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ABSTRACT 33 

Drug resistance is the major cause of therapeutic failure in high-grade serous ovarian cancer 34 

(HGSOC). Yet, the mechanisms by which tumors evolve to drug resistant states remains largely 35 

unknown. To address this, we aimed to exploit clone-specific genomic structural variations by 36 

combining scaled single-cell whole genome sequencing with longitudinally collected cell-free DNA 37 

(cfDNA), enabling clonal tracking before, during and after treatment. We developed a cfDNA hybrid 38 

capture, deep sequencing approach based on leveraging clone-specific structural variants as 39 

endogenous barcodes, with orders of magnitude lower error rates than single nucleotide variants 40 

in ctDNA (circulating tumor DNA) detection, demonstrated on 19 patients at baseline. We then 41 

applied this to monitor and model clonal evolution over several years in ten HGSOC patients treated 42 

with systemic therapy from diagnosis through recurrence. We found drug resistance to be 43 

polyclonal in most cases, but frequently dominated by a single high-fitness and expanding clone, 44 

reducing clonal diversity in the relapsed disease state in most patients. Drug-resistant clones 45 

frequently displayed notable genomic features, including high-level amplifications of oncogenes 46 

such as CCNE1, RAB25, NOTCH3, and ERBB2. Using a population genetics Wright-Fisher model, 47 

we found evolutionary trajectories of these features were consistent with drug-induced positive 48 

selection. In select cases, these alterations impacted selection of secondary lines of therapy with 49 

positive patient outcomes. For cases with matched single-cell RNA sequencing data, pre-existing 50 

and genomically encoded phenotypic states such as upregulation of EMT and VEGF were linked 51 

to drug resistance. Together, our findings indicate that drug resistant states in HGSOC pre-exist at 52 

diagnosis and lead to dramatic clonal expansions that alter clonal composition at the time of 53 

relapse. We suggest that combining tumor single cell sequencing with cfDNA enables clonal 54 

tracking in patients and harbors potential for evolution-informed adaptive treatment decisions.  55 
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INTRODUCTION 56 

For women diagnosed with advanced high-grade serous ovarian cancer (HGSOC), the prognosis 57 

is poor; only 17% will remain long-term disease free1 after upfront treatment with platinum-based 58 

chemotherapy. Based on the high relative mortality to incidence rate, ovarian cancer ranks as the 59 

sixth most lethal malignancy affecting women2. Its lethality has been attributed largely to advanced 60 

stage at diagnosis, due in part to the absence of effective screening for early-stage disease. Front-61 

line treatment includes surgical resection and combination platinum-taxane chemotherapy, which 62 

are initially effective. Nevertheless, most patients will experience recurrence and ultimately die from 63 

the disease. Treatment failure in cancer patients is often driven by cancer evolution, owing to 64 

selection and expansion of subsets of cells that acquire drug resistant phenotypes3. We posit that 65 

real-time tracking of cancer evolution in patients has the potential to steer clinical decisions, 66 

optimize treatment approaches and discover drivers of drug resistance. Indeed, next generation 67 

clinical trial designs are being proposed to investigate how to optimally overcome drug resistance 68 

driven by cancer evolution4. However, the methods required to monitor evolutionary dynamics in 69 

the clinical context are currently lacking. Serial tumor sampling for genomic profiling from multiple 70 

time points is often impractical or contra-indicated, making tissue-based longitudinal studies both 71 

logistically and clinically challenging. Meanwhile, powerful techniques like cellular barcoding 72 

provide insights in model systems5–7 but cannot be applied in patients. Non-invasive serial imaging 73 

and blood-derived biomarkers provide other sources of longitudinal information, but these lack 74 

tumor cell-intrinsic molecular measures needed to capture the intra-tumor heterogeneity for 75 

monitoring evolutionary dynamics. Recent advances in cell-free DNA (cfDNA) profiling to detect 76 

tumor-derived DNA from routinely collected blood samples has changed the field of non-invasive 77 

molecular diagnostics for cancer patients8–10. Here, we demonstrate that tracking evolutionary 78 

dynamics in cfDNA from HGSOC diagnosis to recurrence can be implemented in patients as a 79 

powerful evolution-centred tool to study the molecular determinants of drug resistant relapsed 80 

disease in vivo. 81 

 82 

Using cfDNA to study cancer evolution in patients is a relatively nascent field11,12. The main 83 

objective is to first identify clonal populations, and subsequently use their clone-specific genotypes 84 
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as endogenous markers to estimate the relative tumor fraction of each clone in cfDNA over time. 85 

Here, we contend that tumor tissue sequencing as the basis of identification of clonal populations 86 

which can then be tracked over time by sequencing serially collected cfDNA samples is a route to 87 

precisely monitor disease evolution. In contrast to  clonal decomposition from bulk sequencing, 88 

which is imprecise13 especially when tumor content and/or sequence coverage is low, single cell 89 

whole genome sequencing (scWGS) approaches have shown great promise in unambiguously 90 

resolving clonal composition14,15. In particular, shallow whole genome sequencing technologies 91 

provide reliable readouts of clonal composition16–18, especially in cancer types such as HGSOC 92 

characterized by genomic instability17,18, even resolving clones to approximately 1% prevalence19–93 

21. Furthermore, by combining clonally related cells into pseudobulk, point mutations and structural 94 

variant breakpoints can be identified, providing clone-specific genomic features at base-pair 95 

resolution17,18 which can serve as endogenous barcodes for tracking clonal abundance over time. 96 

 97 

Here we show that scWGS on tumor tissue combined with cfDNA clonal tracking is a powerful 98 

approach to reveal insights into drug resistance. Our results indicate that i) clonal tracking exploiting 99 

clonal structural variations is tractable for monitoring HGSOC disease evolution in patients; ii) drug 100 

resistance at relapse is consistent with clonal pruning and reduced clonal diversity; iii) positive 101 

selection operates in the majority of patients leading to near clonal sweeps of high fitness clones; 102 

iv) positively selected clones harbor clone-specific high level amplifications of oncogenes including 103 

ERBB2, RAB25, CCNE1, NOTCH3 and a BRCA1 reversion mutation. Together, these results 104 

establish single cell-informed clonal tracking in cfDNA as a powerful approach to measuring and 105 

modeling the evolutionary dynamics of relapsed disease in HGSOC, and implicate rare, but pre-106 

existing clones with oncogene amplifications as a putative pre-adapted reservoir of drug resistant 107 

cellular populations.  108 

 109 

 110 

 111 

 112 

RESULTS 113 
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Cohort and data generation 114 

We carried out a multi-modal prospective study as part of the MSK SPECTRUM cohort22,23, 115 

involving 19 newly diagnosed, treatment-naive patients with FIGO stage III/IV HGSOC, with 116 

diagnosis verified through clinicopathological review. Patients were followed over a period of up to 117 

5 years and plasma cfDNA was collected during treatment and at the time of radiologic disease 118 

recurrence. All 19 patients had cfDNA collected at or close to the time of first debulking surgery or 119 

laparoscopic biopsy (baseline), and a subset (n=10) had radiographically confirmed disease 120 

recurrence along with cfDNA collections post-recurrence and during therapy 121 

(Supplementary Figure 1). At the time of tissue collection, fresh tissue samples were collected 122 

from multiple disease sites from primary debulking surgeries for patients receiving adjuvant 123 

chemotherapy and from laparoscopic biopsies taken at diagnosis for patients undergoing 124 

neoadjuvant chemotherapy. Tissues were processed for scWGS with the DLP+ protocol17. See 125 

Supplementary Figure 1 for clinical details, treatment history and sample collections for all 19 126 

patients.  127 

 128 

Clone-specific mutations and structural variations in scWGS 129 

From the 19 patients included in this study we generated scWGS data from 19,454 cells (range 130 

