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Abstract
Within the framework outlined in the first part of the review, the second part addresses attempts to increase receptor material
performance through the use of sensor systems and chemometric methods, in conjunction with receptor preparation methods and
sensor-specific tasks. Conclusions are then drawn, and development perspectives for gravimetric sensors are discussed.
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Short introduction to the second part
of the review

As discussed in the introduction to the first part of the review
[1], the development of gas sensors (GS) was driven by the
increasing need for the detection of environmental, industrial
and domestic chemical hazards. As a result of sustained inves-
tigations performed in the 1980s and 1990s, a greater under-
standing of gas sensing mechanisms based on mass-sensitive
transducers (MST) was achieved with regard to both reception
and transduction processes. However, for practical purposes,
the application of this knowledge did not translate to the pro-
duction of commercial devices. The main reason for this fail-
ure was the poor performance of the receptor materials, espe-
cially their low specificity. Section 2 of the second part of the
review tackles this issue and presents the modalities investi-
gated in studies aimed at increasing receptor specificity. Two
main approaches are considered: increasing the specificity of
the receptor–analyte interaction, and employing gas sensor
systems (GSS) containing several individual devices with lim-
ited specificity in combination with chemometric methods in

order to increase the overall gravimetric selectivity. The main
task of either GS or GSS is the same, namely, to provide a
specific and proportional response to the concentration of the
analytes in the gaseous sample, ultimately enabling the deter-
mination of the sample composition or sample classification.
In the third section, methods currently utilized for receptor
material preparation/deposition are discussed, while the fourth
section reviews attempts to improve gas detection specificity,
beyond the receptor, through suitable processing of sensor
arrays (SA) and GSS data. The fifth section is dedicated to
the practical applications of GGSs. The first part discusses the
targeted analytes, their main properties, hazards involved and
legally allowed concentrations, while the second part presents
a survey of applications. The conclusion focuses on the degree
to which the advancements in the field of GGSs meet the
expectations they have raised.

Increasing the specificity of the receptors

The interactions addressed in the section “Specific interac-
tions and their role in receptor sensitivity and selectivity” of
the first part of the review confer certain selectivity to the
sensing process. However, when examining the tables with
the values of solvation parameters for the specific versus non-
specific contributions (given by the product l ∙ log L16), it be-
comes obvious that in most cases, the specificity is rather low
and is usually restricted to classes of analytes and not to a
certain one. Because overcoming these limitations in the con-
text of thermodynamics is very challenging, attempts have
been made beyond thermodynamic-controlled specificity,
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searching for receptor materials whose selectivity derives
from special features of the analyte–receptor interaction. In
this respect, Hierlemann et al. devised combined optical and
gravimetric experiments1 on the same receptor samples to
directly probe the strength and specificity of the analyte–
receptor interaction [2]. Strong correlations between changes
in the infrared spectra and gravimetric sensor signals on the
one hand, and the analyte type and concentration on the other
hand, occurred when suitable analyte–receptor2 combinations
were chosen. On the contrary, when analyte detection was
performed with common polymers, poly(ether urethane) and
poly(isobutene), the receptor response was weak and nonspe-
cific, as expected. It is worth noting here that the laws of
thermodynamics always hold, and the dispersion interaction
will contribute significantly to the sensor output, regardless of
how well tailored the receptor is. Therefore, in the analyte
adsorption isotherm, the dispersion interaction is seen as a
nonspecific contribution following Henry’s law superposed
to the specific contribution (a Langmuir dependency on ana-
lyte concentration for low exposure levels) [2, 3], as depicted
in Fig. 1. Moreover, the stronger the analyte–receptor interac-
tion, the less reversible and slower the sensor.

Molecular recognition

The specificity ensured by the complementarity of the solva-
tion parameters, as they appear in the “linear solvation energy
relationship” [4, 5] (see the first part of the review, section
“Bulk receptors in the frame of the linear solvation relation-
ship”), can be improved by mimicking the biological systems
(like DNA chains) [6]. Several examples of biological binding
of gases, among which that of O2/CO by heme molecules is
the most well known, are given by Rudkevich in his review
“Emerging Supramolecular Chemistry of Gases” [7]. The ad-
vances in the chemistry of the biological world led to the
“molecular recognition” and “supramolecular chemistry” con-
cepts and models. In its common meaning, molecular recog-
nition describes the specific interaction between two mole-
cules (one larger—the molecular receptor, and one
smaller—the substrate3) through complementary non-
covalent bonding (also included here are the specific interac-
tions addressed in the first part of the review such as metal
coordination or hydrophobic interaction). According to Lehn,
“mere binding is not recognition”, so that molecular recogni-
tion is “a process involving both binding and selection of

substrate(s) by a given receptor molecule” [8]. In Lehn’s view,
molecular recognition involves a “double complementarity
principle extending over energetical (electronic) as well as
geometrical features, the celebrated ‘lock and key’, steric fit
concept enunciated by Emil Fischer” in 1894 [9]. The result of
molecular recognition is a supramolecular system which
stores a certain amount of information (architecture of ligands,
binding sites, etc.) [8]. Similarly, Cram regards molecular rec-
ognition as a guest–host interaction resulting in a guest–host
complex [10]. The most relevant complementary characteris-
tics stem from size, shape, charge, dipolar momentum and
acidity-basicity of the hydrogen bond. Starting from the old
“lock-and-key” picture by Fischer [9], Rebek synthesized mo-
lecular clefts for selected analytes as model receptors with
high selectivity [11]. Even the formation of the U-shaped
model molecule from the building blocks (2x Kemp’s triacid
and naphthalene-2,7-diamine in the simplest example) was
due to chemical affinity, complementarity and steric barriers.
The free carboxylic groups of the cleft prepared in this way
can specifically “catch” two isopropanol molecules, forming
hydrogen bonds with the hydroxy groups of the alcohol. Here
the appropriate size of isopropanol molecules plays an impor-
tant role. However, the complementarity required for the for-
mation of the guest–host complexes with specific receptors,
leading to molecular recognition, is generally less available
for the gaseous analytes because of limited dimensions,
shapes and polarizability [7]. The topic of “Molecular recog-
nition and supramolecular chemistry in the gas phase” is spe-
cifically referred to by Schalley [12].

