNA–gene interaction network comprising 53
nodes and 51 edges was built (Figure 8). Representative miRNAs
included hsa-miR-24-3p (targeting at four interactional hub
genes), hsa-miR-16-5p (targeting at two interactional hub
genes), hsa-let-7a-5p (targeting at two interactional hub
genes), hsa-miR-34a-5p (targeting at two interactional hub
genes), and hsa-miR-10b-3p (targeting at two interactional
hub genes). Taken together, these two networks indicated that
10 important TFs and 44 post-transcriptional regulatory
signatures (miRNAs) provided evidence for exploring
regulatory mechanisms of COVID-19 and NSCLC by
participating in the regulation of interactional hub genes.

Identification of Candidate Drugs for
COVID-19 and Non-Small-Cell Lung Cancer
To identify prospective agents for COVID-19 and NSCLC, we
selected potential candidates from the Enrichr database,
including DSigDB, DPFG, and ShinyGO v0.75. Studies of drug
molecules from these three sources were retrieved from the
PubMed database for screening drugs with anticancer and/or
antivirus effect (Supplementary Table S1). According to the
result, the number of drug molecules obtained from DSigDB,

Frontiers in Pharmacology | www.frontiersin.org June 2022 | Volume 13 | Article 85773010

Zhuang et al. Interaction Between NSCLC and COVID-19

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


DPFG, and ShinyGO v0.75 was 15, 10, and 3, respectively. A total
of 23 candidates were identified after removing duplication.
Among them, nine drugs have already been used in NSCLC,
while six drugs have been registered to clinical trials for COVID-
19. Resveratrol was identified both in DSigDB and DPFG,
lucanthone was identified both in DSigDB and ShinyGO
v0.75, and vemurafenib was identified both in DPFG and
ShinyGO v0.75. Notably, natural small molecules included
resveratrol and quercetin worth focus because of their binding
affinity with molecular ACE-2.

DISCUSSION

The present outbreak of SARS-CoV-2 has spread to 224
countries, with more than 250 million people infected
(Worldometer, 2021). The elderly and those with pre-existing
complications or smoking-related lung damage are susceptible to
COVID-19, while they are precisely the profile of lung cancer
patients (Berlin et al., 2020; Liao et al., 2020). The emergence of
COVID-19 has resulted in detrimental alterations including (epi-
)genetic alterations and changes at the transcriptional level and
related signaling pathways, which have changed lung cancer
treatment provision (Alnajeebi et al., 2021). Various candidate

drugs and vaccines are being studied for the treatment of
COVID-19; nevertheless, no therapy has shown a specific
effect (Majumder and Minko, 2021). Therefore, in this study,
we conducted a comprehensive systemic biological and
bioinformatic analysis to identify potential interactional
biomarkers that might help understand co-pathogenic factors
of these two diseases and provide clues for the treatment of
COVID-19 and NSCLC.

Identified Related Genes Indicated Genetic
Interrelationships of COVID-19 and
Non-Small-Cell Lung Cancer
Bioinformatic and systemic biological analysis can integrate data
of gene expressions and protein interactions, analyze gene-
regulatory pathways, and construct protein–protein networks,
which is an effective tool for molecular mechanisms (Durmuş
et al., 2015; Ahmed, 2020) and drug development (van Driel and
Brunner, 2006), especially in the field of cancer treatment (Lee
et al., 2017; Wooller et al., 2017) and infectious diseases (Josset
et al., 2010; Li J. et al., 2016). NSCLC is a genomic disease which
involves a loss of control over vital cellular functions and could be
deteriorated by COVID-19 infection due to differential
expressions of multiple host genes (Ahmed, 2020). Biomarker