200-2015 cells per patient, Supplementary Figure 2) with mean coverage of 0.089X (range 0.002-131 

0.392X per cell, Supplementary Figure 2). We inferred the clonal composition at the time of 132 

diagnosis based on copy number data (Methods), with the aim of following these clones over time 133 

as patients received chemotherapy, maintenance therapies and experienced disease recurrences 134 

using cfDNA (Supplementary Figure 3). 135 

 136 

To follow clones over time in cfDNA we identified clone-specific markers, structural variants(SVs) 137 

and single nucleotide variants(SNVs) in each patient. Due to the sparse coverage in scWGS data, 138 

the presence/absence of SNVs and SVs cannot be determined in every cell. We therefore 139 

developed a combination of pseudo-bulk mutation calling and single-cell copy number 140 

phylogenetics to confidently identify clone-specific mutations that could be profiled in cfDNA, 141 

focusing primarily on SVs resulting from genomic rearrangements. As SVs are a hallmark of 142 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 23, 2024. ; https://doi.org/10.1101/2024.08.21.609031doi: bioRxiv preprint 

https://paperpile.com/c/qiGzF0/PnwO+3wBo
https://paperpile.com/c/qiGzF0/By5B
https://doi.org/10.1101/2024.08.21.609031
http://creativecommons.org/licenses/by-nc-nd/4.0/


HGSOC genomes, we reasoned they would provide a highly specific readout in cfDNA due to their 143 

unique sequence composition, where breakends juxtapose sequence from distal chromosomal loci. 144 

As a result, these unique sequences should be largely immune to sequencing error and other 145 

causes of false positive detection in cfDNA. 146 

 147 

To begin identifying clone-specific SVs, we first constructed single-cell phylogenies with MEDICC224 148 

using allele-specific copy number alterations as input (500kb resolution, see Fig. 1a for patient 149 

004). Clones were defined based on divergent clades from the single-cell phylogenetic trees 150 

(Methods). We then merged cells from each clone and re-computed copy number at 10kb 151 

resolution using a new Hidden Markov Model (HMM) based copy number caller, HMMclone 152 

(Methods). HMMclone improves the resolution of pseudobulk clone copy number profiles and 153 

enables more precise matching between copy number and SVs (Supplementary Figure 4). SVs 154 

and SNVs were identified in sample-level ‘pseudobulk’ data and genotyped in single-cells 155 

(Methods). Although only a small proportion of cells (<5%) have reads that support a mutation or 156 

SV of interest, we tested whether the distribution of the subset of cells positive for a mutation across 157 

clones in the tree could inform mutation clonality. For example, a truncal missense TP53 mutation 158 

and a truncal 1.03Mb deletion in 004 distributed uniformly across the tree and were present across 159 

all clones (Fig. 1b,c). Cells with support for subclonal clone-specific mutations on the other hand – 160 

in this case 2 SNVs and 2 duplications – distributed non-randomly in a clone-specific manner 161 

(Fig. 1b,c). This ‘parsimony’ principle extended to more complex events, for example a 162 

chromothriptic-like chr8 in this patient. Clone-specific pseudobulk copy number at 10kb resolution 163 

showed that the chromothripsis, although sharing some common features, is divergent between 164 

clone A and clone B (Fig. 1d), providing a rich source of SVs that are clone-specific. 165 

  166 

Structural variants as highly specific markers of tumor DNA in cfDNA 167 

With clone-specific SVs identified, we then determined the utility of SVs as markers of tumor DNA 168 

in plasma, and compared their quality and robustness relative to SNVs that have been the focus of 169 
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most cfDNA assays, including commercial ones. For each patient, we constructed a panel of 170 

mutations comprising a mix of clonal and subclonal somatic SNVs/SVs (≥100 SVs per patient, 171 

Supplementary Figure 2) and a small number of germline single nucleotide polymorphisms 172 

(SNPs)  for QC purposes. We designed patient-bespoke hybrid capture probes with 60bp flanking 173 

sequence on either side of the breakpoint or point mutation, and incorporated these probes into a 174 

cfDNA duplex error-corrected sequencing assay25 (mean raw coverage 13,531X; mean consensus 175 

duplex coverage 970X, Fig. 2a). To estimate baseline accuracy, we first applied the assay to cfDNA 176 

plasma samples taken at or close to the time of tissue collection, assuming tumor burden and thus 177 

tumor-derived cfDNA yield would be high. For benchmarking purposes, we characterized the 178 

sensitivity and error profiles of truncal mutations that were also detected in matched bulk whole 179 

genome sequencing data. For example, reads supporting a truncal translocation between chr8 and 180 

chr19 in patient 107, were easily identified as they aligned across the breakpoint in cfDNA, single 181 

cells and bulk tumor whole genome sequencing (Fig. 2a). Across all 17 pre-operative baseline 182 

cfDNA samples with sufficient SNVs for comparison, ctDNA with SNVs and SVs were detected and 183 

VAF distributions derived from the error corrected sequences were concordant between SNVs and 184 

SVs (Fig. 2b). 185 

 186 

To compute background error rates, patient-specific hybrid capture probe sets were applied to the 187 

‘on-target’ patient as well as at least one other ‘off-target’ patient (Fig 2c), where we expect no 188 

detection. Background error rates were defined as the total number of off-target variant supporting 189 

reads divided by the total number of reference reads per patient. Error rates were computed for 190 

duplex sequences (collapsing reads from both strands of the initial cfDNA molecule), simplex 191 

sequences (one strand) and the raw uncorrected sequences. Background error rates were 192 

negligible for SVs; we observed no errors in duplex or simplex sequences (Fig. 2d). In the 193 

uncorrected sequences we observed read support for a single event from one patient (Fig. 2d). 194 

Compared to SNVs whose error rates increased in simplex and uncorrected sequences relative to 195 

duplex sequences as expected, error rates for SVs were orders of magnitude lower and were 196 

negligible even in uncorrected sequencing (Fig. 2d,e, p<10-10, t-test).  Using this data we defined 197 
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the limit of detection (LOD) as 2X the largest observed patient error rate (Fig. 2d). Given that we 198 

observed no errors for duplex or simplex sequences, we determined the upper bound for the LOD 199 

to be ~10-7 (inverse of the total number of reference supporting reads). The mean VAF of SVs was 200 

correlated with tumor fraction (R=0.98, p<10-10, pearson correlation) calculated from TP53 mutation 201 

VAF measurements, assumed to be truncal in all HGSOC patients26 (Fig. 2f). Together, these data 202 

demonstrate that SVs can be readily detected in plasma cfDNA, have a lower background error 203 

rate compared to SNVs and can be used to estimate tumor fractions. 204 

 205 

Detecting clone-specific SVs in cfDNA 206 

We next tested whether clone-specific SVs can be detected in plasma cfDNA. Clone-specific SVs 207 

inferred by scWGS analysis were present in all patients with at least 200 cells (18 patients, average 208 

n=144, range 29-361 Supplementary Figure 2). We found that numerous mutational processes 209 

such as chromothripsis27 (e.g. patient 083, Fig. 3a), breakage fusion bridge28-induced focal 210 

amplifications (patient 045, Fig. 3b), pyrgo-like tandem duplication “towers”29 (consequence of 211 