Many natural, biological or common synthetic sensing ma-
terials employed for gas-phase detection possess certain intrin-
sic complementarity with respect to some target gases, so that in
this case the selectivity is ensured by appropriate selection of the
receptor–analyte pair through a trial procedure. In order to
achieve the sensing performance required by practical applica-
tions, it is necessary to use different approaches, based on ratio-
nal design and preparation (often through synthesis) of tailored
receptor material for the given analytes. The natural/biological
and synthetic receptors are presented in the respective sections
below. The examples selected from the literature to better illus-
trate the receptor–analyte interaction are only roughly presented
in those sections (they will mainly address the receptor material
features and target analyte nature or composition). The best-
performing sensors are discussed in more detail in the section
dedicated to applications, pointing to the sensing parameters.
Some of the experimental approaches fit more than one type
of molecular recognition; in the following, a classification
choice has been made, or they were considered twice.

Natural and biological receptors

The living world abounds in good receptors for gases and
vapors, integrated in sophisticated olfactory systems which

1 Experiments making use of Fourier transform infrared external reflectance
spectra and functionalized surface acoustic wave devices.
2 The authors refer to cyclodextrins for chiral recognition, nickel camphorates
for Lewis bases such as pyridine or organophosphonates, and phthalocyanines
for aromatic compounds for which specific chemical interactions such asmetal
coordination, “cage” compound inclusion, or π-stacking were expected (chiral
recognition in general will be addressed in a later subsection of this review).
3 The term “substrate” is used for enzymatic reactions. For sensing processes,
the appropriate concept is “analyte”.

6708 A. Oprea, U. Weimar



are able to recognize the chemical nature of the gaseous envi-
ronment. The path from reception to olfactive perception is
complex and includes chemical, biochemical, physiological
and, at least for humans, psychologic stages [13–16]. In the
case of mammals (including humans) the olfactory process
starts in the nose and ends in the brain [17]. First, the odorant
is reversibly attached to the small soluble proteins—the
odorant-binding proteins (OBP) [18–27]—secreted in the na-
sal mucus4. Thus, the OBPs are accessible to a large number
of olfactory receptors (OR) in the nasal epithelium. The actual
reception takes place when the chemical components of the
odors are released from the OBPs to bind on the heptahelical
protein coupled with the G-protein in the cilia of the sensitive
neurons in the olfactory epithelium [31–33]. The specificity of
the G-protein-coupled receptors (GPCR), which is rather lim-
ited, is encoded on the specific multigene family [34, 35].
Discrimination of the odors at the physiological level makes
use of a combinatory approach [36–38]. Accordingly, one
gaseous analyte is recognized by several GPCRs, but it is
specifically detected only by one combination of them.
Using olfactory organs based on dozens to thousands of ol-
factory codes (genes), animals can discern two to three orders
of magnitude larger numbers of smells5. After probing their
ability to specifically bind gases/vapors [28, 39–41], different
elements of the biological odorant recognition systems, sup-
ported by adequate mathematical algorithms, have been
exploited towards gas sensors, as sketched in Fig. 2 [42–46].
The simpler receptor materials (peptides, proteins, and even
ORs) are more stable than the complex ones (olfactory neu-
rons, nasal epithelium, cell cultures of olfactory tissues) and
are therefore more often used in the applications. Many prac-
tical approaches employ impedimetric [39, 47, 48], field-
effect [49, 50], and electrical transducers, but there are also
several examples of GS based on MSTs.

Sankaran et al. used OBP LUSH peptides from
Drosophila, self-assembled on a quartz (Q) thickness shear
mode resonator (TSMR), to detect heavy alcohols (3-meth-
yl-1-butanol and 1-hexanol) associated with Salmonella con-
tamination in packaged beef. In principle, sensitivity of
~0.1Hz/ppmv with a lower limit of detection6 (LDL) below
5 ppmv should be enough to accomplish the task. However,
no experiments were performed to identify Salmonella in real
samples. The separation of the two alcohols addressed above
using principal component analysis (PCA, see section
“Evaluating the performance of the gas sensors and sensor

arrays” below) was good, but humidity was not considered
at all.

GGS sensor arrays consisting of gold nanoparticles modi-
fied with different peptides were employed by Compagnone
et al. to detect food aromas (cis-3-hexenol, terpinen-4-ol, ethyl
acetate and isopentyl acetate at 0.1% volume in ethanol, ace-
tonitrile, acetone and hexane as solvents) [51]. Their PCA
discrimination from the headspace atmosphere, created
through N2 bubbling of solutions, was rather good. Water
was excluded from the solvent list, even though the sensor
array has been calibrated against humidity, because H2O
slowed the reception mechanism.

Sensitive detection of VOCs (octenol, carvone) with wild-
type (wt) double-mutant (dm) bovine (b) and porcine (p)
OBPs, respectively, was reported by Di Pietrantonio et al.
[52]. The authors used two-ports 392 MHz surface acoustic
wave (SAW) transducers drop-coated with OBP solutions in
an array configuration (three sensing devices and an uncoated
reference device). They obtained linear calibration curves (see
Fig. 3) having maximal sensitivity of 25.9 Hz/ppmv and LDL
of 0.39 ppmv for octenol when measured with wtpOBP-based
sensors. The influence of temperature changes and humidity
background was compensated by the differential readout of
the sensors, each with respect to the reference SAW device.
Zhao et al. proposed a thin film bulk ultra-acoustic (~1.5 GHz)
resonator (FBAR) as transducer for a protein (AaegOBP22)-
functionalized odorant biosensor. Saturated vapor (200
ppmv7) of the N,N-diethyl-3-methylbenzamide (DEET) target
analyte was clearly detected, but with rather large noise [54].

