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Abstract
Purpose: Treatment planning for pancreas stereotactic body radiation therapy (SBRT) is a challenging task, especially with simulta-
neous integrated boost treatment approaches. We propose a deep learning (DL) framework to accurately predict fluence maps from
patient anatomy and directly generate intensity modulated radiation therapy plans.
Methods and Materials: The framework employs 2 convolutional neural networks (CNNs) to sequentially generate beam dose pre-
diction and fluence map prediction, creating a deliverable 9-beam intensity modulated radiation therapy plan. Within the beam dose
prediction CNN, axial slices of combined structure contour masks are used to predict 3-dimensional (3D) beam doses for each beam.
Each 3D beam dose is projected along its beam’s-eye-view to form a 2D beam dose map, which is subsequently used by the fluence map
prediction CNN to predict its fluence map. Finally, the 9 predicted fluence maps are imported into the treatment planning system to
finalize the plan by leaf sequencing and dose calculation. One hundred patients receiving pancreas SBRT were retrospectively collected
for this study. Benchmark plans with unified simultaneous integrated boost prescription (25/33 Gy) were manually optimized for each
case. The data set was split into 80/20 cases for training and testing. We evaluated the proposed DL framework by assessing both the
fluence maps and the final predicted plans. Further, clinical acceptability of the plans was evaluated by a physician specializing in
gastrointestinal cancer.
Results: The DL-based planning was, on average, completed in under 2 minutes. In testing, the predicted plans achieved similar dose
distribution compared with the benchmark plans (-1.5% deviation for planning target volume 33 V33Gy), with slightly higher planning
target volume maximum (þ1.03 Gy) and organ at risk maximum (þ0.95 Gy) doses. After renormalization, the physician rated 19 cases
clinically acceptable and 1 case requiring minor improvement.
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Conclusions: The DL framework can effectively plan pancreas SBRT cases within 2 minutes. The predicted plans are clinically
deliverable, with plan quality approaching that of manual planning.
� 2021 Published by Elsevier Inc. on behalf of American Society for Radiation Oncology. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Pancreatic cancer is associated with high rates of local
recurrence with its attendant morbidity and mortality,
although often overshadowed by high rates of distant
metastases development. In recent years, stereotactic body
radiation therapy (SBRT) has shown encouraging results
in the neoadjuvant and definitive setting.1-5 However, the
complex anatomy of pancreas planning target volumes
(PTVs) and organs-at-risk (OARs), including the stomach
and the duodenum/bowel, poses a significant challenge.
Gastrointestinal (GI) dose constraints often have to be
prioritized over delivering uniform high dose to target
structures. With intensity modulated radiation therapy
(IMRT), a higher prescription dose can be concurrently
delivered to the gross tumor volume within the PTV, that
is, simultaneous integrated boost (SIB).6-8 The reporting
of promising local control and moderate toxicity rates has
encouraged further dose escalation approaches to improve
treatment outcomes.9,10 However, dose escalation further
adds to the complexity of the treatment planning tasks
given GI luminal OARs are sensitive to higher radiation
doses. When using SIB techniques, the boost target (gross
tumor volume) dose usually exceeds the dose limit of GI
luminal OARs. Although achieving this high dose
gradient is a major objective in planning, a trade-off is
usually required to deliver as much high dose to the target
as possible while respecting normal organ dose con-
straints. This challenging task generally requires exten-
sive and superior treatment planning skills to achieve the
desired goals and adds significant time and cost to the
planning process. Therefore, plan quality can be highly
dependent on the planner’s experience and time resources
available.11

Over the past decade, machine learning has been used
to assist at several key steps during IMRT treatment
planning, where clinical knowledge from previous high-
quality plans is extracted and used to create optimized
plans for new patients. Dose prediction has been the key
focus of most knowledge-based and automated planning
approaches, including the prediction of dose-volume
histogram (DVH)12-19 and 3-dimensional (3D) dose dis-
tribution.20-27 This prediction paradigm requires an addi-
tional inverse optimization step to translate the predicted
DVH/dose to deliverable fluence maps, which correspond
to machine parameters such as multileaf collimator
(MLC) leaf control points. The predicted DVH and 3D
dose distributions are used as constraints to guide the
inverse optimization toward the desired plans.16,19,21,26,28
This 2-step approach is suboptimal, given that, even
though the best achievable DVH/dose distributions have
been predicted, translating them into actual optimal plans
still requires the human planner skillfully operating the
inverse optimization process, often requiring multiple
iterations.

