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Abstract

Background: Electrocardiography remains the best diagnostic tool and therapeutic biomarker for a spectrum of
pediatric diseases involving cardiac or autonomic nervous system defects. As genetic links to these disorders are
established and transgenic mouse models produced in efforts to understand and treat them, there is a surprising
lack of information on electrocardiograms (ECGs) and ECG abnormalities in neonate mice. This is likely due to the
trauma and anaesthesia required of many legacy approaches to ECG recording in mice, exacerbated by the fragility
of many mutant neonates. Here, we use a non-invasive system to characterize development of the heart rate and
electrocardiogram throughout the growth of conscious neonate FVB/N mice.

Results: We examine ECG waveforms as early as two days after birth. At this point males and females demonstrate
comparable heart rates that are 50% lower than adult mice. Neonatal mice exhibit very low heart rate variability.

preclinical mouse studies.

Within 12 days of birth PR, QRS and QTc interval durations are near adult values while heart rate continues to
increase until weaning. Upon weaning FVB/N females quickly develop slower heart rates than males, though PR
intervals are comparable between sexes until a later age. This suggests separate developmental events may
contribute to these gender differences in electrocardiography.

Conclusions: We provide insight with a new level of detail to the natural course of heart rate establishment in
neonate mice. ECG can now be conveniently and repeatedly used in neonatal mice. This should serve to be of
broad utility, facilitating further investigations into development of a diverse group of diseases and therapeutics in

Background

Congenital heart disease and autonomic nervous system
(ANS) dysfunction represent common and potentially
deadly problems in the pediatric clinic [1-3]. Electrocar-
diography (ECG) is the best diagnostic tool and biomar-
ker available for cardiac and ANS defects found in a
spectrum of pediatric disorders. Accordingly, newborns
and infants are routinely monitored via ECG and there
is a wealth of human data available. Through early
detection and intervention lives are now being extended
by early diagnosis and treatment of arrhythmia asso-
ciated diseases such as Holt-Oram syndrome, Lupus,
familial dysautonomia, and DiGeorge syndrome. Links
in ECG abnormalities are also being established to such
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previously mysterious diseases as sudden infant death
syndrome (SIDS) and sudden cardiac arrest [4-6].
Current techniques in molecular genetics allow us to
focus on the precise molecular basis for arrhythmias
and are revealing a wide array of causes. Channelopa-
thies [7,8], autonomic abnormalities, metabolic deficits,
myocardial defects [9,10], drug toxicity, autoimmune
disease, and neuromuscular disease [11,12] can all mani-
fest arrhythmia. Now that many of the genes associated
with such disorders have been identified, mouse models
are being produced to study the mutations that result in
them. Studies of Brugada syndrome, modelled in Scn5a
mutant mice, have been instrumental in understanding
channelopathies [13]. In neuromuscular disease mdx
mice reproduce cardiac complications and arrhythmias
found in Duchenne muscular dystrophy, including ANS
dysfunction [14,15]. Studies in the nmd mouse model
revealed a previously unobserved cardiomyopathy and
arrhythmia later uncovered in spinal muscular atrophy
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with respiratory distress (SMARD) patients with
extended survival [16]. Conduction defects such as ven-
tricular pre-excitation displayed in Wolff-Parkinson-
White syndrome are faithfully reproduced in PRKAG2
and Alk3 transgenic mice [17,18]. Finally, mutant mice
that reproduce AV block and congenital heart defects
were vital in elucidating a molecular pathway, encom-
passing Nkx2.5, Tbx5 and Id2, that is essential for devel-
opment of the cardiac conduction system and is
compromised in Holt-Oram syndrome [19-21].

In addition to elucidating the cause of ANS and cardio-
vascular disorders, transgenic mouse models are vital in
developing therapeutics for them [22-24]. Surprisingly,
there is little information on the development of ECG
patterns within such animal models. The reason for this
is likely due to the invasiveness, restraint, and/or surgery
associated with many previous methods for obtaining
ECG readings. Such methods may simultaneously inter-
fere with the heart rate itself or jeopardize the life of
groups of mice that are already very fragile [25-29]. Here,
we utilize a passive and non-invasive system to character-
ize the development of various ECG parameters in grow-
ing mice [30]. The passive nature eliminates interference
of anesthesia, drugs, and human handling on the heart
beat of fragile groups of mice still undergoing autonomic
maturation. It also allows for ECG acquisition in popula-
tions for which telemetry is not applicable due to age/
size limitations, and for which experimenters wish not to
sacrifice valuable mutant subjects for ex vivo analyses.
The application of an acclimation period, in addition to
the use of an externally heated warming stage to main-
tain nesting/body temperature, help to most closely
ensure resting physiological states. Our study and data in
a widely utilized inbred mouse strain should translate to
a broad range of studies involving cardiac disorders, com-
plications, and therapeutic efficacy in mouse models of
human pediatric diseases.