FIGURE 7 | Determination of regulatory signatures (TFs). (A) Data source of TFs of the COVID-19/NSCLC interactional hub gene. (B) Top 10 TFs identified by the
ChEA3 database. (C) TFs–interactional hub genes interaction network. Note: red nodes represent TFs, green nodes represent genes, and edges represent interaction
relationships in panel (C).
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identification is helpful in managing NSCLC or COVID-19
(Samprathi and Jayashree, 2020; Wang et al., 2021). Inherent
cancer-related changes in NSCLC genome and the aberrant
expression of host factors caused by COVID-19 infection
could interact with each other and impact the prognosis of
patients (Passaro et al., 2021). In this study, we identified 122
COVID-19/NSCLC interactional genes through bioinformatic
and systemic biological approach, which would pave the way
to reveal common pathophysiological mechanisms shared by
COVID-19 and NSCLC (Ahmed, 2020; Samprathi and
Jayashree, 2020; Wang et al., 2021).

Gene Ontology and Kyoto Encyclopedia of
Genes and Genomes Analyses Highlighted
Systemic Biological Significance
To elucidate the roles of the identified 122 COVID-19/NSCLC
interactional genes, GO and KEGG pathway analyses were

conducted. In GO analysis, biological processes were mostly
enriched in sister chromatid segregation, regulation of cell
aging, spindle organization, and mitotic nuclear division.
Dysregulated cell–cycle machinery, uncontrolled proliferation,
and resistance to programmed cell death feature cancers,
including NSCLC (Sherr, 1996; Hanahan and Weinberg, 2000;
Smolle et al., 2019). Due to the paucity of well-proven therapies or
vaccines, inhibiting cell division may be a good way to control
COVID-19, which shares a similar goal with NSCLC treatment
(Borcherding et al., 2020). Some of interactional genes
participated in the BP have been found to be closely
associated with the development and prognosis of NSCLC and
COVID-19. For example, aurora kinase B (AURKB) has been
found among the DEGs of SARS-CoV-2 in Caco-2 cells (Bock
and Ortea, 2020). In addition, an in vitro experiment suggested
that AURKB inhibition caused cell cycle arrest and polyploidy,
followed by extensive cell death in the NSCLC model (Bertran-
Alamillo et al., 2019). During SARS-CoV-2 infection, the PLK1

FIGURE 8 |MiRNAs–interactional hub genes interaction network. Note: purple nodes represent genes, orange nodes represent MiRNAs, and edges represent the
interactions between nodes.
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gene and its translational products performed significant tasks in
the normal cell division cycle, promoting the spread of virus
(Chen et al., 2021). The inhibition of PLK1 could alter the
immune microenvironment of NSCLC by increasing dendritic
cell maturation and enriching T-cell infiltration (Zhou et al.,
2021).

KEGG links a group of genes in the genome with the higher-
order functional information via computerizing current
knowledge about cellular processes and standardizing gene
annotations (Kanehisa and Goto, 2000). Based on KEGG
pathway analysis, we found pathways shared by COVID-19
and NSCLC, including cell cycle, celluar senescence, IL-17
signaling pathway, chemical carcinogenesis-receptor activation,
p53 signaling pathway, and Janus kinase/signal transducer and
activator of the transcription (JAK-STAT) signaling pathway.
Previous studies suggested that JAK-STAT, IL-17, and p53
signaling pathways were not only closely associated with the
tumorigenesis of NSCLC via regulating cell proliferation,
differentiation, and apoptosis but also involved in the
promotion of cytokine storm which deteriorated conditions in
COVID-19 patients (Shibabaw, 2020; Hu H. et al., 2021; Satarker
et al., 2021). Regulated by interferon (IFN) signaling, the
endocytosis of SARS-CoV-2 in lung epithelial cells is initiated
by the ACE2 receptor. A cross-sectional study showed that in
severe COVID-19 patients, dysregulated type I/III IFNs and JAK/
STAT signaling caused impaired antiviral responses (Hadjadj
et al., 2020). During the development of COVID-19, SARS-CoV-
2 infection induced an excessive immune response and released a
variety of pro-inflammatory cytokines through the JAK/STAT
pathway, such as IL-2, IL-6, and granulocyte colony-stimulating
factor signaling (Solimani et al., 2021). In addition, high levels of
pro-inflammatory cytokines and chemokines accelerated disease
progression, thus becoming the main risk factor of cellular
senescence and age-related diseases (Bruunsgaard et al., 2003;
Hu X. et al., 2021). Previous studies showed that the severity of
COVID-19 and NSCLC was closely associated with
hyperinflammation that could drive lung and multiorgan
injury and increase mortality via cytokine storm and sepsis
(Gomes et al., 2014; Tay et al., 2020). Thus, targeting
inflammation-related signaling pathways may be a good
option for the treatment of COVID-19 and NSCLC.