A more direct approach to automated treatment plan-
ning is to predict the fluence map itself, without inverse
planning. A fluence map is a 2-dimensional (2D) photon
intensity image of 1 beam, which determines this beam’s
dose distribution in the patient. We have previously pro-
posed a deep learning framework to predict fluence maps
for pancreas SBRT with a single PTV.29 A few studies
have also addressed the direct generation of fluence maps
in automated treatment planning. Lee et al30 used a con-
volutional neural network (CNN) to generate fluence
maps from clinical plan dose distributions for prostate
IMRT. However, the study did not provide a solution on
how to obtain the clinical plan’s beam dose distribution as
the input when the clinical plan is unknown (not planned
yet) for new patients. Furthermore, the prediction of dose
per beam has not been widely investigated. Existing
studies in the literature all focus on total dose prediction.
A more complete system was developed by Sheng et al31

to generate fluence maps for 1 or 2 pairs of tangential
beams for whole breast radiation therapy based on a
random forest model. In their model, the fluence maps are
predicted from patient anatomy, which are directly con-
verted to optimal clinical plans and dose distributions via
leaf sequencing.

In this study, we propose using a novel deep learning
(DL) framework to predict fluence maps for plans with
multiple PTV prescriptions. We hypothesize that, given
standardized beam orientation and prescription doses,
deep neural networks can be trained to predict the optimal
fluence maps directly from patient anatomy and thus lead
to high quality plans without inverse optimization. We
have applied this DL framework in automated treatment
planning approaches for pancreas SBRT to evaluate its
feasibility in challenging SIB scenarios.

Methods and Materials

Materials

One hundred patients with pancreatic cancer previ-
ously treated with SBRT at Duke University Medical
Center were randomly selected for this retrospective study
after institutional review board approval. Eighty cases

http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 1 Clinical protocol used for generating the bench-
mark plans

Planning
structure

Structure name Prescription

Elective target
volume

PTV25 25 Gy to >95% volume

Boost target
volume

PTV33 33 Gy ideally to >95%
volume
Yield to GI max dose
limit

Duodenum OAR Maximum dose (0.1 cc)
<29 GyStomach

Bowels
Bilateral kidney Lt kidney & Rt

kidney
V15Gy <15%

Liver Liver V15Gy <10%

Abbreviations: GI Z gastrointestinal; OAR Z organ at risk; PTVZ
planning target volume.

Advances in Radiation Oncology: --- 2021 SIB-SBRT fluence prediction with deep learning 3
were randomly selected for training, with the remaining
20 cases for testing. Because SBRT is a rapidly evolving
treatment modality for pancreatic cancer, the prescriptions
to the boost target volume, the dose limits to the GI
structures, as well as the treatment beam setting, have
varied over time. Therefore, in this study, a set of
benchmark plans was designed by clinical physicists who
specialized in GI treatment using the unified prescription
template shown in Table 1, partially based on a prior
phase II study using 5 fractions.32 All benchmark plans
were IMRT plans generated in the Eclipse treatment
planning system (TPS) (version 15.6; Varian Medical
Systems, Palo Alto, CA) using 9 equally spaced beams
and created for Varian TrueBeam Linear Accelerator with
Millennium 120 MLC. All plans were reviewed and
deemed clinically acceptable before they were used for
training and validation in this study.

The networks were trained on a server with an Intel
Xeon W-2195 processor and 256 GB of RAM, using 1
Nvidia Quadro RTX 8000 graphics card. Model testing
was performed on a workstation with an Intel Xeon E5 v4
processor, 64 GB of RAM, and a Nvidia Quadro M4000
graphics card.