Results

We non-invasively recorded resting ECGs longitudinally in
EFVB/N neonates every two days from postnatal day (PND) 2
or 4 through PND14. We also recorded ECGs in young
mice on the days immediately preceding and following
weaning (weaning performed on PND21), then again at 4
weeks and 9 weeks of age. All mice were conscious, unse-
dated and unrestrained. Statistical analyses were performed
with the aim of analyzing the relationship of gender differ-
ences and age over the development of ECG waveform inter-
vals. Representative ECG tracings are depicted in Figure 1.

Differential development of ECG interval durations in
male and female mice

We detected no difference between sexes in heart rate at
any neonatal time point. Comparable heart rates were
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maintained through PND20 (females 798 + 12 bpm ver-
sus males 807 + 12 bpm). However immediately after
weaning, at PND22, heart rates became differentiated
between sexes (Figure 2A). The heart rate of females
showed a small decrease from PND20 to PND22, while
the heart rate of males continued to increase, with two
sexes reaching values of 791 + 31 bpm and 828 + 22
bpm, respectively (Figure 2A). This resulted in a strong
interaction effect (P < 0.001) between gender and age
over development. A significant gender difference was
absent in neonates but present in adult mice, with 739
+ 25 bpm in females and 804 + 47 bpm in males (P <
0.05, linear mixed model with the randomized intercept,
Bonferroni post-hoc corrected p-value)

An interaction effect between gender and age was not
observed over development for PR interval, QRS interval,
or QTc interval (Figures 2B-D). Strong effects of age
were detected on all ECG parameters (P < 0.0001), while
analysis of waveforms did not resolve a gender based dif-
ference over development for these three parameters.
Through four weeks of age, comparable values were
observed in females and males for PR intervals (23.3 +
1.1 ms and 22.6 + 1.3 ms, respectively), QRS intervals
(9.6 + 0.3 ms and 9.4 + 0.5 ms), and QTc intervals (42.6
+ 1.2 ms versus 41.3 + 1.9 ms) (Figures 2B-D). Isolated
analyses comparing male and female data at 9 weeks
however confirmed previously published results of gen-
der based differences in PR intervals of adult mice [31].
Females showed an elongation of PR interval compared
to males at this time point (24.4 + 0.8 ms versus 22.9 +
1.6 ms, P < 0.05, Student’s ¢-test). No differences were
observed between genders for QRS interval or QTc inter-
val, though QTc intervals did exhibit a trend of slightly
higher values in females, again in agreement with estab-
lished data. These data indicate that the slower heart rate
in young adult females at this age is not caused by differ-
ences in atrioventricular conduction or a delay between
atrial and ventricular depolarization events.

Development of ECG waveform intervals in neonate FVB/
N mice

Since no differences were observed in any parameter
between sexes prior to weaning, we pooled the data to
examine the development of ECG interval durations in
neonates (Table 1). Average heart rates were observed
to rise steadily in developing neonates at a rate of
approximately 25 bpm per day, from ~425 bpm at
PND2 to ~725 bpm on PND14. To determine the line-
arity of heart rate development during neonate ages, lin-
ear regression was performed on longitudinal data from
seventeen individual mice assayed at every neonatal time
point from PND2 to PND14. Individual neonates exhib-
ited linear heart rate development characterized by an
average slope of 22 + 4 bpm per day from with a mean
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Male, PND2
HR = 455 bpm
HRVar =1 ms
PR =416 ms
QRS =12.5ms

Female, PND2
HR = 455 bpm
HRVar =2 ms
PR =41.4 ms
QRS =11.8 ms

Male, 9 wks

HR = 812 bpm
HRVar = 8 ms
PR= 239 ms
QRS = 10.5ms

Female, 9 wks
HR = 756 bpm
HRVar = 25 ms
PR= 245 ms
QRS = 9.3 ms

waveforms are denoted by their individual letters. Scale Bar = 100 ms.