CDK12 mutant tandem duplication phenotype; patient 081, Fig. 3c) and complex intra-212 

chromosomal30 events (patient 002, Fig. 3d) contributed to clone-clone differences in SVs. Clone-213 

specific SVs were co-located with copy number changes as expected (Fig. 3a-d). Using the probe 214 

designs as described above, clone-specific SVs were detected in all baseline plasma cfDNA 215 

samples (Fig. 3a-d), even in samples with tumor DNA fractions <1% (Fig. 3e,f) and VAFs of 216 

subclonal variants were lower relative to clonal variants as expected (p < 0.001 in 16/18 patients, 217 

n.s. in 2/18, t-test, Fig. 3f), supporting the clonal structure found in the tissues. These results 218 

therefore establish that scWGS enables accurate assignment of SVs to clones, that SVs are 219 

sensitive markers of tumor DNA and that clone-specific SVs can be detected in low tumor fraction 220 

plasma. 221 

 222 

Clonal evolution of drug resistance in patients 223 

We next evaluated whether our approach could be used for longitudinal monitoring of tumor 224 

evolution during treatment and disease recurrence. From our patient cohort, we studied 10 patients 225 

with radiographically confirmed disease recurrence and profiled all available post-baseline and 226 
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post-recurrence cfDNA plasma samples with our patient-specific assay (mean 7.8 timepoints per 227 

patient, range 3-13). See Supplementary Figure 5 for the scWGS data for these 10 patients. For 228 

all patients, ctDNA VAF of truncal SVs decreased during initial chemotherapy, as patients 229 

responded to therapy with decreased burden and decreased serum CA-125 levels (Fig. 4 & 230 

Supplementary Figure 6). All patients were positive for ctDNA at the time point closest to first 231 

recurrence (defined as average VAF across the panel exceeding LOD (Fig. 4 & 232 

Supplementary Figure 6)). In 6 patients with sufficient plasma samples, ctDNA was detected prior 233 

to clinically confirmed disease recurrence but subsequent to completion of initial chemotherapy: 234 

002 (76 days), 004 (26 days), 009 (184 days), 045 (109 days), 075 (233 days), 081 (314 days) 235 

(Fig. 4 & Supplementary Figure 6). We note that not all of these patients achieved ctDNA 236 

clearance (045, 075, 081), which may in part be due to insufficient cfDNA sampling at completion 237 

of first-line chemotherapy. 238 

 239 

We then measured how the abundance of specific clones changed over time as patients received 240 

treatment. Clone abundances at each time point were estimated by averaging the VAF across all 241 

structural variants assigned to a clone. Firstly, to validate the accuracy of inferred clone frequencies 242 

we performed WGS of plasma at 20X coverage from 6 samples (1 baseline and 1 recurrence 243 

sample from 3 patients: 045, 081 and 107). Copy number profiles from these data were consistent 244 

with predictions derived from scWGS derived copy number profiles and ctDNA clone frequencies 245 

(Supplementary Figure 7a-c). Notably, clone-specific amplifications, which provide the strongest 246 

signals in such low tumor fraction sequencing data, were consistent with the inferred dominant 247 

clone at baseline and recurrence. In patient 045, the CCNE1 locus (chr19q) was enriched at 248 

baseline, and RAB25 (chr1q) at recurrence (Supplementary Figure 7d), while in patient 107, 249 

CCNE1 and a region on chr20q were enriched at recurrence as expected (Supplementary Figure 250 

7e). As further validation, we computed clonal frequencies across time using SNVs for patients with 251 

sufficient clone-specific SNVs (minimum of 4 per clone) and compared them to the clone 252 

frequencies estimated using SVs. Clone frequencies across time for patient 045 showed highly 253 

similar patterns for SVs (Supplementary Figure 7f) and SNVs (Supplementary Figure 7g) and 254 
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were consistent using these two distinct sets of genomic features for all patients 255 

(Supplementary Figure 7h, R=0.93, p<10-10, Pearson correlation). 256 

 257 

Having confirmed the accuracy of our inferred clonal trajectories we then aligned clone frequencies 258 

to treatment histories and other clinical biomarkers such as serum CA-125 levels enabling us to 259 

precisely describe clonal evolution in the context of therapy and disease recurrence. In patient 044, 260 

2 major clones were present at the time of diagnosis (clone B and clone E, Fig. 4a). From the 261 

scWGS data we noted that clone B had an ERBB2 high-level amplification (~30 copies) that was 262 

absent in clone E (Fig. 4b,c). The patient responded to upfront chemotherapy and achieved ctDNA 263 

clearance at day 156 along with a notable drop in CA-125 level. Reduction in disease burden due 264 

to upfront chemotherapy can be seen from radiology images of the same disease sites at day 0 vs 265 

day 84 (Fig. 4d). The patient then experienced disease recurrence at day 449 and received second 266 

line chemotherapy. Post-recurrence cfDNA samples during the second line of chemotherapy only 267 

detected clone B (ERBB2 amplified), and the patient had minimal response to this second line as 268 

evidenced by high levels of ctDNA detected and persistently elevated CA-125 (Fig. 4a). These 269 

dynamics could be captured by following a single translocation between chromosomes 2 and 17 270 

that was associated with the ERBB2 amplification (Fig. 4c). Subsequently, following a second 271 

disease recurrence at day 730, the patient was treated with trastuzumab deruxtecan, an antibody-272 

drug conjugate that targets HER2 (ERBB2). She achieved a complete radiologic response and 273 

remains disease free nearly three years after starting therapy. Of note, she was eligible for 274 

treatment with trastuzumab deruxtecan on a clinical trial based on clinical tumor-normal MSK-275 

IMPACT31 targeted sequencing performed on tissue at the time of diagnosis. As MSK-IMPACT is 276 

a bulk assay it would not have identified that there was a clone that lacked the ERBB2 amplification 277 

as was possible with scWGS. The clonal tracking data indicates that front-line therapy eradicated 278 

the ERBB2-WT clone, leaving the dominant trastuzumab deruxtecan-susceptible ERBB2-Amp 279 

clone present at recurrence, thus resulting in an exceptional and durable response. 280 

 281 

In patient 009, all 5 clones identified in scWGS were detected in cfDNA at diagnosis. The patient 282 

experienced a good response to chemotherapy and achieved ctDNA clearance accompanied by a 283 
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drop in CA-125 levels by day 125 (Fig. 4e). The patient had a germline BRCA1 mutation and 284 

received standard of care PARP inhibitor (PARPi) maintenance after completion of chemotherapy, 285 

and remained disease free for almost 3 years. ctDNA was detected 184 days prior to clinical 286 

recurrence by CT at day 1146. Post recurrence, the only detectable clone was clone F. We 287 

identified a putative BRCA1 reversion mutation in post recurrence cfDNA samples; a 1.37kb 288 

deletion that excises the beginning of exon 10 (including the germline pathogenic mutation) and 289 

the intronic region between exons 9 and 10 of BRCA1 and restores the reading frame (Fig. 4e). 290 

We did not find evidence of this event in any of our sequencing data from baseline surgical samples 291 

and it was only observed in post-recurrence cfDNA samples (Fig. 4f). This event may therefore 292 

have been acquired later in a cell from clone F, or alternatively was beyond the limit of detection of 293 

our assay at early time points. Of note, patients who experience disease progression following 294 

PARPi therapy demonstrate a poor response to subsequent platinum-based chemotherapy32,33. 295 

Whether this is related to BRCA1/2 reversion mutations, and how this may impact subsequent 296 

clinical care remains an area of active study. 297 

 298 

Two patients had clone-specific CCNE1 amplifications (Fig. 4g-j), an alteration that has previously 299 

been associated with disease recurrence and chemoresistance in HGSOC34,35. In patient 107, 300 

clone D had an average CCNE1 copy number of 13 compared to 8 in clone A (Fig. 4h), while in 301 

patient 045, CCNE1 amplification was specific to clone A (6 copies, Fig. 4j). In patient 107, clone 302 

D was the dominant clone at recurrence, and had a multimegabase amplification on chr19p 303 

including NOTCH3 in addition to increased CCNE1 copy number on chr19q (Fig. 4g,h). 304 