Relatively recent approaches have evaluated the potential
specificity and binding strength of peptides and proteins to-
wards given gaseous analytes through molecular simulation
methods [55], virtual screening [56, 57] and in silico “exper-
iments” [58]. Synthetic poly(peptides) with the sequence
“RVNEWVIC”, found to be selective for acetic acid by Wu
et al. [55], were practically tested by Panigrahi et al. with
GGSs based on TSMRs [59]. Sensitivity towards acetic acid
of about 0.1Hz/ppmv and LDL of 2 ppmv satisfied application
requirements. The humidity influence was assumed to be min-
imal based on chemo-physical justifications, but no dedicated
measurements were carried out. The achievements based on
virtual screening and in silico approaches will be addressed
below in the section “Gravimetric sensor systems”, as they
better fit this topic.

Synthetic/tailored receptors

Because the long-term stability of the biological receptors is
rather poor, many researchers have replaced them with

4 In the case of insects and arthropods, the OBPs are secreted in the sensillum
lymph, having accessibility to a restricted number of odorant receptors inside a
sensillum only, but having greater diversity [25, 28–30].
5 Humans possess ~350 “olfactory” genes but are able to distinguish more
than 100,000 smells [37].
6 LDL and all other parameter describing the performance of the sensors will
be addressed at the beginning of the section “Targeted analytes” below)

7 The given value of the concentration was inferred by the authors of the
present review from the saturation vapor pressure provided by [53].
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synthetic materials having engineered sensing properties. The
most successful classes are discussed below.

Molecularly imprinted polymers Molecularly imprinted poly-
mers (MIP) have been devised as synthetic hosts able to pro-
vide increased affinity and specificity towards target/guest
molecules. They mimic the biological systems from which
they were inspired, with certain advantages in terms of

chemical stability, long-term preservation of the strength and
specificity of the binding sites, mechanical reliability, pressure
and temperature durability, ease of preparation and low cost
[60, 61]. However, they have some drawbacks (are large, rigid
and insoluble) with respect to the biological receptors, which
are usually smaller, flexible and mainly soluble [60]. The first
approach toMIPs dates back to 1931, when Polyakov’s group
succeeded in synthesizing silica gel with unusual adsorption

Fig. 2 Sensors based on
biological receptor materials.
Advantages in green and
drawbacks in red. Reproduced
with the kind permission of
Elsevier B.V from reference [42]

Fig. 1 The adsorption isotherms
at low analyte concentrations.
Molecular recognition results in
superposed Henry and Langmuir
isotherms. Reproduced with the
kind permission of ACS
Publications from reference [2]
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properties towards benzene, toluene and xylene [62] (this work
is briefly described in the ample review by Whitcombe et al.
[63]). Since then, a huge number of investigations have been
performed and their achievements reported in the literature.
Several relevant review are available [12, 60, 61, 63–79].
Very roughly, the main idea behind MIP preparation is to add
a template (target/guest molecule or a suitable substitute) and
functionalized monomers to the MIP precursors to enable poly-
merization, and to remove the template after polymer synthesis.
The resulting host material—the MIP—would have numerous
suitably shaped cavities possessing the complementarity

required in molecular recognition. There are a few dedicated
routes for the manufacture of MIPs, which are sketched in
Fig. 4.

The covalent route [80] relies on reversible covalent bind-
ing of the template with the reacting monomers. The stoichi-
ometry is ensured by the covalent type of the bonds. After
copolymerization with the cross-linker, the template is
disrupted by chemical cleavage (acid hydrolysis for instance).
Unfortunately, the number and variety of theMIPs obtained in
this way is rather limited by the scarce choice of suitable
templates and compatible monomers. The non-covalent route

Fig. 3 Calibration curves of three
sensors coated with different
OBPs (see the text for
assignation) towards octenol.
Reproduced with the kind
permission of Elsevier B.V. from
reference [52]

Fig. 4 MIP preparation routes. The routes are described in the text. Reproduced with the kind permission of John Wiley and Sons from reference [63]
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[81] uses a liquid phase process involving the template, func-
tional monomers, cross-linker, initiator and a solvent. The
template, which must be stable under preparation conditions,
spontaneously binds the functionalized monomers (self-
assembly process) by specific weak interactions. With the
aid of the initiator, which provides free radicals for the early
stages of the chain polymerization reaction when thermally or
optically triggered, the template-functional complex copoly-
merizes with the cross-linker towards a template containing
MIP. In a final preparation step, the template is removed by
dissolution, and the MIP is able to rebind the template at the
recognition sites. Besides the role played in the synthesis,
controlling the morphology of the polymer matrix, the cross-
linker stabilizes the imprinted binding locations and confers
mechanical stability to the MIP, while the solvent determines
its porosity [70]. There are a few other ways to realize the
imprint: stoichiometric non-covalent approach, semi-
covalent approach, metal ion-mediated approach [63] and
the sol-gel route [82]. With the early polymer imprinting tech-
niques, the choice of the reactants and reaction conditions was
mainly a matter of “chemical intuition”, and the desired MIP
specificity was gathered by long and unsystematic investiga-
tions, involving significant experimental efforts. The combi-
natorial methods [83] have improved the efficiency of the
screening in molecular imprinting, making use of automated
trial procedures. The rational MIP design, using thermody-
namic and physicochemical foundations, constituted a real
step forward in the field [84, 85]. The state of the art is repre-
sented by modeling of the template interaction with the pos-
sible functionalized monomers in the framework of molecular
mechanics/dynamics, empirical/semiclassical quantum me-
chanics or ab initio quantomechanical formalisms (Hartree-
Fock, Møllere-Plesset, DFT) [86–88]. In spite of the level
reached by the theoretical and experimental approaches to
MIP preparation, the specific recognition of target molecules
is rather limited because of the relatively large amount of
cross-linkers typically used in the synthesis routes, which al-
low for significant contributions from nonspecific binding
mechanisms (mainly through dispersion interactions).