Among the interactional genes involved in the aforementioned
pathways, cyclin A2 (CCNA2) and cyclin B2 (CCNB2) are
members of the cyclin protein family, which play critical roles
in controlling cell cycle, cell senescence, and viral infection (Nam
and van Deursen, 2014). Overexpressed CCNA2 and CCNB2 are
correlated with a poor prognosis in NSCLC (Cooper et al., 2009;
Takashima et al., 2014; Qian et al., 2015). Meanwhile, during
SARS-CoV-2 infection, the increasing level of CCNA2 not only
provides favorable conditions for virus transmission but also
hints at chromosomal abnormalities and other genetic material
damage in the host cells (Chen et al., 2021). Cellular senescence,
an irreversible state of cell cycle arrest in response to damaging
stimuli, secretes factors known as senescence-associated secretory
phenotype or SASP (González-Gualda et al., 2021; Kumari and
Jat, 2021). In this case, cells maintain active metabolism without
responses of mitogenic and apoptotic signals (González-Gualda

et al., 2021). In the elderly or patients upon consistent and
chronic damages, cellular senescence may impair regenerative
ability and accelerate the progression of inflammation and lung
cancer (Hernandez-Segura et al., 2018; Kuźnar-Kamińska et al.,
2018). In lung cancer tumorigenesis, senescent cells produced
soluble signaling factors [including interleukins (Rabinovich
et al., 2007), chemokines (Coppé et al., 2010), and growth
factors (Yang et al., 2006)], proteases (Finkel et al., 2007),
insoluble proteins, and extracellular matrix components
(Acosta et al., 2008a; Acosta et al., 2008b), which mediated
cell proliferation, invasion, and migration (Wald et al., 2011;
Han et al., 2015; Kuźnar-Kamińska et al., 2016). Furthermore, a
strong connection between cellular senescence and SARS-CoV-2
has been found, as cellular senescence increased the risk of
developing severe COVID-19 (Nehme et al., 2020). SARS-
CoV-2 infection could induce paracrine senescence by
increasing IFN secretion in infected cells, and danger-
associated molecular patterns released in cells undergoing
pyroptosis or necroptosis further accelerated senescence in the
environment via SASP factors (Kim et al., 2009; Acosta et al.,
2013; Kandhaya-Pillai et al., 2017; Nehme et al., 2020). Cellular
senescence, in turn, 1) led to a weak adaptive immunity by
increasing senescent-like T cells and B lymphocytes (Frasca
et al., 2017; De Biasi et al., 2020); 2) enhanced aberrant
healing response and tissue fibrosis in the respiratory system
(Mason, 2020); 3) resulted in vascular dysfunction via decreasing
angiogenesis and increasing thrombosis and inflammatory
responses in COVID-19 patients (Ungvari et al., 2018; Escher
et al., 2020). Dysregulation of the cell cycle and cellular
senescence has been observed in both COVID-19 and lung
cancer. Thus, the importance of understanding the
homeostasis maintenance and pathological alteration of these
biological processes should be emphasized.

In summary, the aforementioned genes and pathways are
commonly and significantly altered in both COVID-19 and
NSCLC, preparing the ground for pathophysiological studies
and drug development.