Interestingly, in patient 045, although the CCNE1 amplified clone was dominant at diagnosis, post 305 

recurrence and during a second line of chemotherapy, clone D (lacking CCNE1 amplification) 306 

expanded and was the dominant clone at the final time point close to the time of a second disease 307 

recurrence (Fig. 4i). Although lacking CCNE1 amplification, clone D harbored an amplification of 308 

RAB25, a GTPase previously implicated in chemotherapy drug resistance36 (Fig. 4j). Notably, 309 

these results suggest that CCNE1 amplification at baseline is not deterministically linked to 310 

chemotherapeutic resistance.   311 

 312 
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Clone-specific transcriptional programs  313 

We next investigated phenotypic associations with drug resistant states, leveraging previously 314 

published patient matched scRNAseq data23. We first used TreeAlign37 to map cancer cells profiled 315 

by scRNAseq to genomically defined clones derived from the scWGS data, using all patients in the 316 

MSK SPECTRUM cohort for which we had scWGS22. For 20 patients for which we could identify at 317 

least 2 clones with >100 cells, we then scored each clone by its expression of hallmark pathways 318 

and explored how these transcriptional programs varied across clones within the same patient. We 319 

found that transcriptional programs could be highly variable between clones from the same patient, 320 

suggesting that HGSOC generally has a large degree of pre-existing genomically encoded 321 

transcriptional heterogeneity (Fig. 5a). 322 

 323 

Of the ten patients we had profiled with our longitudinal cfDNA assay, two patients (107 & 009) had 324 

sufficient cells assigned to each clone that we could contrast these phenotypic differences in drug 325 

resistant versus drug susceptible clones. In patient 107, all 4 clones were represented in the 326 

scRNAseq data and clone D was the dominant clone at relapse (Fig. 5b). We found that NOTCH3 327 

had higher expression in clones C and D relative to A and B as expected based on the clone-328 

specific amplification in C&D (Fig. 5b). Furthermore, clones C and D had a higher VEGF pathway 329 

score, lower hypoxia score and higher HIF1A expression, a transcriptional regulator of hypoxia 330 

response (Fig. 5b). Interestingly, despite receiving anti-angiogenic maintenance therapy with 331 

bevacizumab, this patient still experienced disease recurrence within approximately a year of 332 

chemotherapy completion. We speculate that this genomically encoded pre-existing phenotypic 333 

state may have played a role in disease relapse due to the enhanced angiogenic potential of clone 334 

D. 335 

 336 

In patient 009, all clones were represented in the scRNAseq and clone F was the only clone present 337 

at the final timepoint post relapse (Fig. 5c). We found that this clone had lower expression of 338 

JAK/STAT pathway genes, an increase in epithelial-to-mesenchymal transition (EMT) related 339 

genes including the canonical EMT marker VIM, and a lower fraction of cycling cells (Fig. 5c). This 340 

suggests that this clone may have an immunosuppressive phenotype, while slower cycling of cells 341 
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may have rendered it less sensitive to chemotherapy. Furthermore, EMT has been associated with 342 

chemotherapy resistance38 and phenotypic plasticity that is permissive to developing drug resistant 343 

states39. 344 

 345 

Modeling evolutionary fitness and selection in patients  346 

Lastly, we modeled the evolutionary properties of clonal trajectories in the context of treatment and 347 

disease recurrence. In 6/10 patients (002, 006, 014, 045, 081, 107; see Fig. 4 & 348 

Supplementary Figure 6), multiple clones were detected in post-recurrence plasma samples, 349 

highlighting that chemo-resistance may be polyclonal in many patients. In 4 of these cases (009, 350 

045, 081 and 107), clones that were not detected in cfDNA or were detected at minor frequencies 351 

at baseline became dominant at first recurrence, suggesting that although multiple clones may 352 

become chemo-resistant, some have relative fitness advantages in the context of treatment (Fig. 4 353 

& Supplementary Figure 6). Notably, while the presence of multiple resistant clones was a 354 

common observation, the overall diversity, as quantified by Shannon entropy, decreased in the final 355 

timepoint relative to baseline in 8/9 cases (p=0.027, t-test, Supplementary Figure 6h). This 356 

potentially reflects clone eradication during front-line treatment (surgery and chemotherapy), and 357 

that only a fraction of clones present at diagnosis comprised relapsed disease. The number of 358 

clones detected also decreased at the final time point relative to baseline (p=0.086, t-test, 359 

Supplementary Figure 6i). 360 

 361 

We then tested whether changes in clonal composition could be explained by a neutral evolutionary 362 

model or whether differential fitness between clones was a more plausible explanation. We 363 

developed a Wright-Fisher40 population genetics based simulation and hypothesis testing 364 

framework that incorporates patient specific measurements. The simulation includes a varying 365 

population size empirically informed by CA-125 levels to model population bottlenecks due to 366 

treatment, and uses the inferred clone frequencies at baseline as starting conditions (Fig. 6a). 367 

Clonal trajectories were then simulated assuming neutrality (no fitness difference between clones), 368 

and the distribution of frequencies over 1000 simulations were compared to observed frequencies 369 

at the final time point to derive a p-value encoding whether the observed data is consistent with the 370 
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neutral model (Fig. 6a). Examples of patient clone trajectories inconsistent with a neutral model 371 

include 045 and 009 (p<0.05 for at least one clone), while data from 014 could be explained with a 372 

neutral model (Fig. 6b). Overall, 7/10 patients had at least 1 clone whose change in frequency at 373 

the final timepoint compared to baseline could not be explained by a neutral model (Fig. 6c), 374 

suggesting that positive clonal selection induced by treatment may indeed be a common feature in 375 

HGSOC. 376 

 377 

Taken together we show that clone-specific SVs can be used to track clone trajectories over time 378 

in cfDNA and that while drug resistance is often polyclonal, changes in clone frequencies are likely 379 

the result of differential fitness between clones in the context of treatment. 380 

 381 

DISCUSSION 382 

Here we show that tracking clonal evolution of drug resistance is tractable in cancer patients. This 383 

was facilitated by probing structural variants in timeseries cfDNA as highly specific genomic 384 

features to monitor and model clonal evolution. Applying this approach to 10 recurrent HGSOC 385 

patients with longitudinally collected cfDNA samples we found that in many cases, clonal 386 

composition changed between diagnosis and recurrence. In most cases, drug resistance was 387 

polyclonal, but generally contained a dominant clone with frequency > 50%. Interestingly, dominant 388 

clones were typically rare at diagnosis, suggesting therapy induced selection and supported by 389 

Wright-Fisher modeling. It is noteworthy that Wright-Fisher modeling, which predicted reproducible 390 

positive selection in replicate PDX models41 here shows consistent properties in patients, providing 391 

motivating examples for development of predictive models. We recognize that our simulation 392 

framework neglects any spatial component whereby some clones may reside in a privileged site 393 

with different immunological properties or drug localization propensities.  394 

 395 

Our conclusions differ from Smith et al42 which found limited copy number differences between 396 

diagnosis and recurrence samples in HGSOC. We speculate that the higher resolution single-cell 397 

measurements employed in this study are more suitable for characterizing genomic differences in 398 

such a heterogeneous disease, and that ctDNA provides a more unbiased view of the disease state 399 
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compared to single-site bulk measurements. However, larger scale studies across spatio-temporal 400 

measurements may be needed to fully establish these properties.  401 

 402 

While our study is underpowered to identify recurrent genetic features of drug resistant clones, we 403 

do observe some plausibly important features that will require additional study. These include 404 

clone-specific high-level amplifications in drug resistant clones such as RAB25, ERBB2, CCNE1 405 

and NOTCH3. Such oncogenes have targeted therapies available clinically or in development, 406 

raising the possibility that treatment could be modified adaptively based on longitudinal 407 

measurements of clone fractions and their genomic features. We also observed notable 408 

phenotypes in drug resistant clones in a subset of patients with matched scRNAseq such as 409 

upregulation of EMT and VEGF, downregulation of JAK-STAT and lower proliferation. This 410 

suggests pre-existing phenotypic states may play a role in differential treatment-sensitivity between 411 

clones. Our study confirms that drug resistance is heterogeneous and highly patient specific. For 412 

example, CCNE1 amplification, an established indicator of poor prognosis34 was not a deterministic 413 

predictor of clone fitness in one of the patients. This argues for developing personalized adaptive 414 

approaches to control drug resistant clones43–45. 415 

 416 

We note that the granularity of temporal sampling in this study limits the ability to accurately time 417 

emergence of drug-resistant clones. Some clone trajectories coincided with therapy modulation. 418 