DL framework

The proposed DL framework aims to eliminate the
inverse optimization process, as illustrated in Figure 1. In
manual planning, the optimization engine produces
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optimal fluence maps with many iterations to minimize
the objective function. In contrast, the DL framework
directly predicts fluence maps with 2 CNNs, fully
replacing the inverse optimization process (Fig 1). The
predicted fluence maps are then sent to the TPS to finalize
the plan.

Figure 2 illustrates the architectures of the 2 consec-
utive CNNs in the DL framework. The beam dose CNN
(BD-CNN) predicts the 3D dose contribution of each
beam. This component of the DL framework takes the
patient anatomy as input and predicts as output the dose
contribution of each beam, which we refer to as “pre-
dicted beam dose.” All 9 beam doses are predicted
simultaneously. In the next step, these 3D predicted beam
doses are projected along the beam’s eye view (BEV) and
converted to 2D beam dose maps. Additionally, 2 3D
PTV volumes (primary and boost) are similarly converted
to 2D PTV maps as the other input. In the final step, the
2D beam dose map and the 2 2D PTV maps associated
with each beam are then taken together as the input to the
fluence map CNN (FM-CNN) to predict this beam’s FM.
A single FM-CNN is used to separately predict FMs for
different beam angles.

Once all 9 FMs are predicted, they are sent to the TPS
for plan finalization, which performs MLC leaf
sequencing and dose calculation. Although the 2 CNNs
were trained and validated independently, they were in-
tegrated as a whole framework to replace the manual
iterative inverse planning process, as shown in Figure 1.
Individual BD prediction
The BD-CNN is a CNN with an encoder-decoder

structure. The PTV and OAR contours are converted to
masks and partitioned to their corresponding dose pre-
scriptions. The combined contour mask is fed to the
CNN network in 13 consecutive axial slices. Nine beam
dose distributions for the central slice are generated, 1 in
each output channel. This CNN design allows the in-
dependent prediction of each axial slice while incorpo-
rating contour variation in the superior-inferior
direction. This process was repeated for all PTV slices
iteratively; then, the predicted beam dose slices from the
same angle were stacked to create a 3D beam dose for
FM prediction.

The loss function of the BD-CNN is defined as a
weighted sum of BD error and total dose (TD) error, with
the hyperparameter a tuned during validation. The pre-
diction errors are calculated in a region-of-interest (ROI),
which is the PTV25 expanded by 1 cm. The loss function
is expressed as

Of all the training data, 10% were held out as a vali-
dation set to fine-tune the model architecture and hyper-
parameters, including the loss function weight a: The
model was trained with early stopping based on validation
loss and a maximum of 150 epochs.



Figure 1 The proposed deep learning (DL) framework for fluence map prediction compared with manual planning. The 9-beam
intensity modulated radiation therapy (IMRT) benchmark plans are generated manually with the traditional inverse planning work-
flow. In the DL framework, the BD-CNN predicts beam dose from the anatomy and prescription. The predicted beam dose is used as the
input for FM-CNN to predict the fluence map. Both benchmark plans (manual) and predicted plans (DL) are finalized in the TPS using 9
fluence maps. Abbreviations: BD-CNN Z beam dose convolutional neural network; FM-CNN Z fluence map convolutional neural
network; TPS Z treatment planning system.