Fu and Finklea generated two types of shape-selective cav-
ities (with hydroquinone and phenol non-covalently bound
templates) in a poly(acrylic) or poly(methacrylic) polymer ma-
trix [89]. The polymers were coated on the sensing TSMRs in a
differential sensor system through an interfacing
poly(isobutylene) film. Good response towards volatile organic
compounds (VOC), linear calibration curves, short response
(5/12 s) and acceptable recovery (11/90 s) times were achieved.
The sensitivity was proportional (but not directly proportional)
to the sensing layer thickness. This imprinting procedure con-
ferred additional sensitivity and selectivity and changed the
cross-sensitivity ratios among the tested analytes (trichloroeth-
ylene, benzene, toluene, heptane and carbon tetrachloride).
Unfortunately, the humidity was omitted from the cross-

sensitivity test. Starting from similar monomers, methacrylic
acid and acrylamide, Bunte et al. obtainedMIPs imprinted with
2,4,6-trinitrotoluene (TNT) and 2,4-dinitrotoluene (DNT) with
high sensitivity and specificity [90]. An analogous approach
was successfully used by Kikuchi et al. for the selective detec-
tion of terpenes (limonene, limonene oxide and α-pinene) [91].
From 4-vinyl pyridine (4VP), 1,4-divinyl benzene (DVB) and
2,2-azobis(isobutyronitrile) (AIBN) as functional monomer,
cross-linker and initiator, Hwang et al. synthesized MIPs
imprinted with acetoin and phenol for selective detection of
isopropyl methyl ketone (IMK) and toluene, respectively [92].

Cavitand receptor materials Compounds whose molecules
contain internal free regions, such as porphyrins [93–95], met-
al-free8 phthalocyanines [96], calixarenes [97–100] and
corroles [101], can in principle capture foreign atoms with
appropriate size and chemical properties. For example, the
cavity diameter of the calix[n]arenes with n = 4, 6, 8 influ-
ences the sensitivity towards chloroform, reaching the maxi-
mum for n = 8 [102]. Q-TSMR arrays coated with porphyrins
have been successfully employed for the quality control of
chocolate [103] and identification of microorganisms [104].
The approaches ware based on specific combinations of
VOCs present in the vicinity of analyzed systems which could
be recognized with multivariate data analysis (MDA). For all
data evaluation methods9 addressed from here on, please refer
to the section “Evaluating the performance of the gas sensors
and sensor arrays” below. Another cavitand material type,
GUMBOS (acronym for “group of uniform materials based
on organic salts)” based on cyclic tetrapyrroles such as phtha-
locyanines and porphyrins, have been produced and used with
quartz-TSMRs (Q-TSMRs) for detection of VOCs (methanol,
ethanol, 1-propanol, 2-propanol, 1-butanol, acetone, chloro-
form, toluene, etc.) [105]. The phthalocyanines (Pc) without
central atom(s) are currently not reported as gas-sensitive (by
any transduction modality), while several metal Pcs have been
successfully used for such purposes. One should note that in
the case of metal–Pcs, or more generally, of all functionalized
cavitands, the favorable chemical interaction can prevail over
the geometric matching, and the ad/absorption does not take
place, as expected, at the location with complementary shape,
but at the chemically suitable sites. For instance, Harbeck et al.
synthes ized 2,3 ,9 ,10,16,17 ,23,24-oc takis- (7 ,11-
dioxaheptadecane-9-oxo) phthalocyanine and its Ni and Co
derivatives and investigated their sensing potential towards
several classes of VOCs with multi-reflection attenuated total

8 Here, metal-free does not mean a phthalocyanine without any central atom,
but a H2 phthalocyanine.
9 Data evaluation methods addressed are multivariate data analysis and artifi-
cial intelligence procedures.
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reflection (ATR) Fourier transform infrared (FTIR) spectros-
copy and TSMRs [106]. From the assignation and intensity of
the ATR-FTIR bands relevant for the sensing process10 and
TSMR large responses towards nonpolar VOCs (n-hexane),
the authors deduced an analyte binding to the substituent alk-
oxy groups of the Pc receptor through van der Waals interac-
tions. The polar compounds (methanol, ethanol, acetonitrile,
ethyl acetate) were better detected with fluorinated alkyloxy-
substituted Pcs [107, 108].

Functionalized receptor materials It is difficult to find mate-
rials which have, at the same time, good compatibility with the
transducer, increased physical and chemical stability, and
good gas-sensing properties. The functionalized receptor ma-
terials are a class of materials generally possessing the first
two requirements, but which gather the gas sensitivity/
specificity either by attaching chemical active groups, parti-
cles or nanostructures, or through intentional modification of
the local material structure. One always seeks better molecular
complementarity of the receptor to the analyte and, by that, a
convenient increase in the receptor performance. The
functionalization can be made individually, using the chemi-
cal affinity of the added entities to the host material, or by
devising classes of materials which provide functionalization
sites and high gas sorption capabilities.

Functionalization of different plain host materials.
Historically, the specific functionalization was the first modal-
ity employed by the researchers to improve the gas-sensing
performance of plain sensing polymers, cavitands and two-
dimensional (2D) or one-dimensional (1D) materials [109,
110]. A systematic investigation on poly(siloxanes) by
Hierlemann et al. proved that a suitable choice of the side
groups attached to the polymers increases the partition ratio
of the targeted analytes [111]. Many researchers have reported
good results in gas/vapor sensing with modified polymers
[112–114]. To upgrade the sensing performances of
cavitands, they were functionalized with side groups like
tetra-tert-butyl [115] and alkoxy [106] for phthalocyanines
or dihydroxyphenyl for corroles [101], or combined in com-
plex compounds/mixtures [93, 95, 105, 116]. Even though
low-dimensional materials have been regarded as intrinsically
more sensitive and selective than bulk materials, many re-
searchers are striving to further improve their sensitive fea-
tures by attaching different nanoparticles or functional struc-
tures. Zong et al. successfully functionalized hollow mesopo-
rous silica spheres with poly(dopamine) to detect

formaldehyde released from food 11 [117]. Bonding p-hexa-
fluoroisopropanol aniline to mesoporous TiO2-SiO2, Zhu
et al. measured concentrations of nerve agent simulant dimeth-
yl methyl phosphonate (DMMP) down to 100 ppbv [118].
The sensing material was coated on Q-TSMRs. Data regard-
ing the influence of humidity on the sensor response are miss-
ing. Ogimoto et al. demonstrated the suitability of mesoporous
functionalized SiO2 nanoparticle and films for the detection of
low levels of ammonia in human breath [119]. A Cu(II) com-
plex [Cu(DDS)2(Cl)2(MeOH)2]

12 ( see Fig. 5) for formalde-
hyde sensing was designed and synthesized by Wang et al.
directly on Cu-coated Q-TSMRs, ensuring intimate coupling
between receptor and transducers [120]. According to the au-
thors’ DFT calculations, the reported sensitivity (LDL of
50ppbv) and selectivity are due to the reversible binding of
formaldehyde on the amino groups of the complex compound.
The reported low cross-sensitivity to humidity is misleading
because the water concentration in the test mixture was only
100ppmv.