Protein–Protein Interaction and
Sub-Network Analysis Explored In-Depth
Interrelationships of Interactional Hub
Genes
On the basis of interactional genes, we built a PPI network
presenting in-depth biological characteristics. In the biggest sub-
network, CCNA2, CCNB2, AURKB, DNA topoisomerase II alpha
(TOP2A), and baculoviral IAP repeat containing 5 (BIRC5) were
closely connected with other genes. TOP2A, a target for cytotoxic
drugs (etoposide, anthracyclines) and a key regulator of
chromosome condensation and chromatid separation, prevents
DNA replication and transcription (Nicoś et al., 2021). It is
generally believed that TOP2A is a prognostic indicator of
NSCLC, and its level is negatively correlated with the prognosis
(Hou et al., 2017; Ma et al., 2019). In consistence with the result of
our study, TOP2A has been identified as a hub gene that could
govern many cellular processes by protein–protein interactions in
COVID-19 patients (Hasan et al., 2022).
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Comparing to the result of KEGG analysis based on 122
interactional genes, the biggest sub-network identified additional
pathways, such as forkhead box, sub-group O (FoxO) signaling
pathway, ubiquitin-mediated proteolysis, viral carcinogenesis, and
apoptosis. As tumor suppressors, FoxO proteins increased the
expression level of death receptor ligands such as Fas ligand and
tumor necrosis factor (TNF) apoptosis ligand, engaged with pro-
apoptotic pathways, and blocked cell cycle progression (Farhan
et al., 2017). According to the result, viral carcinogenesis was one of
themost important KEGGpathways, indicating that co-pathogenic
factors shared by COVID-19 and NSCLC could be the basis of
finding potential drugs for synergistic treatment.

Interaction of Transcription Factors and
MicroRNAs With Interactional Hub Genes
Genetic alterations have long been blamed for malignancy but
cannot fully explain tumor development. Epigenetic
dysregulations give new insights into how heritable changes in
gene expression happen without involving changes in nucleotide
sequence, and finally promote carcinogenesis (Yuan et al., 2016).
MiRNAs and TFs are the largest families of trans-acting gene
regulatory species and pivotal players in a complex regulatory
network (Sharma et al., 2020). Herein, we investigated TF–gene
and miRNA–genes interaction that might help in learning more
about disease development.

Transcription factors are key cellular components that regulate
multiple genes over a long distance by maintaining proliferation
status, driving cellular differentiation, and determining cell fate
(Essebier et al., 2017). The identified top 10 TFs included
CENPA, DNMT1, MYBL2, TFDP1, ZNF367, high mobility
group AT-hook 1 (HMGA1), proliferation-associated 2G4
(PA2G4), high mobility group AT-hook 2 (HMGA2), zinc finger
protein 878 (ZNF878), and FOXM1. Among them, CENPA (Mullen
et al., 2020), DNMT1 (Wu et al., 2020),MYBL2 (Mullen et al., 2020),
TFDP1 (Zhan et al., 2017), ZNF367 (Liu Z. et al., 2018), HMGA1
(Zhang Z. et al., 2015), HMGA2 (Gao et al., 2018), and FOXM1
(Mullen et al., 2020) were previously shown to be highly associated
with NSCLC progression. It has been demonstrated that CENPA,
MYBL2, and FOXM1 were linked to numerous cancer-specific
enhancers, and their elevated expression levels were associated
with a poor survival rate of NSCLC patients (Mullen et al.,
2020). Meanwhile, the level of DNMT1 was found significantly

downregulated in SARS-COV-2–infected epithelial cells
(Muhammad et al., 2021). SARS-COV-2 infection mainly affects
the molecular mechanisms of aging centered on HMGA1 and
HMGA2 proteins, and their interactions may impair or trigger
inflammatory pathways, leading to various responses in different
age groups (Mercatelli et al., 2021). To conclude, DNMT1, HMGA1,
and HMGA2 might be central TFs in the TF–gene regulatory
network in COVID-19/NSCLC.