Figure 1 ECG recordings at neonate and adult time points. A) Tracing of representative ECG recordings from PND2 neonate FVB/N mice. All
graphs show some tremor of the isoelectric line due to the mouse being conscious and unrestrained. B) Tracing of representative adult mouse
ECG readings. Note the development of a slower adult heart rate in female (bottom) as compared to male (top) mice. P, Q, R, S, and T

R? of 0.85 + 0.11 (Figure 2A). Heart rates continued to
rise until PND20-22, where they reached peak values
before a slow decline through 9 weeks of age. Such a
slow decline was supportive of data from previous stu-
dies in aging mice [32].

To gain insight into the consistency of ECG record-
ings, a subset of 9 littermates were assayed 3-4 times
each at all neonatal time points (data not shown). We
found multiple recordings within individual mice to be
highly consistent, varying by approximately + 3% on
average. Higher variation was observed in comparing
the average recordings taken between littermates, which
was comparable to the variation of mean values between
different litters (both approximately + 6%).

PR intervals rapidly decreased in duration from 37.5 +
5.4 ms at PND4 to near adult levels of 24.3 + 1.5 ms at
PND14. The PR interval was precisely maintained, exhi-
biting consistent overlap between groups and low devia-
tion throughout development. Representing time of
ventricular depolarization, the QRS interval duration

also decreased rapidly and was precisely maintained in
the developing mouse. Conduction times reached their
minimal value of 8.9 + 0.8 ms by PND14, then levelled
with a slight increase as the mouse aged. QT corrected
for heart rate QT (QTc) showed similar developmental
trends in the growing mouse, with minimal values of
42.6 £ 2.1 ms present by PND14.

Heart rate variability in developing mice

We measured heart rate variability to query autonomic
nervous system modulation of heart rhythm. We found
heart rate variability to be lower in neonates than adults,
initially being very low at PND2-4 before rising with age
through 9 weeks (Figure 3A). A significant interaction
effect (P < 0.01) between sex and age was detected over
development. A consistent difference in heart rate varia-
bility was observed between sexes beginning at PND28.
This effect was significant by adulthood, with females
displaying higher variability than males (29.4 + 15.5 ms
versus 13.9 + 10.1 ms, P < 0.05).
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Figure 2 Development of ECG interval durations in maturing FVB/N neonates. Electrocardiograms were recorded for twenty mice assayed
longitudinally from PND4 to 9 weeks of age. A) Heart rate of male and female mice throughout development. A strong interaction effect (P <
0.001) between age and sex is present during development. (*P < 0.05, linear mixed model, n = 8 females and 12 males). Arrow denotes point
at which mice were weaned. Inset in (A) illustrates the linear nature of heart rate development in young neonates, with best fit linear regression
of combined male and female heart rate data from seventeen neonates collected longitudinally every day from PND2 to PND14. The average
slope of individuals is 22 + 4 bpm per day, with R* = 0.85 + 0.11. B) PR interval during development. No interaction effect is present over
development, however isolated analysis of the 9 week time point confirms a sex based difference is present in adults. (*P < 0.05, student’s t-test)
Q) QRS interval, and D) corrected QT interval (QTc) are presented as mean + SEM, with no significant differences or interaction effects present.

To examine a time domain statistic of heart rate varia- ms commonly used in human clinical studies [31,33].
bility, we determined the percentage of adjacent cardiac ~ We found all data points from PND14 onward displayed
interbeat intervals that differed by greater than 6 ms a value of less than 10%, with most less than 5%. These
(pPNN6) for each of the different time points assayed values are comparable to those found in adult humans
(Figure 3B). In adult mice, this threshold value of 6 ms in recent studies [34,35]. As with heart rate and heart
has been established as proportional to the value of 50 rate variability, a strong interaction effect was present
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Table 1 ECG indices in developing neonatal mice
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Parameter PND2 PND4 PND6 PND8 PND10 PND12 PND14
n= 17 20 20 20 20 20 20