We recognize this is confounded by the timing of sampling at relapse and consequently makes it 419 

challenging to establish a causal link between selective sweeps of clones and change of 420 

therapeutic selective pressure. In future studies, more granular cfDNA sampling at regular intervals 421 

would address this interpretation challenge, but our data is nevertheless  indicative of clone-specific 422 

selective sweeps on switch of therapy.   423 

 424 

Our study is motivated by exploiting structural variants as specific endogenous clonal markers for 425 

evolutionary tracking. While we focused on HGSOC, we expect our approach will generalise to any 426 

tumor type with i) polyclonal disease and ii) with characteristic genomic instability such as triple 427 
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negative breast, osteosarcoma, high grade endometrial, esophageal, diffuse gastric and EGFR-428 

mutant non-small cell lung cancer21.   429 

 430 

Finally, we expect that drug resistance in HGSOC and other cancers to be multi-factorial, with both 431 

transcriptional and epigenetic plasticity operating in tandem with pre-adapted and genomically 432 

encoded phenotypic states. We contend that the framework we establish here is poised to quantify 433 

the proportion of drug resistance that is explained by therapeutic selective pressure and can inform 434 

future evolution-informed adaptive clinical trials.   435 

  436 
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Methods 437 

 438 

Sample collection 439 

All enrolled patients were consented to an institutional biospecimen banking protocol and MSK-440 

IMPACT testing46, and all analyses were performed per a biospecimen research protocol. All 441 

protocols were approved by the Institutional Review Board (IRB) of Memorial Sloan Kettering 442 

Cancer Center. Patients were consented following the IRB-approved standard operating 443 

procedures for informed consent. Written informed consent was obtained from all patients before 444 

conducting any study-related procedures. The study was conducted in accordance with the 445 

Declaration of Helsinki and the Good Clinical Practice guidelines (GCP). We collected fresh tumor 446 

tissues at the time of upfront diagnostic laparoscopy or debulking surgery, as described in 447 

McPherson et al.22. Blood collection was carried out longitudinally over a five-year period (2019-448 

2024). Two Streck tubes for cfDNA were collected in each visit. If possible, blood was collected in 449 

the Outpatient Clinic at Memorial Sloan Kettering Cancer Center. Alternatively, blood samples were 450 

collected in the operating room when patients were undergoing debulking surgery or laparoscopy. 451 

 452 

Sample processing 453 

Streck tubes were submitted to the MSK laboratory medicine facility after collection and processed 454 

for plasma and buffy coat separation, as well as DNA extraction. 455 

 456 

Clinical data 457 

In this cohort study, we extracted clinical annotations from electronic health records of 19 patients 458 

treated at Memorial Sloan Kettering Cancer Center for HGSOC. For these patients we collected 459 

contemporaneous longitudinal data from their initial HGSOC diagnosis as well as historical data, if 460 

available. Clinical data included laboratory measurements, surgical procedures and medications. 461 

CA-125 measurements were obtained as part of patients' routine clinical care from blood samples 462 

collected at baseline, during therapy and subsequent follow up visits. All dates are relative to the 463 

time of first surgery for each patient, ie day 0 is the date of primary debulking or laparoscopic 464 

biopsy. 465 
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 466 

  Recurrence data 467 

Recurrence dates are defined by “progression of disease” (POD), a patient without improvement 468 

after treatment or while on maintenance therapy based on CT scan. Improvement or lack thereof 469 

is determined based on CT scan impressions (e.g. an increase in a lymph node or unchanged 470 

tumor implants). We define patients as “alive with disease” (AWD) if they have not achieved 471 

remission but have also opted out of new treatment lines and/or are on observation. 472 

 473 

DLP single cell whole genome sequencing processing 474 

The mondrian single cell whole genome sequencing suite of tools and pipeline was used for 475 

processing of the single cell whole genome sequencing. This single cell whole genome sequencing 476 

dataset is a subset of the dataset used in McPherson et al.22, see this publication for full details of 477 

the data generation and processing. We describe in brief the processing here. Sequencing reads 478 

were aligned to hg19 using BWA-MEM. Read counts were calculated in 500kb bins across the 479 

genome and GC-corrected, these values were input into HMMcopy to infer integer copy number 480 

(ranging from 0-11). We then applied the cell quality classifier described in Laks et al and removed 481 

any cells with quality < 0.75. In addition we removed replicating cells, multiplet cells and cells 482 

suspected to be the result of multipolar divisions, see McPherson et al.22 for a detailed description 483 

of the filtering criteria. We then applied SIGNALS v0.7.6 to infer haplotype specific copy number 484 

using default parameters. 485 

 486 

SNV calling in DLP 487 

To detect SNVs in each dataset, reads from all cells from a DLP+ patient were merged to form 488 

'pseudobulk' bam files. SNV calling was  performed on these libraries individually using mutect. A 489 

panel of normals was constructed by identifying normal cells from every patient, merging them and 490 

then running the mutect2 panel of normal option. Mutect2 filter was used to filter variants. We then 491 

ran Articull (manuscript in prep.) to remove artifacts that are specific to DLP+ due to the shorter 492 

than average insert size. This filtered set of variant were then genotyped in individual cells using 493 

cellSNP v.1.2.247. 494 
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 495 

Structural variant calling in DLP 496 

To detect SVs in each dataset, we also used the merged pseudobulk bam files. LUMPY48 and 497 

deStruct49 were run on these pseudobulk libraries. Events were retained if they were detected in 498 

deStruct and could be matched in the LUMPY calls. Breakpoint predictions were considered 499 

matched if the positions involved were each no more than 200 nucleotides apart on the genome 500 

and the orientation was consistent.  501 

 502 

SVs called in the pseudobulk library were then genotyped in single cells. To do this we used a 503 

modified version of SVtyper50 (available at https://github.com/marcjwilliams1/svtyper). One key 504 

modification was rounding the read count up rather down, the read count computation internally in 505 

SVtyper are MAPQ scores rather than counts so are non-integers before rounding and outputting 506 

to a vcf. This change is necessary in single cells as typically we observe only a single read 507 

supporting a SV. SVtyper computes the number of reads that support the reference (these are 508 

reads that directly span the genome reference at the breakpoint locations) and the number of reads 509 

that support the alternate allele. Alternate allele counts are either split reads that directly sequence 510 

the breakpoint or discordant reads that have larger than expected insert sizes or align to different 511 

chromosomes in the case of translocations. Clipped reads that support the breakpoint are also 512 

computed, to be more conservative we did not include these reads in the total of SV supporting 513 

reads. We made an additional modification requiring split reads to match both sides of the 514 

breakpoint to contribute to read counts, in the default version, a split read aligning to one side of 515 

the breakpoint would contribute 0.5 counts. This option is available via the –both-sides 516 

command line option. 517 

 518 

Phylogenetic inference and clone assignments 519 

MEDICC2 was used to infer phylogenetic trees using haplotype specific copy number as input, see 520 