Although they are good conductors, low-dimensional car-
bon materials13 [121] like carbon nanotubes (CNT)
[122–124], graphene [125–129] and reduced graphene oxide
(RGO) [130, 131] are often functionalized [132] (see Fig. 6)
[133], and used not only for conductometric [134] or field-
effect [135] gas sensors, but also for gravimetric ones. Asad
et al. devised SAW H2S gas sensors based on single-walled
CNTs decorated with Cu [136]. These GGSs have LDL below
1 ppmv at room temperature and a reduced cross-sensitivity to
humidity (2 ppmv H2S roughly corresponds to 40% relative
humidity [RH])14. Phthalocyanine- and porphin-
functionalized CNTs were used by Ndiaye et al. to detect
aromatic VOCs with detection limits below the threshold limit
values (TLV)/time-weighted averages (TWA) for these
analytes [137]. RGO is the most widely used low-
dimensional carbon-based material for gas sensing, mainly
functionalized. Yu et al. employed Au nanoparticles (AuNP)
to upgrade porous sheets of RGO coated on micro-cantilevers
towards VOC detection [138]. The sensors were selective for
trimethylamine (TMA). The authors reported a lower influ-
ence of 100 ppmv humidity on the response of AuNP-RGO
sensing layers (0.4 Hz) than for AuNP-GO layers (2.8Hz).
However, when extrapolating to 50% RH, as typically present
in the environment, one gets a frequency shift of ~40 Hz,

10 The ATR-FTIR spectra were recorded for the synthesized Pcs alone and
together with ad/absorbed analyte. The difference between the two above-
addressed spectra (difference spectra) and the known analyte spectra enabled
the identification of the vibrations specific to the absorbent–absorbate
complexes.
11 The results will be addressed in the section “Targeted analytes” below.

12 DDS stands for 4,4-diaminodiphenyl sulfone, andMeOH formethanol. The
compound was already addressed in the first part of the review in the section
“Specific interactions and their role in receptor sensitivity and selectivity”.
13 This class of materials could also be addressed in the next section,
“Functionalization of specially devised receptor materials”, due to some kind
of regular free spaces inside. However, it has been included in the present
paragraph because its members are one-element materials whose intrinsic reg-
ularity comes from the nature of the chemical bonding and from the symmetry
it induces.
14 Both values (detection limit and cross-sensitivity) inferred by the authors of
the present review from the original data of the study [136].

6713Gas sensors based on mass-sensitive transducers. Part 2: Improving the sensors towards practical application



Fig. 5 Stacked chart of the Cu(II)
complex for formaldehyde
detection synthesized by Wang
et al. Reproduced with the kind
permission of Elsevier B.V. from
reference [120]

Fig. 6 “Different functionalization approaches for single-wall nanotubes
(SWNT) of carbon. A) defect-group functionalization, B) covalent side-
wall functionalization, C) non-covalent exohedral functionalization with
surfactants, D) non-covalent exohedral functionalization with polymers,

andE) endohedral functionalization with, for example, C60. For methods
B ± E, the tubes are drawn in idealized fashion, but defects are found in
real situations” (original caption). Reproduced with the kind permission
of Wiley VCH from reference [132]
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which is five times larger than the response to 10 ppmv TMA
(roughly the TLV-TWA for this analyte). Almost the
same group of authors used carboxyl-functionalized
AuNPs grown in situ on RGO for NH3 sensing with a
similar cantilever [139]. The selectivity to ammonia was
satisfactory at the evaluated concentration of 300 ppmv,
but again one obtains sensor responses extrapolated to
50% RH larger by an order of magnitude than TLV-
TWA of NH3 (~30 ppmv).

Functionalization of specially devised receptor materials.
Two large categories are relevant here, the zeolites [140] and
the porous coordinative polymers [141], usually addressed as
metallo-organic frameworks (MOF). Except for natural zeolites,
which are increasingly less used for gas sensing, these materials
are synthesized to target the required properties for the desired
application15. Often, established members of these families are
functionalized and utilized as receptor materials. The zeolites are
crystalline materials (aluminosilicates and similar ones) with reg-
ular nano and meso porosity, having a rigid three-dimensional
(3D) structure [153]. Though encountered as natural mineral, for
the purposes of gas sensing [154, 155] they are chemically syn-
thesized [140] and coated on transducer devices [156].
Urbiztondo et al. tuned the properties of zeolites either through
synthesis or by modifying commercial products through ion ex-
change before deposition as colloidal suspensions on cantilevers
[157]. A detection limit of ~0.5ppmv o-trinitrotoluene was ob-
tained with the Co2+-BEA zeolite (for BEA zeolite see reference
[156]). Using a La-modified AlPO-5 zeolite, Wang et al. mea-
sured NH3 concentrations down to 60 ppbv [158]. The
electrodeless Q-TSMR was read out in a wireless setup. A sig-
nificant influence (about a factor 2) of the background humidity
on the responses towards ammonia might limit the sensor
applicability.