HR (bpm) 424 + 62 475 £ 59 525 £ 69 583 + 46 594 = 74 666 + 25 713 £ 35

HRVar (ms) 32+26 42+ 43 124 £ 144 113 £105 165 £ 13.6 199 £ 105 180 + 129
PR (ms) 453 +£79 375+58 319 £ 45 278 £ 24 283 £ 57 25313 243 £15
QRS (ms) 14.7 £ 4.1 13.1 £ 30 11.9+£19 104 £ 12 103 £12 98 £ 1.1 89+ 08
QTc (ms) 580 £ 56 545+ 47 512 +45 455 + 37 458 £ 4.7 438 £ 2.7 426 £ 2.1

pNN6 (ms) 04+12 30+ 117 16.3 = 30.0 80+ 172 13.7 £ 23.1 73+114 31+72

Heart rate (HR), heart rate variability (HRVar), PR interval, QRS interval, corrected QT interval (QTc), and percentage of adjacent intervals differing by greater than

6 ms (pNN6) are provided. Values are expressed as mean + SD.

between gender and age (P < 0.01). A significant differ-
ence in pNN6 between mice of opposite sexes was
observed at week 9, with adult females displaying a
higher percentage of intervals exceeding the 6 ms
threshold value than males (P < 0.05, logistical regres-
sion with repeated measurement). A difference was also
observed at PND10, however this was not viewed as a
true phenomenon due to the value here being near zero
for females and this being inconsistent with pooled mice
in a replication experiment (data not shown). Before
PND14 higher percentages and an erratic pattern was
observed. Note, this coincides with slower heart rates
and thus larger RR intervals, as well as with some incon-
sistency in general heart rate variability. Together, these
data suggest that pNNx may either require larger
threshold values at younger neonate ages or there may
be some instability in autonomic control of the heart
during mid-neonatal ages. Addressing this first possibi-
lity, we re-analyzed the same ECG data using a larger
threshold (12 ms). Values obtained for this pNN12 sta-
tistic in neonates were indeed more comparable to adult
pNNG6 values (Figure 3C).

Discussion

We describe the development of resting heart rate, heart
rate variability, and electrocardiographic parameters in
conscious FVB/N mice, a commonly used research
mouse strain, from day 2 of life to adulthood. We
record ECG non-invasively without anaesthetic or
restraint. Our methods potentiate similar studies in
diverse disease models that are typically fragile and sen-
sitive to anaesthetic or the stress associated with other
methods of ECG recording, such as pin electrodes or
surgical implantation of radio transmitters. The
approach described and data reported should be useful
to other investigators in designing and implementing
studies that investigate the development of tachy- and
brady-arrhythmias, heart block, conduction deficits, and
modulation of heart rate by the autonomic nervous sys-
tem in mouse models of human disease.

Neonate ECG intervals

During neonatal development, we find heart rate
increases linearly from PND2 through PND14. This
high degree of homogeneity in heart rate data and linear
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Figure 3 Heart rate variability in developing mice. A) Heart rate variability during development. (*P < 0.05, linear mixed model). B) pNN6
throughout development (*P < 0.05, logistic regression model). C) pNN12 displays the effect of altering the threshold in (B). Values are
presented here as mean + SEM. An interaction effect (P < 0.01) between sex and age is present in both A and B. Arrow denotes point at which
mice were weaned.
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temporal increase could facilitate identification of tachy-
and brady-arrhythmias in mice with cardiac rhythm
disturbances. Differences in slope or deviation from
baseline could provide insight into the onset and
progression of these arrhythmias.

Once reaching peak heart rates just at weaning, we
observe a gradual decline in heart rate as animals age.
Other ECG interval durations, such as PR interval, show
slight prolongation with age as well. This is in agree-
ment with previous aging studies in older groups of
mice and together with the strong effects of age on
ECG waveform intervals in developing mice (P <
0.0001) highlights the importance of age-matched con-
trol data [32].

The PR interval duration, reflecting time between
atrial and ventricular depolarization, is an important
indicator of heart block and cardiac conduction
abnormalities. We show that PR intervals mature more
quickly than heart rates do and are consistently and pre-
cisely regulated during development. This phenomenon
could enable the sensitive detection of heart block
throughout development, to add insight into the devel-
opment of atrioventricular pathology in disease models.

The QRS interval duration (ventricular conduction)
and rate corrected QT interval (repolarization) mature
fairly rapidly and did not exhibit a significant sex differ-
ence at any point, though QTc did show a slight trend
of higher values in females. These characteristics could
enable detection of metabolic or respiratory deficiencies
and possible drug toxicity independent of gender at any
time point via alterations in ventricular conduction or
repolarization.