McPherson et al22 for further details. We then manually identified clades in the tree that were the 521 

ancestor of clade specific genomic features of interest. These included whole genome doubling, 522 

whole chromosome and chromosome arm gains or losses and focal amplifications. Clones were 523 
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then defined as the set of cells that were descendents of each clade of interest. Clones with their 524 

genomic features of interest can be found in supplementary table 5. 525 

 526 

Clone level 10kb resolution copy number calling 527 

Once cells were assigned to clones we additionally called integer copy number at 10kb resolution 528 

at the clone level. Read counts were computed in 10kb bins across the genome in every cell and 529 

then summed across cells assigned to each clone. Aggregated read counts were then normalized 530 

against the read counts from any normal diploid cells sequenced in the same library and then GC 531 

corrected using the same modal GC correction described in Laks et al17. These normalized GC 532 

corrected read counts were then adjusted for ploidy of the clone and then we applied a Hidden 533 

Markov Model to compute integer read counts. The HMM model (code available at 534 

https://github.com/shahcompbio/HMMclone) uses a state space of 0-15 with each state assumed 535 

to be a normal distribution with standard deviation 0.2 and mean equal to the integer copy number. 536 

The standard deviation was determined empirically from the data. The viterbi algorithm was used 537 

to compute the most likely copy number profile. 538 

 539 

Assigning SVs to clades/clones 540 

Assigning SVs to clones was done using the matrix of read counts per SV per cell, the cell to clone 541 

label mapping, and the clone level 10kb copy number profiles. First, we summed the SV supporting 542 

reads across clones giving an SV by clone matrix. Any SVs with non-zero read counts were 543 

assumed to be present in the clone. In addition, when SVs could be mapped to copy number 544 

changepoints identified at 10kb resolution, we additionally checked whether there existed other 545 

clones that had the same copy number changepoint but lacked read level support for the SV. In 546 

these cases, the SV was also assumed to present in that clone. This was to circumvent cases 547 

where the total number of cells was too low to confidently assume the absence of a particular SV. 548 

In some cases, no SVs could be found that were specific to a clone, this was largely due to clones 549 

being too small and consequently lacking the cumulative sequencing coverage to detect SVs in 550 

pseudobulks. In such cases we used coarser clone definitions comprising a larger number of cells. 551 

 552 
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Bulk whole genome sequencing and MSK-IMPACT 553 

The bulk whole genome sequencing and MSK-IMPACT targeted sequencing was originally 554 

published in Vázquez-García et al. 23. See this publication for data generation, processing and data 555 

access. 556 

 557 

Probe design and synthesis 558 

For most patients we identified 1,000 genomic features encompassing structural variants, single 559 

nucleotide variants and germline SNPs. For samples that constituted our pilot (patients 068, 065, 560 

044, 003 and 026) the number of features was lower, between 250 and 400 and included only a 561 

limited number of SNVs. Within the SV and SNV groups these could be classed into Clonal (present 562 

in every tumor cell) or Subclonal (present in a fraction of tumor cells). The number of probes from 563 

each class was variable between patients due to differences in the number of SVs and SNVs called 564 

in each patient as well as the clonal structure in each patient. We first required 200 clonal SVs and 565 

200 clonal SNVs. The remaining 600 probes were split between subclonal SVs and SNVs. We 566 

ensured we had 200 subclonal SNVs and then the remaining slots were given to subclonal SVs, if 567 

there were still slots remaining then we included additional subclonal SNVs. Within the SNV class 568 

we included any SNV annotated as “High Impact” in the MSK-IMPACT targeted sequencing. 569 

Probes were synthesized by IDT (Integrated DNA Technologies) using the xGen MRD hybrid 570 

probes, from 120bp sequences provided as FASTA files. A small panel of germline SNPs were 571 

also included in order to provide a means to identify sample swaps that may inadvertently occur 572 

during sample preparation but were not needed. 573 

 574 

cfDNA duplex sequencing analysis 575 

We used the MSK-ACCESS protocol to generate the sequencing data, this protocol is described 576 

in detail in Rose-Brannon et al.25. The gene panel used in Rose-Brannon et al. was swapped for 577 

the patient specific probe sets. Patient probes from at least 2 patients were pooled together so that 578 

for each patient probe set we could estimate background error rates by looking at the counts 579 

supporting SVs and SNVs in off target patients. 580 

 581 
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To process the cfDNA sequencing we used a suite of tools developed by the Centre for Molecular 582 

Oncology informatics team at MSK for use with the MSK-ACCESS assay (https://github.com/msk-583 

access). The nucleo pipeline was used to generate bam files from fastq files. The output of this 584 

pipeline is double strand error corrected bam files(duplex), single strand (simplex) and uncorrected 585 

bam files which can then be used for downstream applications. Read counts of supporting and 586 

reference reads for SNVs and Indels were extracted using https://github.com/msk-587 

access/GetBaseCountsMultiSample. This takes a MAF file as input and outputs a MAF file with 588 

additional columns for the read counts in duplex, simplex or uncorrected bam files. To extract read 589 

counts for SVs we used the same version of SVtyper modified for use with DLP+ described above. 590 

We required that alignments had evidence of both sides of the breakpoint to be included 591 

(implemented in an additional SVtyper option –both_sides). 592 

 593 

Computing error rates in cfDNA 594 

To compute error rates across sequencing types (duplex, simplex, raw uncorrected) and mutation 595 

types (structural variants and single nucleotide variants) we applied the patient specific probe set 596 

to at least one other off-target patient. We then summed the counts of reference supporting reads 597 

and variant supporting reads for off-target variants and defined the error rate as variants supporting 598 

reads divided by total number of reads. We then defined the limit of detection (LOD) per sequencing 599 

type and mutation type as twice the largest error rate seen in each class. Given we observed no 600 

errors for SVs in simplex and duplex sequences we defined the LOD as the inverse of the total 601 

number of reference supporting reads giving us an upper bound.  This gives the following LOD: 602 

8.5x10-8 (duplex, SV), 3.2x10-5 (duplex, SNV), 1.5x10-7 (simplex, SV), 20x10-5 (simplex, SNV), 603 

8.6x10-7 (uncorrected, SV), 158x10-5 (uncorrected, SNV). LOD for combined duplex and simplex 604 

read counts is 5.4x10-8 for SVs and 7.3x10-5 for SNVs. cfDNA samples were positive for ctDNA if 605 

the total number of variant reads divided by the total number of reference reads summed across 606 

the collection of patient specific variants was greater than the LOD. Given the low error rates for 607 

both simplex and duplex SVs we used the combined read counts from both for the results reported 608 

in the main text. 609 

 610 
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Estimating clone frequencies 611 

To estimate clone frequencies we calculated VAFs for each clone by summing the total number of 612 

variant supporting reads and dividing them by the total number of reads for all variants assigned to 613 

a clone. We did not correct for copy number as biases in the sequencing data are likely greater 614 

than biases due to copy number (probes are constructed based on the variant sequence not wild 615 

type). Furthermore, VAFs can vary over multiple orders of magnitude due to the high sequence 616 

depth, much larger than the influence of any copy number correction. We saw highly concordant 617 

clone frequency estimates using either structural variants or single nucleotide variants, supporting 618 

this approach. To plot the changes in frequency over time we normalized VAFs so that they 619 

summed to 1 at each time point, then applied a spline function to smooth values between time 620 

points. When no tumor DNA was detected, we allowed all clones to have VAF = 0. Smoothing was 621 

done using the the splinefun function in R with method = "monoH.FC". This resulted in values 622 

that were greater than 1 or less than 0 in some cases, we therefore re-normalized the data so that 623 

frequencies were positive and summed to 1 at each time point. In addition, when there were large 624 

periods of time pre clinical-recurrence without cfDNA samples we assumed tumor DNA was 0 (for 625 

example in patient 107). We did not include clone frequency estimates when plasma tumor fractions 626 

were < 10-4 (estimates based on truncal SVs), reasoning that clone frequency estimates at such 627 

low tumor fractions would be unreliable and suffer from dropout issues. Given the low error rates, 628 

we used the uncollapsed raw sequencing for estimating clone frequencies using SVs. For 629 

estimating clone frequencies using SNVs we used the same approach for SVs but used duplex 630 

consensus sequences for read counting due to the higher error rates for SNVs. 631 