MOFs were devised to expand the capabilities of zeolites.
In the MOF structure, metal ions or clusters are linked by
organic ligands [143, 144, 159–163]. The MOFs became in-
teresting for chemical sensing [164, 165] in general and for the
particular case of gas sensing [166–169] due to their large
specific area and selective gas adsorption, especially when
functionalized [163, 170–172]. Lv et al. coated micro-
cantilevers with Ni-MOF-7416 and succeeded in sensitive de-
tection of CO (LDL=10 ppbv) in the absence of humidity. The
same group of authors used home-synthesized MOF-517 to
detect aniline with an LDL lower than 1,4 ppmv, also
with micro-cantilever transducers [174]. However, the

cross-sensitivity to humidity was two orders of magnitude
larger. Yamagiwa et al. reported the detection of VOCs
wi th [Cu3 (BTC)2 (H2O)3 ] ∙xH2O (BTC = 1 ,3 ,5 -
benzenetricarboxylate) and [Zn4O(BDC)3] (BDC = 1,4-
benzenedicarboxylate) [175]. The transducers employed
were Q-TSMRs or silicon micro-cantilevers. The sensitiv-
ity enabled measurements in the TLV-TWA range for the
selected analytes, but the selectivity, expressed through
comparative absorption isotherms only, seems to have
been rather poor. The influence of humidity was not ad-
dressed. He et al. synthesized a covalent organic frame-
work (COF) through the Schiff base condensation of
1-(4,7-bis(4-aminophenyl)-1H-benzoimidazole-2-
y l ) e than -1-o l (BABE) wi th 1 ,3 ,6 ,8 - t e t r ak i s (4 -
formylphenyl)pyrene (TFPy), which they abbreviated
BABE-TFPy COF [176]. It was sensitive (LDL~ 1 ppmv)
to 2-chloroethyl ethyl sulphide (CEES), a mustard gas
simulant. DFT calculations revealed evidence of a double
hydrogen bond between the receptor material and the an-
alyte (one between the OH group of BABE and thioether
of CEES and another between the NH group of BABE
and Cl of CEES), which provided good selectivity except-
ing humidity18. Wang et al. reported high sensitivity
(100Hz/ppmv, LDL~60ppbv) towards ammonia for a La-
doped AlPO-5 framework (refer to [153] for the material)
coated on TSMR transducers [158]. The logarithmic de-
pendence of the calibration curve in the TLV-TWA range
(25 ppmv) would not be a real issue, but the high cross-
sensitivity to humidity (rather doubling the response to
ammonia) requires hardware/software compensation.
General investigations on the kinetics of the gas uptake
in ultra-microporous frameworks with fast SAW sensors
were reported by Paschke et al. [177]. The authors
showed the ability to infer the diffusion rates of gases in
the addressed sensing materials.

Composite, polymorph and unusual receptor materials
Composite receptor materials are customarily prepared from
different classes of compounds with dissimilar properties.
Amorphous materials, which do not stress the MST, can be
mixed with rigid or less adhesive materials to obtain better
sensor performance. Such an approach is even more relevant
for dielectric or chemoresistive sensors, where the compo-
nents of the sensing mixture can individually perform the
reception and transduction functions. The composite film
from cellulose acetate and a representative compound (1-n-
butyl-2,3-dimethylimidazolium hexafluorophosphate) of

15 The gas sensing is not the main target application of such materials, which
are mostly used as molecular sieves [142] or for gas storage, chemical com-
pound separation and heterogeneous catalysis [143–152].
16 The structure and names of some types of MOFs can be found in references
[159, 173].
17 MOF-5 is addressed, for example, by the references [143, 159].

18 Table S3 in the supporting information of reference [176] shows that the
water vapor concentration in the cross-sensitivity test was 1400 ppm while the
CEES concentration was 22.6 ppm. Extrapolating the water sensitivity to 50%
RH at 40 °C (~20,000 ppm) will result in a response twice as large for back-
ground humidity as for CEES.
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GUMBOS are sensitive to VOCs and have been utilized as
GGS with a TSMR transducer [178]. Lal and Tiwari demon-
strated the suitability of poly(epichlorohydrin) (PECH) alkyd
resin used as composite with nanaoclay for the selective rec-
ognition of chemical warfare agent (CWA) simulants (1-
chloro-2-[(2-chloroethyl)sulfanyl]ethane (SM) and DMMP
[179]. In a more sophisticated approach, Chen et al. proposed
a mixture consisting of MIP (methacrylic acid with ethylene
glycol dimethacrylate copolymer imprinted with hexanal) and
hydrophobic silica nanoparticles [180]. Besides high specific-
ity for hexanal, the receptor exhibited low cross-sensitivity to
humidity (visible on the dynamic response with humidity in
background, but not certified in a dedicated experiment with
incremental humidity). A GO and poly(styrene) composite
was found to be sensitive to ammonia down to a few ppmv
[181]. CGO/chitosan nanocomposites for amine vapors were
reported by Zhang et al. [182]. Sensitivity of 2–5 Hz/ppmv
withQ-TSMR transducers, LDL below 3 ppmv and rather low
cross-sensitivity to other VOCs would make these sensors
appropriate for amine detection, but the large influence of
background humidity is a real issue. SAW transducers cov-
ered with ZnO/SiO2 composite films were employed byWang
et al. to detect ammonia well below 10 ppmv. The sensing
mechanism ascertained by the authors involves a charge trans-
fer between the analyte and ZnO from the sensing layer, in-
ducing an increase in the sensing layer conductivity, and by
that, a change in the resonance frequency of the transducer19.
This should explain the low cross-sensitivity to other tested
gases. However, the influence of the background humidity on
the sensor response was not discussed and the sensing mech-
anism was not experimentally proved. A protonated
poly(ethylenimine)-graphene oxide (P-PEI-GO) nanocom-
posite thin film was deposited by dipping onto Q-TSMRs
for humidity measurements by Tai et al. [183]. The sensitivity
increased linearly with the number of coated layers, but was
strongly nonlinear with respect to humidity. The sensing layer
stability over 30 days was good.