MiRNAs are endogenous small non-coding RNA molecules
that can regulate the expression of non-coding sequences and
genes involved in oncogenesis (Liu et al., 2014). Various studies
have identified miRNAs as key players in the pathogenesis and
therapeutics of viral diseases. Moreover, as part of host–pathogen
interactions, miRNA can scan target SARS-CoV-2 genes as well
as host inflammatory machinery to counter-act the impairing
effects of infection (Ghosh et al., 2009; Khokhar et al., 2022). The
top 10 most significant miRNAs mainly involved in respiratory
diseases (Table 4), including NSCLC [hsa-miR-24-3p (Wei et al.,
2021), hsa-miR-34a-5p (Zhou X. et al., 2020), hsa-miR-10b-3p
(Liu et al., 2017), hsa-miR-20a-5p, and hsa-miR-17-5p (Leidinger
et al., 2016)], idiopathic pulmonary fibrosis [hsa-miR-524-5p (Li
Q. et al., 2020), COVID-19 (hsa-miR-20a-5p, hsa-miR-17-5p (Li
C. et al., 2020)), and hsa-miR-16-5p (Kim et al., 2020)],
pneumoconiosis [hsa-let-7a-5p (Zhang et al., 2018)], and
asthma [(hsa-let-7a-5p (Huang et al., 2019)]. Interestingly,
compared with the healthy controls, the levels of hsa-miR-20a-
5p and hsa-miR-17-5p were significantly downregulated in
patients with COVID-19; therefore, they were considered as
essential modulators of viral replication (Li C. et al., 2020). In
addition, according to a study based on high-throughput qRT-
PCR validation, hsa-miR-20a-5p and hsa-miR-17-5p were the
top markers that could distinguish NSCLC patients from
unaffected controls with 94.5% accuracy (Leidinger et al., 2016).

Notably, hsa-miR-24-3p, hsa-miR-16-5p, and hsa-let-7a-5p
targeted AURKB, central regulator of cell division (Bertran-
Alamillo et al., 2019), indicating that these miRNAs may be
potential targets to control cell cycle and cellular senescence. In
addition, miR-34a-5p regulated the G1/S checkpoint in NSCLC
cells (Gupta et al., 2020). Forced expression of miR-34a-5p
enhanced p21 expression and promoted cellular senescence,
whereas downregulated miR-34a-5p decreased senescence and
increased apoptosis by targeting B-cell lymphoma-2 (BCL2),
myelocytomatosis oncogene (MYC), mesenchymal-epithelial

TABLE 4 | Top 10 miRNAs involved in various respiratory diseases.

MiRNA name Respiratory disease type References

hsa-miR-24-3p NSCLC Wei et al. (2021)
hsa-miR-16-5p COVID-19 Kim et al. (2020)
hsa-let-7a-5p Pneumoconiosis and asthma Zhang et al. (2018), Huang et al. (2019)
hsa-miR-34a-5p NSCLC Xingni Zhou et al. (2020)
hsa-miR-10b-3p Pneumoconiosis and asthma Liu et al. (2017)
hsa-miR-20a-5p NSCLC and COVID-19 Leidinger et al. (2016), Caixia Li et al. (2020)
hsa-miR-17-5p NSCLC and COVID-19 Leidinger et al. (2016), Caixia Li et al. (2020)
hsa-miR-524-5p Idiopathic pulmonary fibrosis Qilong Li et al. (2020)
hsa-miR-376a-5p Has not been reported Not available
hsa-miR-483-3p Has not been reported Not available
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transition (MET), and p53 (Gallardo et al., 2009; Kasinski and
Slack, 2012). According to the result, BIRC5, FOXM1, CCNA2,
and PLK1 showed a higher degree of interaction with miRNAs,
which may play crucial roles in the interaction networks.

To sum up, TF–gene intereactions are reactors that regulate
gene expression by binding with target genes and miRNAs
(Zhang HM. et al., 2015). The constructed TF–gene and
miRNA–gene interaction networks help further understand the
direct regulatory relationship of miRNA and TFs in NSCLC and
COVID-19, while interactional hub genes may be crucial
biomarkers and therapeutic targets.