Onset of gender differences

Gender differences in heart rate and the ECG in FVB/N
mice do not appear until weaning. Neonate mice may
therefore be reliably and repeatedly assayed for ECG
abnormalities without having to separate groups by sex.
Upon weaning, females quickly develop a slower average
heart rate than males, establishing a strong interaction
effect between sex and age over development of mice.
This does not appear to be caused by elongation of PR
interval because no interaction effect or significant elon-
gation is present at this time. Possible explanations for
slower heart rate include a discrepancy in stress
response to being separated from their dam, adjustment
to an entirely dry-food diet, or hormonal changes taking
place as mice approach sexual maturity [36].

Eventually, females develop elongated PR intervals. As
in previous reports, we detect this elongation of PR
interval relative to males at 9 weeks of age [30,31].
However, we find precisely maintained PR intervals with
no sex difference present through PND28. This suggests
developmental changes to cardiac conduction are still
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taking place between the ages of 4 and 9 weeks, and
that the differentiation of heart rate and PR represent
separate developmental events. Possible physiological
roots for these differences include further myocardial
changes, which are observed in continued atrioventricu-
lar valve and extracellular matrix development at 5
weeks of age [37], or hormonal shifts as mice reach sex-
ual maturity manifesting in differential autonomic regu-
lation [36].

Measures of heart rate variability

Measures of variability in heart rate have demonstrated
utility as indicators of impaired autonomic function and
as signals predictive of adverse cardiac events [35,38-40].
We find heart rate variability to be lower in neonates
than in adult mice, with values in young neonates
(PND2-4) particularly low. This has been previously
noted and found to be consistent in larger mammalian
models and humans as well [41-44]. Variability may
prove to be a useful parameter in studies of models
associated with SIDS, in which a majority of sudden
death can occur by PND5.

The pNN6 time domain statistic appears to be stable
and useful from approximately PND12 onward. Before
this, naturally larger RR intervals may necessitate the
use of a threshold value of greater than 6 ms in order to
obtain physiologically relevant insight in the neonate
mouse. Results obtained for pNN12 measurements sup-
port this. Alternatively, there may be some instability in
autonomic control of the heart at some neonate ages
that could interfere with consistency in variability para-
meters. Supporting this alternative explanation, data
from neonate rats indicates that autonomic neurotrans-
mission continues to develop in the heart from PND4-
15 [45], and that pharmacological modulation of the
autonomic nervous system has altered/reduced effects in
early neonates [46]. In adult mice, we observed pNN6
values to be consistent with control groups of humans
in clinical studies [34,35]. Together, these demonstrate
that variability parameters can be applied to mice of
varying ages in studies of disorders such as sudden
infant death syndrome (SIDS), sudden cardiac arrest,
atrial fibrillation, aneurysm, congestive heart failure and
sustained ventricular tachycardia.

Utility and future study design

Resting heart rate, PR interval, QRS and heart rate
variability can be assayed consistently through a non-
invasive method in neonate mice as early as PND2. Dur-
ing neonatal stages we are often but not always able to
resolve developmental differences in ECG parameters at
two day intervals. For efficiency of experiments, surveys
of four-day intervals showed highly significant differ-
ences and may be preferable in detecting changes over
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time where mouse models and experimental design
allow. Practically, we found that an acclimation period
was necessary to obtain stable readings. Once they accli-
mate, individual mice display consistent values within
each time point. Variation between littermates was
higher than within individuals and was observed to be
comparable to that between separate litters. With rapid
developmental changes and slow elongation of several
parameters during aging at adult time points, we recom-
mend including age-matched littermate controls when-
ever possible. Sex-matching of sample groups appears to
be unnecessary in studies focusing either on pre-weaned
mice or on parameters such as QRS and QTc, which
never display a difference between males and females.

Conclusions

Despite widespread clinical use of ECG in monitoring
arrhythmias, little information exists on the establish-
ment of ECG patterns and abnormalities in mouse mod-
els of disease. We have used a non-invasive system to
characterize the development of ECG patterns in con-
scious FVB/N neonate mice. We confirm sex-based dif-
ferences in heart rate and PR interval of adult mice
while establishing when they differentiate, at two differ-
ent points in development. Trends found here demon-
strate the utility of examined parameters in various
postnatal stages of mouse development and establish
baseline data against which to detect the presence of
arrhythmias of varying types and indications. Together,
this information should be of broad utility in the design
and implementation of studies in a wide variety of
human disease models.