The polymorph receptors consisted of several thin layers and
were used to better20 attach the sensing material to the trans-
ducer surface. Biological layers (acetylcholinesterase [AChE])
immobilized on TSMRs previously coated with reduced
graphene oxide (RGO) were successfully employed for gas
sensing (CWA simulant DMMP) [184]. Figure 7 illustrates this
bimorph sensing film. GO and ZnO layered receptors deposited
by Yuan et al. on TSMRs showed increased sensitivity and fast
response to humidity [185]. Almost the same group of authors
reported on RH evaluation with GO/poly(ethyleneimine), with

similar performance [186]. In order to strongly reduce the cross-
sensitivity to humidity of the poly(dopamine) (PDA) sensing
layer for formaldehyde GGSs, Wang et al. prepared a
superhydrophobic coating of PDA with polymerized n-
octadecylsiloxane (PODS) nanostructures [187]. The bimorph
receptor displayed good immunity to water vapor (contact an-
gles to water larger than 140°). Its response towards 97% RH
was equal to the one to 5 ppmv HCHO only, preserving at the
same time the HCHO sensitivity.

Ionic liquids have also been tested as sensing materials
[188–190]. In the case of six imidazolium-based ionic liquids,
good signals and specificity to ethanol were achieved [190].
Unfortunately, an inappropriate choice of the concentrations
for humidity tests hid a huge cross-sensitivity to this analyte.
Reference [188] demonstrates the discrimination of VOCs
with high-temperature ionic liquids. Linear discriminant anal-
ysis (LDA) gave good results, but in the absence of humidity.

Detection of enantiomers in the gas phase

For analytes possessing chiral symmetry [191–193], discrimi-
nation of the enantiomers in gaseous mixtures is possible by
using receptors with complementary chirality, as generally
accounted for by molecular recognition principles [12, 80,
194–201]. The sensing materials employed to achieve this
aim largely belong to classes already addressed above. They
are either suitably chosen or specially devised [163, 202–204].
Making use of receptors based either on both enantiomers of
Chirasil-Val derivatives [205, 206] or on cyclodextrin deriva-
tives [207], Bodenhöfer et al. were able to selectively detect the
enantiomers of amino acids and lactate, and the chiral gaseous
anesthetics isoflurane, enflurane and desflurane, respectively.
In all cases the transducer was a TSMR. These authors also
evaluated the chiral discrimination factors21 of the receptors
for the given analytes and the changes in the corresponding
differences in the sorption free enthalpies, enthalpies and entro-
pies22. The detection specificity for the R (right/rechtus) and S
(left/sinister) enantiomers ofN-trifluoroacetyl-alanin methyl es-
ter (N-TFA-Ala-Ome) with enantioselective receptors like (R,
S)-octyl-Chirasil-Val is shown in Fig. 8. The exposure to race-
mic mixtures led to similar responses from both types of recep-
tors. The enantiomeric discrimination factor was found to be23,
in mean value, αSensor = 1.6,3 and the corresponding enantio-
meric difference of the free enthalpy, ΔΔG0 = −1050 ∓ 100 J/
mol at 303K. A witness polydimethylsiloxane-coated TSMR
had low and nonselective responses.

19 This type of transduction was addressed in the first part of this review in the
section “MSTs combining mass sensitivity with other types of sensing”
20 Better in terms of adhesion, acoustic impedance matching, chemical com-
patibility and transducer protection against corrosive gases/vapor.

21 The chiral discrimination factor is the ratio of the partition ratios of the
enantiomers.
22 This evaluation is possible by twice applying the equation 18 from the first
part of the review.
23 This value was obtained with the authors’ definition, which consider the
ratio of the sensor signals.
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The chiral discrimination ability of cyclodextrins has been
extensively addressed in the literature, and the discrimination
features (discrimination factors and differential thermodynam-
ic parameters) acquired in gravimetric, calorimetric, chro-
matographic and nuclear magnetic resonance (NMR) experi-
ments have been reported [2, 208–212]. Other cavitands, such
as porphyrins, have also been considered as enantioselective
receptors, either alone [213] or in association with other ma-
terials [214]. The advances in the synthesis/preparation of gas-
sensing materials brought into play more diverse chiral recep-
tors: macrocyclic arenes [100], metal-organic cages/
containers [204], metal-organic frameworks [163, 171] and
thin film organic frameworks [145]. An extended review ded-
icated to the use of stereoregular chiral polymers for the sep-
aration of enantiomers (the liquid phase is also largely ad-
dressed therein) was elaborated by Shen and Okamoto [215].

Gravimetric sensor systems

The experimental results obtained with the selectivity strategies
listed above did not fully confirm the optimistic expectations
they raised because of the unspecific interactions which still
contributed significantly to the sensor response. Therefore,
gravimetric sensor systems (GSS), containing sensors with dif-
ferent specificity and, possibly, hardware for online data pro-
cessing, have been seen as an effective way to address the
selectivity problems that typically occur in the gas-sensing
field. Since the variability in the responses of a sensor system
is much greater than that coming from a single sensor, diverse
approaches have been employed to build GSSs. The sensor
array (SA) is the simplest system variant, in which either dis-
crete sensors are assembled mechanically and electrically to-
gether, or integrated sensors are micro-machined on a single
chip [216–219]. The degree of sensor signal processing at the
array level is limited and usually lacks the chemical recognition
facility. Electronic noses (EN) are instruments/devices
encompassing analyte sampling stages, large and complex