Potential Drugs Provided Possible
Treatments for COVID-19 and
Non-Small-Cell Lung Cancer
In this study, a total of 23 candidates containing 18 drugs and 5
natural compounds were identified. Among them, nine drugs
have already been administered to NSCLC patients, including
irinotecan (Murakami et al., 2018), dasatinib (Xu et al., 2015), 5-
fluorouracil (Nokihara et al., 2017), etoposide (Liang et al., 2017),
carboplatin (Hasegawa et al., 2020), ascorbic acid (Pathak et al.,
2005), azacitidine (Cheng et al., 2021), decitabine (Chu et al.,
2013), and palbociclib (Nie et al., 2019). According to the
ClinicalTrials database (https://clinicaltrials.gov/), cyclosporin
A (NCT04540926), dasatinib (NCT04830735), quercetin
(NCT04851821), etoposide (NCT04356690), ascorbic acid
(NCT04401150), and decitabine (NCT04482621) have been
registered to clinical trials for evaluating their efficacy in
COVID-19 patients. Therefore, it can be inferred that
dasatinib, etoposide, ascorbic acid, and decitabine are likely to
be the promising agents for NSCLC patients with COVID-19,
which provides support for our predictions.

Quercetin and resveratrol are two natural compounds which
have both antiviral and anti-NSCLC effects (Zhao et al., 2010; Wu
et al., 2015; Lin et al., 2017; Chai et al., 2021). Quercetin, a well-
known natural polyphenol with anti-inflammatory, antioxidant,
and immunomodulatory properties, is involved in a variety of
diseases, such as viral infections, respiratory diseases, allergies,
asthma, and cancer (Li Y. et al., 2016; Xu et al., 2019). Previous
network pharmacology and molecular docking studies anticipated
that quercetin could interfere with SARS-CoV-2 replication by
interacting with 3-chymotrypsin-like protease (3CLpro), papain-
like protease (PLpro), and S proteins (Derosa et al., 2021; DI Pierro
et al., 2021b). An open-label, randomized controlled trial included
152 outpatients with confirmed SARS-CoV-2 infection but without
severe COVID-19 symptoms found that formulated quercetin
treatments reduced the frequency and length of hospitalization,
the need of non-invasive oxygen therapy, and the number of deaths
(DI Pierro et al., 2021a). In addition, available experimental studies
suggested that quercetin could directly modulate multiple lung
cancer-relevant miRNAs and DNA methylation (Kim DH. et al.,
2019; Kedhari Sundaram et al., 2019). Another ingredient
resveratrol is a potent antioxidant that could inhibit platelet
aggregation and vasodilation, reduce blood viscosity, and
maintain blood flow (Olas and Wachowicz, 2005; de la Lastra
and Villegas, 2007). In vitro and in vivo studies indicated that

resveratrol induced cell apoptosis and inhibited proliferation,
growth, and metastasis in NSCLC (Yousef et al., 2017; Tang
et al., 2020). Given the thrombin-inhibitory and anti-
inflammatory effects, resveratrol deserves further study for the
treatment of COVID-19 and NSCLC.

It is noteworthy that a computational structure-based study
identified trichostatin A as a potential SARS-CoV-2 Mpro
inhibitor. The result has been further validated by an essay
which has suggested that trichostatin A could reduce the viral
RNA load, viral antigen expression, and infectious virus particle
formation (Wen et al., 2021). Other identified ingredients also
had an anti-respiratory virus effect. For instance, cyclosporine at
non-cytotoxic concentrations could induce a strong inhibition
of the replication of specific coronaviruses in vitro, including
SARS-CoV, MERS-CoV, and human coronavirus 229E (HCoV-
229E) (Poulsen et al., 2020). A retrospective observational study
recently found that in COVID-19 hospitalized patients,
cyclosporine was significantly associated with a decrease in
mortality, probably due to its combined activity of
immunosuppression and antiviral activity (Guisado-Vasco
et al., 2020). Dyall et al. (2014) found that dasatinib was
active against both MERS-CoV and SARS-CoV in vitro, and
it might minimize immunotoxicity as it blocked viral
replication. Vemurafenib interfered the cellular Raf/MEK/
ERK signaling cascade by binding to the ATP-binding site of
BRAF (V600E) kinase and inhibiting its function (Pleschka
et al., 2001). Interestingly, since Raf/MEK/ERK signaling
pathways mediated the increasing SARS-CoV-1 replication
(Dyall et al., 2014), it may be a therapeutic target for host-
directed SARS-CoV-2 antivirals. Thus, vemurafenib may also be
a potential anti-COVID-19 drug. To conclude, according to
available literature and the result of our study, identified
molecules may be prospective agents in the treatment of
COVID-19 and NSCLC.