Figure 2 The network architectures of the BD-CNN (A) and the FM-CNN (B). The BD-CNN uses an encoder-decoder structure with
4 resolution levels. The FM-CNN uses a customized U-Net structure with 3 resolution levels. The predicted beam dose slices from the
same beam are stacked to create the 3-dimensional (3D) beam dose, which is subsequently projected to create a 2-dimensional (2D)
beam dose map. Abbreviations: BD-CNN Z beam dose convolutional neural network; FM-CNN Z fluence map convolutional neural
network; OAR Z organ at risk; PTV Z planning target volume; TPS Z treatment planning system.
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FM prediction
The FM-CNN adopts a U-net33 shape with 3 resolution

levels and predicts the FM for each beam individually.
The input includes a BD map and the projected contour
maps of PTV25 and PTV33. The BD map is each beam’s
predicted dose contribution (output of BD-CNN) pro-
jected along the BEV. The output is the FM of the cor-
responding beam. The loss function of the FM-CNN
(LFM) is a modified mean absolute error, which is
formulated as

LFM Z ð1þlÞ
P��ytrue � ypred

��
Nðytrue > 0Þ ; ð2Þ

where ytrue and ypred are the ground truth (benchmark)
and predicted values of the FM, and Nðytrue > 0Þ is the
count of ground truth pixels with nonzero values. l is a
coefficient that prevents FM-CNN from over- or under-
estimating the FMs. It is expressed as

lZ

��N
�
ytrue � ypred > yth
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���
Nðytrue > 0Þ ;
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where the fluence error threshold yth was selected during
the validation stage.

Similar to BD-CNN training, 10% of the training data
were used for validation to fine tune the model architec-
ture and hyperparameters. The model was trained with
early stopping based on validation loss and a maximum of
150 epochs.

DL framework evaluation

The framework is evaluated using the 20 test cases in 3
aspects: (1) planning time, (2) FM prediction, and (3)
dosimetric quality of the final plans generated from the
predicted FMs.

Each step of the DL framework was timed and aver-
aged among all test cases. The prediction error of each
FM was calculated as

Err
�
Ftrue;Fpred

�
Z

P��Ftrue �Fpred
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P

Ftrue
: ð4Þ

In addition to the fluence prediction error, we also
compared the similarity between the predicted FM and
that of the benchmark plan, and normalized cross corre-
lation was calculated for each beam. A cutoff threshold of
20% of the maximum fluence value was used to define the
area of interest, that is, values below the threshold were
set to 0.

Although the direct output of the DL framework is
FMs, the quality of the final plans ultimately determines
the usefulness of the model in the clinic. Thus, the pre-
dicted FMs were imported into the Eclipse TPS to
generate the predicted plan for each test case. The
predicted plans were compared with the benchmark plans
based on clinically relevant dosimetric endpoints,
including PTV33 Dmax, PTV33 D95%, PTV33 V33Gy,
PTV33 Dmean, PTV25 V25Gy, PTV25-33 Dmean, OAR
Dmax, OAR D1cc, and OAR D2cc. The dice coefficients
between prescription (25 or 33 Gy) isodose and PTV
contours were calculated to represent the dose conformity
of the benchmark and predicted plans.

Finally, the predicted plans were evaluated and
compared with the corresponding benchmark plans by an
attending physician specializing in GI cancers. All plans
were directly generated from DL prediction and no
renormalization was performed. The predicted plans were
assigned 1 of 4 grades (A, B, C, D) by the physician.34

The detailed evaluation criteria are described in the
Supplementary Materials. Plans with grade A or B were
considered clinically acceptable, while plans with grade C
or D were renormalized and re-evaluated. The grades
served as a quantitative measure of clinical acceptability
of the predicted plans. The pooled grade point averages of
all test cases were used to measure the overall perfor-
mance of the proposed framework.

Results

Model training and prediction time

For the BD-CNN, 7718 slices from 80 cases were used
for training. The BD-CNN has the capacity of 4.4 million
trainable parameters, and the training process took
approximately 6 hours to finish 100 epochs with early
stopping to avoid overtraining. The loss function weight a
was 0.1. Compared with the BD-CNN, the FM-CNN had
fewer trainable parameters (0.8 million). There were 720
FMs (9 each from 80 cases) for the FM-CNN training.
The training process took 5 minutes to finish 75 epochs
with early stopping as well. The fluence error threshold
yth was 0.005.