 632 

Identifying BRCA reversion mutations 633 

For BRCA1/2-mutant cases, we also included probes that captured exonic regions within 200bp of 634 

the mutation, enabling detection of proximal BRCA1/2 reversion mutations51,52. We used revmut 635 

(https://github.com/inodb/revmut) to identify putative BRCA reversion mutations in the first 636 

instance. In addition, we inspected alignments in IGV around the BRCA mutations to look for any 637 

additional putative reversion mutations not identified by revmut. This is how we found the reversion 638 

mutation present in patient 009. This mutation was a large 1.37kb deletion that excised the germline 639 
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mutation, alignments with the same breakpoint sequence, aligning to the same locations were 640 

found in 3 post-recurrence samples. This mutation was likely not identified using revmut due to it 641 

being unusually large compared to previously reported BRCA reversion mutations. 642 

 643 

Wright-Fisher modelling and hypothesis testing 644 

In order to test for non-neutrality in clone frequencies over time we implemented a modelling and 645 

hypothesis testing framework based on a multi-species Wright-Fisher model with varying 646 

population size. Population size was assumed to be 109 at the time of surgery (t=0) and then varied 647 

according to CA-125 levels. We set the population size at the time point with the lowest CA-125 648 

level 𝑁𝑙𝑜𝑤 = 104, assuming this was the period with the smallest tumor cell population. We then set 649 

the population size (N) to vary exponentially according to the following equation: 650 

 651 

𝑁(𝑡) = 𝐴𝑒𝑏×𝐶𝐴125(𝑡) 652 

 653 

Where 𝐴 = 𝑁(0) × 𝑒−𝑏×𝐶𝐴125(0) and 𝑏 =
𝑙𝑜𝑔(𝑁𝑙𝑜𝑤) − 𝑁(0)

𝐶𝐴125𝑙𝑜𝑤−𝐶𝐴125(0)⬚
. We then used the multinomial 654 

distribution to simulate clone frequencies over time: 655 

 656 

𝑋1..𝑘(𝑖 + 1) = 𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑁(𝑖), 𝑝1..𝑘(𝑖)) 657 

 658 

Where 𝑋1..𝑘(𝑖 + 1) is the population size of each clone k in generation i+1, N(i) is the total population 659 

size in generation i and 𝑝1..𝑘(𝑖) are the clone frequencies in generation i for the k clones. For 660 

generation 𝑖 = 1, 𝑁(𝑖 = 1) = 109 and 𝑝1..𝑘(𝑖 = 1) are given by the clone frequencies estimated from 661 

cfDNA at t=0. We then forward simulate this process for the clinical timecourse of each individual 662 

patient 1000 times giving a distribution of clone frequencies at 𝑡𝑒𝑛𝑑. We assumed a generation time 663 

of 4 days and 𝑡𝑒𝑛𝑑  was set to be the final cfDNA timepoint in each patient. We then calculated a z-664 

score, comparing the observed clone frequency from data to the mean and standard deviation of 665 

the simulated frequencies in order to calculate a p-value for each clone under the hypothesis of 666 

neutral evolution.  667 
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 668 

cfDNA whole genome sequencing 669 

Whole genome libraries constructed during the duplex sequencing assay library prep were 670 

sequenced to 20X on an illumina NovaSeq using 100bp reads. Reads were mapped to hg19 using 671 

BWA-MEM53. Read counts in 100kb bins across the genome were calculated and GC corrected 672 

using QDNAseq54. In order to compare this to data from the duplex sequencing targeted assay we 673 

used information from the DLP copy number profiles and the clone fractions inferred from the hybrid 674 

capture targeted sequencing assay to predict what these copy number profiles should look like. 675 

Copy number ratio (𝑅) in bin 𝑖 are given by: 676 

𝑅𝑖 =
2𝑛 + (1 − 𝑛)𝑐𝑖

2𝑛 + (1 − 𝑛)𝑝
 677 

Where 𝑛 is the normal fraction, 𝑐𝑖 is the copy number in bin 𝑖 and 𝑝 is the ploidy of the tumor. We 678 

know 𝑛 from the TP53 VAF in cfDNA, for 𝑐𝑖 and 𝑝 we took the weighted average across clones, 679 

with weights given by the estimated clone fractions at each time point. 680 

 681 

scRNAseq data generation and processing 682 

The scRNAseq data was originally published in Vazquez-Garcia et al.23, full details of the 683 

processing can be found here. Pathway scoring was performed with PROGENY55 or the Seurat 684 

module scoring function using hallmark pathways. 685 

 686 

TreeAlign 687 

To match scRNAseq cells to clones identified in DLP we used TreeAlign37. To do this, we genotyped 688 

the same set of heterozygous SNPs used to call allele specific copy number in DLP+ in scRNAseq 689 

using cellSNP47. The per cell SNP count matrix was then input into TreeAlign along with clone 690 

assignments and 10kb clone copy number profiles derived from DLP. We used the 691 

CloneAlignClone method and used default parameter values apart from min_clone_assign_prob = 692 

0.5. scRNAseq data was available for patients 107, 014, 045, 009 and 002, however following 693 

application of TreeAlign in some patients, clones were represented minimally due to differences in 694 

data collection from different sites. In patients 107 and 009, all clones were represented with at 695 
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least 100 cells present from each clone, we therefore focussed on these cases when comparing 696 

drug resistant to drug sensitive clones. To compare transcriptional heterogeneity for each clone we 697 

took the mean value of the per cell seurat derived module scores or progeny scores per clone, then 698 

for each patient calculated the maximum value minus the minimum value. These per patient max-699 

min values were then plotted as violin plots ordered by the average difference across the cohort of 700 

patients. 701 

 702 

Data organization 703 

To facilitate integration of data across multiple modalities we used the isabl platform56. Isabl is a 704 

databasing and data access platform which allows users to straightforwardly link multiple datasets 705 

from the same patient and chain together pipelines across modalities.  706 

 707 

Data availability 708 

Summary tables include sequencing coverage, cfDNA tumor fractions, clone frequencies from SVs 709 

and SNVs, genomic features of defined clones and error rates per patient. Raw sequencing data 710 

will be available in dbGAP upon publication. Processed copy number calls and variant read counts 711 

in cfDNA will be available in Synapse (accession number syn25569736).  712 

 713 

Code availability 714 

The pipeline to process DLP+ scWGS is available at https://github.com/mondrian-scwgs. 715 

SIGNALS18 was used for most plotting and scWGS analysis and is available at 716 

https://github.com/shahcompbio/signals. Clone copy number profiles at 10kb were computed using 717 