Based on the comprehensive bioinformatic and systemic
biological analysis, the present study carried out a study
framework to reveal interaction networks and therapeutic
implications for NSCLC patients with COVID-19, the findings
of which would provide evidence and shed light for the further
research on COVID-19/NSCLC. However, there were still some
limitations in the present study. First, the sample size of certain
disease studies might be insufficient to capture all of the critical
disease-related genes for identifying the common DEGs. Second,
incompleteness of available interactome data and limitation of
computational methods might make the conclusions less
dependable and accurate. Finally, the results of the present
study were derived from multiple computational approaches,
and future in vivo and in vitro experiments are required to
fully assess the biological relevance of candidates.

CONCLUSION

In summary, based on bioinformatic analyses, we predicted
promising therapeutic ingredients and drugs for NSCLC
patients with COVID-19. We detected interactional hub genes
enriched in regulating biological processes and signaling pathways,
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which were mainly relevant to cell division, cell aging, cell cycle,
and cellular senescence. This study has identified 1) potential
therapeutic targets, including CCNA2, CCNB2, AURKB, TOP2A,
andBIRC5; 2) signaling pathways primarily related to cell cycle, cell
aging, viral carcinogenesis, and p53 signaling pathway; 3) potential
agents for the treatment of COVID-19 and NSCLC, including
quercetin, resveratrol, cyclosporine, dasatinib, etoposide, ascorbic
acid, and decitabine. Future experimental and clinical studies
should be carried out with predicted agents to explore
pharmacological mechanisms and to inform possible
interventions for COVID-19 and NSCLC.
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GLOSSARY

AURKB Aurora kinase B

BIRC5 Baculoviral IAP repeat-containing 5

BP Biological processes

BUB1B BUB1 mitotic checkpoint serine/threonine kinase B

CC Cellular components

CCNA2 Cyclin A2

CCNB2 Cyclin B2

CDC20 Cell division cycle 20

CENPA Centromere protein A

ChEA3 ChIP-X Enrichment Analysis 3

COVID-19 Coronavirus disease-2019

CTD Comparative Toxicogenomics Database

DEGs Differentially expressed genes

DLGAP5 DLG-associated protein 5

DNMT1 DNA methyltransferase 1

DPFG Drug Perturbations from GEO

DSigDB Drug Signatures Database

FoxO Forkhead box, sub-group O

GEO Gene Expression Omnibus

GO Gene Ontology

IFN Interferon

IL Interleukin

JAK STAT Janus kinase/signal transducer and activator of transcription

KEGG Kyoto Encyclopedia of Genes and Genomes

MERS-CoV Middle East respiratory syndrome coronavirus

MF Molecular functions

MYBL2 MYB proto-oncogene-like 2

NSCLC Non-small-cell lung cancer ACE2 angiotensin-converting
enzyme 2

OMIM Online Mendelian Inheritance in Man

PLK1 Polo-like kinase 1

PPI Protein–protein interaction

RNA-seq Transcriptomic RNA-sequencing

SARS-CoV-2 Severe acute respiratory syndrome coronavirus 2

SASP Senescence-associated secretory phenotype

TCGA The Cancer Genome Atlas

TFDP1 Transcription factor Dp-1

TFs Transcription factors

TOP2A DNA topoisomerase II alpha

TTD Therapeutic Target Database

ZNF367 Zinc finger protein 367
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