After model training, the DL framework takes little
time to generate plans for new cases. Figure 3 illustrates
the average time taken by the major steps of the proposed
method. For the 20 test cases, the PTV25 volume was an
excellent indicator of the input size (average, 234.4 cm3;
range, 37.1-550.0 cm3; standard deviation, 162.7 cm3).
The total planning time was 107.2 seconds on average
(range, 78.2-142.6 seconds; standard deviation, 18.3
seconds). Because all 3D planning elements were
upsampled to 1 � 1 � 1 mm3 voxel size, data pre-
processing took the longest time (average, 51.7 seconds;
range, 29.6-94.5 seconds; standard deviation, 16.1 sec-
onds) in the workflow. On average, individual beam’s
dose projection to the BEV plane took 10.8 seconds per
patient (range, 3.5-19.5 seconds; standard deviation, 5.6
seconds), and the combined prediction time of the 2
CNNs was only 4.73 seconds (range, 3.2-7.2; standard



Figure 3 The breakdown of plan generation time per patient for the proposed method. Abbreviations: BD-CNN Z beam dose
convolutional neural network; DLZ deep learning; FM-CNNZ fluence map convolutional neural network; TPSZ treatment planning
system.
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deviation, 1.3 seconds). The plan finalization step in the
TPS took 40 seconds per patient, which includes leaf
sequencing and final dose calculation. This step also takes
place in the manual planning workflow (after inverse
optimization) and consumes the same amount of time. In
total, a deliverable plan could be generated within 2 mi-
nutes, which is significantly faster than manual planning.

Evaluation of predicted FMs

The predicted fluence maps had an error (Eq. 4) of
4.0% � 1.0% (mean � standard deviation) relative to the
mean values of benchmark FMs. The normalized cross
correlation between the benchmark plan’s FM and pre-
dicted plan’s FM was 0.949 � 0.022 (mean � standard
deviation), with the range (0.878-0.992). Figure 4 shows
the predicted FMs side-by-side with the benchmark FMs
from 3 randomly selected test cases. The results highlight
the high similarity of the FM pattern between the pre-
dicted and benchmark FMs.

Evaluation of predicted plan quality

To illustrate the predicted plans’ dosimetric deviations
from the benchmark plans and the general trend of DL
predicted plan quality, we show in Figure 5 probability
density plots of the deviations measured in the 20 test
plans for each dosimetric endpoint. A plot with a nar-
rower peak, such as PTV25-33 Dmean and PTV25 V25Gy,
corresponds to smaller variation between the predicted
and benchmark plans. The predicted plans’ PTV33 and
OAR maximum doses are 1.03 Gy and 0.95 Gy higher
than those in the benchmark plans on average, while the
other dose metrics have relatively smaller deviations. The
mean deviation values are denoted on the plots as vertical
dashed lines. Bilateral kidneys and liver dose were all
well below protocol constraint for both plan groups.

The total monitor units (mean � standard deviation) of
the predicted plans (1480.3 � 182.0) and benchmark
plans (1529.4 � 235.6) are comparable, suggesting
similar FM complexity. The dice coefficients between the
25 Gy isodose line and PTV25 contour are 0.924 � 0.061
(benchmark) and 0.918 � 0.058 (predicted) (paired t test
P Z .08). The dice coefficients between the 33 Gy
isodose line and PTV33 contour are 0.902 � 0.051
(benchmark) and 0.876 � 0.050 (predicted) (paired t test
P < .01).

In the initial evaluation of predicted plans, the physi-
cian assigned 8 plans the grade of A; 5 grade B; 6 grade
C; and 1 grade D. An example case is shown in the
Supplementary Materials for each grade. After renorm-
alization, 19 out of 20 predicted plans were deemed
acceptable by the physician for clinical treatment, with the
overall grade point averages improved from 3.0 to 3.35.
Discussion