Methods

Animal maintenance

Wild type FVB/N mice were purchased from The Jack-
son Laboratories. All animals were maintained in a con-
trolled animal facility at 20°C and 50% humidity, with a
photoperiod of 12 h light/12 h dark where they were
monitored daily for health as described previously [47].
Mice were fed ad libitum for water and food on a Har-
lan 6% crude fat diet. All maintenance and procedures
were approved and performed in accordance with the
Children’s Memorial Research Center’s Institutional
Animal Care and Use Committee regulations.

Electrocardiography

ECGs were recorded non-invasively in conscious mice
using the ECGenie system (Mouse Specifics) as detailed
previously by Chu et al [30]. Recordings were initially
performed every two days from PND4 through PND14.
After initial assays, we found consistent readings were
obtainable as early as PND2. Neonate mice were placed
inside of a temperature-controlled heated cup positioned

Page 7 of 9

on the ECG platform set to maintain a temperature of
30°C. Body temperatures were measured on a subset of
mice using an infrared thermometer to verify consis-
tency before and after taking ECG readings. For weanl-
ing and adult time points, readings were obtained on
the days before (PND20) and after (PND22) weaning, as
well as at PND28 and week nine. Briefly, mice were
placed on a small platform instrumented with ECG
recording electrodes. All mice were allowed to acclimate
for ~10 minutes. After the acclimation period, ECG sig-
nals were recorded for ~5 seconds while the mice pas-
sively established contact between the underside of their
paws and the electrodes.

Data acquisition was carried out longitudinally over
development using the program LabChart 6 (ADInstru-
ments). Analysis of individual ECG signals was then per-
formed using e-MOUSE physiologic waveform analysis
software (Mouse Specifics, Inc.) [30]. In this system, ECG
recordings were filtered/assessed by the user before being
analyzed by automated algorithms. Signals which were
determined to contain too much noise or incorrectly
called waveforms could be trimmed or removed and
replaced with another reading taken from the same mouse
on the same day. Once trained and when screening data
quality simultaneously to data acquisition, users were cap-
able of successfully acquiring usable data from all mice
barring outside events that interfered with the resting phy-
siological state of mice. Readings obtained from mice
noted to experience a trauma which may interfere with
resting heart rate (i.e. death, cage flooding, bleeding/bite
marks from fighting) were excluded from analysis or
absent from acquisition. Readings for all time points from
such mice were removed from the experiments here for
both presentation of data and statistical analyses, and used
instead to provide a mixed pool reference to support find-
ings from the primary longitudinal experiment. In total, at
least thirty mice were assayed for each time point. All data
was obtained during daylight hours, at which point the
mouse heart rate is stable before increasing during the
more active evening/night hours.

In evaluating waveforms and intervals, the end of the
T wave was determined as the return of the signal to
the isoelectric line as previously described [30]. QTc
was calculated according to Bazett’s formula modified
specifically for mice, as reported by Mitchell et al [28]:
QTc = QT, /[(RRy/100)""?]. HRVar represents the stan-
dard deviation of RR intervals. pNNx values are the per-
centage of adjacent RR intervals that differ in duration
by greater than the threshold value of “x” ms. For exam-
ple, pNNG6 is defined as the percentage of adjacent RR
intervals that display a difference exceeding 6 ms, where
the threshold 6 ms was chosen because pNN6 has been
previously identified in mice to correlate to the clinically
important value of pNN50 [33].
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Statistical analyses

Data are presented as mean = SD unless otherwise
noted. All statistical analyses were performed on twenty
mice chosen randomly at birth (8 females, 12 males)
and assayed longitudinally at all time points. A linear
mixed model with the random intercept was applied to
analyze the relationship of gender and age effects on
heart rate, PR interval, QRS interval, QTc interval, and
heart rate variability throughout development. A logistic
regression model with repeated measurement was
applied to analyze pNNG6 at different ages between male
and female groups. P-values for pair-wise comparisons
were adjusted using the Bonferronni method. The analy-
sis was conducted using SAS 9.2. Differences were con-
sidered significant when P < 0.05.
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