HMMClone (https://github.com/shahcompbio/HMMclone). The modified version of SVtyper for use 718 

with single cells and hybrid capture duplex sequencing is available at 719 

https://github.com/marcjwilliams1/svtyper. 720 
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Figure 6 Wright-Fisher modeling 
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Figure 1 Clone-specific mutations and structural variations in scWGS
 a) scWGS based copy number heatmap for patient OV-004. Each row is the copy number of a cell, cells are ordered 
according to a MEDICC2 computed single-cell phylogeny (shown on the left)  b) Clone pseudobulk copy number at 10kb 
resolution for clone A and clone B in chr17. Truncal variants (TP53 missense and deletion) are annotated in purple, clone 
specific duplications and SNVs are annotated in red and blue respectively c) Phylogenetic trees annotated with cells that have 
support for variants shown in panel b). d) Clone pseudobulk copy number at 10kb resolution for clone A and clone B in chr8 
showing different chromothriptic chromosomes. In b) and d) notable regions that are different between clones A and B are 
highlighted in gray.
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Figure 2 Structural variants as highly specific markers of tumor DNA in cfDNA
a) Schematic of workflow illustrated with a translocation between chr8 and chr19 identified in OV-107. b) Distribution of VAFs for SVs 
and SNVs in baseline samples c) Schematic showing how patient specific error rates are calculated by applying probe sets to off target 
patients d) average background error rates in duplex, simplex and uncollapsed sequences. Each violin/boxplot is a distribution over 
SVs/SNVs where each data point is the error rate for an individual patient. Triangles show limit of detection (LOD) defined as 2X the 
largest observed patient error rate e) Fraction of SNV/SVs that have 0 background ie no read support in incorrect patient f) Mean SV 
VAF vs Tumor fraction computed from TP53 VAF
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Figure 3 Detecting clone-specific SVs in cfDNA
 a)-d) Single cell phylogeny on left hand side with tips coloured by clone membership, zoom in on copy number profiles of 
chromosomes of interest that have clone specific structural variants driven by a mutational process, above each copy number 
profile, the location of SVs are shown, right hand side shows the CCF of the 2 clones of interest in DLP, the number of clone 
specific structural variants and the VAF of those clone specific SVs in cfDNA at baseline. Shown are chromothripsis in OV-083, 
breakage-fusion bridge in OV-045, tandem duplication towers in OV-081 and chromoplexy in OV-002. e) Tumor fraction in 
baseline samples inferred from TP53 mutation f) VAF of all structural variants at baseline in cfDNA stratified by clonality. Black 
horizontal line shows mean value.
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Figure 4 Clonal evolution of  drug resistance in patients
Clonal evolution tracking in 4 patients. a) Anatomical sites sequenced with DLP, a phylogenetic tree of the clones, then clonal 
fractions, mean truncal SV VAF and TP53 VAF, CA-125 and treatment history over time for patient 044. Disease recurrences are 
annotated on the CA-125 track.  b) ERBB2 copy number in clone B vs E across cells c) Pseudobulk copy number of clones B and 
E at 10kb resolution in chromosomes 2 and 17. A translocation specific to clone E and implicated in the ERBB2 amplification is 
highlighted. Below shows the read counts of this translocation across timepoints in cfDNA d) CT scan images from day 0 and day 
84 from 2 sites. Orange/white arrows indicate site of disease e) Clonal tracking in patient 009, same as panel a). f) Diagram of 
mutations impacting the BRCA1 gene: location of frameshift deletion shown with red dashed line, large 1.37kb deletion shown in 
gray. Number of reads supporting the 1.37kb deletion in cfDNA across time. g) Clonal tracking in patient 107, same as panel a). h) 
NOTCH3 and CCNE1 single cell copy number distribution across clones i) Clonal tracking in patient 045, same as panel a). j) 
RAB25 and CCNE1 single cell copy number distribution across clones
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Figure 5 Clone-specific transcriptional programs
a) Hallmark pathway variability across genomically defined clones in scRNAseq data. Each data point represent the maximal 
pathway score difference between clones in each patient. Data from 20 patients included.  b) From left to right, clone frequencies 
inferred from cfDNA at baseline (B) and recurrence (R) for OV-107. UMAPs labelled by sites and clone mapping (inferred using 
TreeAlign). Distribution of NOTCH3 expression, VEGF pathway, hypoxia and HIF1A across clones c) Clone frequencies inferred 
from cfDNA at baseline (B) and recurrence (R) for OV-009 UMAPs labelled by sites and clone mapping (inferred using TreeAlign). 
Distribution of EMT pathway, VIM expression, JAK-STAT pathway and fraction of cells in each cell cycle phase.
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Figure 6 Wright-Fisher modeling 
a) Summary of approach used to accept/reject neutrality. Frequency of clones at baseline and changes in cancer cell population 
informed by CA-125 levels are used as input to a neutral wright-fisher model with varying population sizes. For each sample, 1000 
simulations are generated and then the distribution of frequencies at the final time point are compared to observed values. b) 
Example simulated trajectories and observed frequencies for 3 patients: 009, 014 and 045. 009 and 045 have clones that deviate 
from the expectations in a neutral model, while clones in 014 are consistent with a neutral model. c) Summary of the results of the 
Wright-Fisher simulation based test in 10 patients. From bottom to top: change in clone frequencies between baseline and the 
final timepoint which had evidence of ctDNA (in most cases the final timepoint samples), p-values per clone, neutral/non-neutral 
classification based on a cutoff of p(adjusted) < 0.05.
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Supplementary Figure 1
Swimmer plot showing clinical history of all 19 patients included in the study. Shown are survival status, therapies, surgeries 
time of first clinical recurrence and data generation timepoints. Days are relative to day of first surgery, ie Day 0 is the date of 
primary debulking or laparoscopic biopsy.
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Supplementary Figure 2
a) Number of clonal and subclonal SVs per patient b) Total number of SVs called per patient by SV type c) Distribution of coverage per 
cell per patient d) Pseudobulk coverage per cell (summed coverage across all cells) e) Number of high quality cells per patient
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Supplementary Figure 3 
a) Study summary, showing typical clinical history of HGSOC patient, specimen sample collection protocol. b) Workflow 
showing clonal evolution tracking using structural variants identified in single-cell whole genome sequencing and assigned to 
clones using single-cell phylogenetics. These clone specific SVs are then followed in cfDNA using deep duplex error corrected 
sequencing.
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Supplementary Figure 4
Copy number plots of chromosome 8 and 19 from OV-004 using 500kb bins a) and 10kb bins b). c) proportion of SVs that could be 
matched to copy number transitions at 10kb and 500kb bins
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Supplementary Figure 5 scWGS copy number heatmaps and phylogenetic trees for the 10 patients with longitudinal tracking 
data. The title of each plot gives the patient ID and the total number of cells. Each row shows the copy number profile of a cells, 
rows are ordered by the MEDICC2 derived phylogenetic tree shown on the left of each plot. Trees are coloured by clone 
assignments.
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Supplementary Figure 6 Clonal evolution tracking in 6 patients a)-f). For each patient we show the anatomical sites sequenced 
with DLP, a phylogenetic tree of the clones, then clonal fractions, mean truncal SV VAF and TP53 VAF, CA-125 and treatment 
history over time. g) Summary of the clonal composition at baseline and recurrence (final time point if more than one 
post-recurrence time point) for 9 patients. h) Distribution of shannon entropy at baseline and recurrence i) Number of clones 
detected at baseline and recurrence.
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Supplementary Figure 7 Normalized read counts at baseline and recurrence from whole-genome sequencing of cfDNA from 3 
patients a)-c). Black dots are the data, red dots are predictions based on copy number profiles from DLP and inferred tumor and 
clone fractions from targeted sequencing. The text above each plot denotes the time point and the tumor fraction (TF) based on 
TP53 mutation. d) Zoom in on regions with high level amplifications in patients 045, left hand bar plots show the clone fractions at 
T1 and T7 then right hand side show copy number profiles of 2 most abundant clones from DLP at the bottom and ratio of 
normalized read counts of plasma WGS at T7 vs T1. Shaded areas highlight copy number amplification specific to one of the 
clones. e) Zoom in on regions with high level amplifications in patient 107. Clone frequencies over time calculated from SVs (f) 
and SNVs (g) for patient OV-045. c) Scatter plot of all clone frequencies calculated using  SNVs and SVs, dashed line indicates 
y-x line. Included in this plot are clone frequency estimates from samples with purity > 0.1% and clones with at least 4 SVs and 
SNVs.
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