In this feasibility study, we investigated a DL frame-
work designed for pancreas IMRT planning with simul-
taneous boost targets. This framework transforms 3D
anatomic images to 2D FM, a process traditionally per-
formed by the time-consuming inverse optimization. We
split the problem into 2 independent tasks, each solved by
a deep neural network. The BD-CNN operates in the 3D
anatomy/dose space, whereas the FM-CNN operates in
the 2D beam’s eye view/fluence space. Combining the 2
networks, our framework can produce a deliverable plan
in 2 minutes, allowing fast plan generation without in-
verse optimization. This plan generation process is also
free from human intervention, which avoids inconsistency



Figure 4 Fluence map comparisons (left column, benchmark; center column, predicted; right column, difference [benchmark e
predicted]). The fluence map pairs were randomly selected from 3 of the 20 test cases. Each pair used the same color map. The predicted
fluence maps exhibited similar patterns as the benchmark fluence maps, especially in high fluence regions. (A color version of this figure
is available at https://doi.org/10.1016/j.adro.2021.100672.)
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in plan quality due to planner experience. With more
optimized code and higher computation power, the time
for data preprocessing and dose projection could be
reduced even more, offering the potential of real time
automated planning for clinical practice.

The dice coefficients suggest that both planning
methods can generate prescription isodose lines highly
conformal to PTV targets, with benchmark plans having
slightly better PTV33 conformity than predicted plans.
Although the overall PTV coverage and OAR sparing
have achieved clinical quality, dose in certain local areas
may be overlooked by the DL framework when
attempting to reduce the total error during model training.
This could have a significant effect on certain dose met-
rics such as the maximum point dose.

In this study, we focused on high-dose conformity (ie,
dose gradient) around the PTV, especially in the PTV-
OAR overlapping regions, with an L2-norm penalty
function designed in the BD-CNN. Hence, large dose
gradient variations are heavily penalized in model training
whereas maximum point dose variation in the PTV is not.
Such balance helps us achieve overall dosimetry quality
in the predicted plans. In addition, in the context of SBRT
planning, higher maximum dose within the PTV
(compared with standard IMRT/volumetric-modulated arc
therapy planning) is often acceptable, with high-precision
imaging guidance radiation therapy implemented for
those treatments. We acknowledge that there is room for
improvement to reduce hotspots, and it will be investi-
gated in future studies.

The structure of the BD-CNN model also restricts the
beam setting to a certain number of fixed beam angles (eg,
9 in this study). The predicted plans should have the same
beam settings as the training plans. Although this limi-
tation has a relatively smaller effect on pancreas SBRT
planning with its naturally central disease locations, the

https://doi.org/10.1016/j.adro.2021.100672


Figure 5 The probability density plots for dose metric deviations of predicted plans from benchmark plans. As all dose metrics are
relative values of dose or volume, the deviation values (X axis) are in percentage differences with the benchmark plans. The probability
density plots display the deviation distributions for all 20 test cases. All plots have the same scale in Y axis, which denotes the relative
likelihood of the deviation. For each dose metric, the mean deviation value is denoted by the dashed line. Abbreviations: OAR Z organ
at risk; PTV Z planning target volume.
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BD-CNN’s model architecture will require modification
for sites such as the lung, where variable beam angles are
essential.

This study is an important step toward automating FM
prediction and plan generation for pancreas SBRT treat-
ment planning. Translating this technique to clinical
deployment may require additional methods in place in
the future to further enhance the versatility of the tool in
tailoring the dose for a specific patient. Such areas may
include customizable hotspot volume, adjustable dose
gradient level to enhance or relax OAR dose, tradeoff
toggle between PTV coverage and OAR sparing, and so
forth. These additional steps would further enhance the
user experience when the tool is deployed clinically.
Conclusions

A novel DL framework was developed to directly
predict FMs, and it has demonstrated feasibility for
pancreas SIB-SBRT. The framework uses 2 CNNs to
perform BD prediction and FM prediction, which by-
passes the time-consuming inverse optimization process.
This approach enables rapid IMRT plan generation,
which provides a valuable tool for a high throughput
clinic.
Supplementary Materials

Supplementary material for this article can be found at
https://doi.org/10.1016/j.adro.2021.100672.
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