sensor arrays, readout and processing electronics, and chemo-
metric software [43, 220–225]. They are able to detect and
recognize odors and flavors and their individual chemical com-
ponents in the gas phase. Several examples of gravimetric SAs
reported in the literature are given in the following (the first of
them for a historical perspective). The chemometric methods
they employ will be reviewed in the section “Evaluating the
performance of the gas sensors and sensor arrays”. A discrete
SA of TSMRs coated with six different poly(siloxanes) was
employed by Hierlemann et al. to identify and quantify hazard-
ous VOCs [226]. The values predicted by the array in test
events (using partial least squares regression [PLSR]) were in
good agreement with the true values. Kim et al. utilized
polymer-coated cantilever arrays for qualitative and quantita-
tive analysis of VOC mixtures [227]. The array output data
were also evaluated with PLSR. Micro-machined cantilever
arrays integrated on silicon chips using complementary met-
al–oxide–semiconductor (CMOS) technology were reported
by Lange et al. [216]. They combine the advantage of direct
signal amplification/processing with the increased discrimina-
tory power enabled by multiple devices and sensing coatings.
Thus, different features of the analytes and receptors are used
simultaneously, and the reception specificity increases. Dickert
et al. demonstrated the selective detection of 0–200 ppmv xy-
lene in a common humidity background (up to 60% RH) with
Q-TSMR arrays coated with compounds providing molecular
complementarity to the targeted analytes [228]. The hardware
sensing system was supported by MDA (PLSR) and artificial
neural networks (ANN). The influence of humidity was practi-
cally rejected by the numerical algorithms. Discrete Love-wave
sensor arrays coated with selected polymers (three
poly(siloxanes), poly(ethyleneimine), poly(epichlorohydrin)
and Carbowax) enabled the sensitive detection of DMMP
(down to 40 ppbv) and good CWA discrimination by PCA
combined with probabilistic neural networks (PNN) [229]. No
false assignations occurred among the reported events. Roughly
the same approach was employed by Senesac et al. for 11

Fig. 7 Polymorph layered receptor based on reduced graphene oxide and acetylcholinesterase for the detection of dimethyl methyl phosphonate. a. The
GGS sketch. b. The polymorph structure. Reproduced with the kind permission of Elsevier B.V. from reference [184]
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inorganic and organic vapors and gases [230]. The responses of
the 10 cantilevers in the array were processed by a back-
propagation (BP) ANN. A comparison of gravimetric and
chemoresistive SAs based on polycyclic aromatic hydrocar-
bons with different side groups was reported by Bachar et al.
[231]. Both types of arrays provided consistent results when
assisted by PCA and discriminant factor analysis (DFA). Lu
et al. reported on microfabricated FBAR sensor arrays coated
with cavitands (calix[8]arene, porphyrin, β-cyclodextrin,
cucurbit[8]uril) for selective VOC detection [232]. The authors
assessed the suitability of their devices for an integrated elec-
tronic nose, but they did not fabricate the EN or use MDA in
their investigation. The exposure to the analytes (chloroform,
acetone, methanol, hexane, etc.) was performed at very high
concentrations (10% to 100% from each saturation vapor pres-
sure) without background humidity. Though nice, the results
seem not to be relevant for the conditions encountered in real
applications. In a different approach, Mascini et al. demonstrat-
ed the possibility to “tailor” sensors for gas-sensing arrays using
the virtual screening of a large database of tripeptides (8000
elements) in virtual interaction (molecular docking simulations)
with VOCs (58 vapors) from five chemical classes [57]. Then,
using a combinatorial method, 120 tripeptides with the highest
interaction specificity were further employed to generate ~7900

virtual tetrapeptides, from which five were selected, prepared
and covalently attached to gold nanoparticles and coated on
TSMRs. The data outputted by the real arrays during gas expo-
sure were evaluated in the PCA frame, confirming the good
gas-sensing performance suggested by the design.

Based on atomistic molecular simulations24, Gustafson and
Wilmer estimated the best choice among nine potential MOF
receptors for an array theoretically designed to discriminate
and recognize different target gases [234]. To illustrate the
approach, CH4, N2 and O2 were selected. The aim was to
reduce the effort spent in trial-and-error experiments and to
improve the host–guest matching of the analyte–receptor pair,
on the one hand, and to reduce the dimensionality25 of the
array, on the other hand. The SA was numerically tuned for
CH4 detection, but any target analyte is in principle eligible.
Complementing somewhat the virtual screening of receptor
materials, Speller et al. devised a hardware virtual sensor array
whose virtual sensors were the overtone responses of single
Q-TSMR GGSs [236, 237]. A virtual sensor array for VOCs
was obtained by Zeng et al., modulating the temperature of a
film bulk acoustic wave (FBAW) transducer covered with
self-assembled organic films [238]. The exposure events to
the same analyte at different partial pressures appeared as
straight lines in the first two principal components (PC).
Dissimilar analytes were separated mainly along PC1 and
clustered very well when classified with LDA. Chen et al.
realized a SAW virtual array, adding a chromatographic-like
column to a SAW sensor and evaluating the retention times

24 Grand canonical Monte Carlo simulations performed using the RASPA
software package [233].
25 The optimization uses Kullback-Leibler divergence evaluations [235].

Fig. 8 “Normalized (with regard to the frequency shift due to polymer
deposition) TSMR responses to different concentrations (p/p0: adjusted
pressure with respect to the saturation vapor pressure at 298K) of (R)-,
(S)- and racemic N-trifluoroacetyl-alanin methyl ester. The responses of
three (R)- (open symbols), three (S)- sensors (filled symbols) and one SE-

30 sensor are displayed. Sensor index is given at the bottom” (original
caption). Reproduced (the remake was necessary due to reduced resolu-
tion of original figure, whose faithful copy is) after [206]. The use of the
figure was allowed by Springer Nature
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for different analytes specific to lung cancer [239]. A very
ingenious paper cantilever array functionalized with poly-
mers, operating in deflection mode and with a visual readout,
was devised and tested by Fraiwan et al. [240]. The LDA
canonical score plot proved the complete separation of the
clusters for acetone, methanol, ethanol and tetrahydrofuran.
Many other authors report the successful use of more or less
conventional GGS arrays to solve analytical problems in gas
detection: ionic liquids Q-TSMRs for VOCs [241–244] or for
explosive vapors/gases [245], SiO2-NP functionalized with
organic materials Q-TSMRs for breath analysis [246],
AuNP-peptide Q-TSMRs for food aroma detection [51],
poly(acrylic acid) MIP on Q-TSMRs for aldehyde [247] and
organic acids [248] in body odor, peptide-modified ZnO-NP
on Q-TSMRs for organic VOCs [249], biomimetic MIPs on
Q-TSMRs for terpenes from herbs [250], GO and N-substitut-
ed pyrrole derivative-based films on Q-TSMRs for toxic gases
(CO, NH3 and NO2) [251], metallo-porphyrins and AuNP-
peptide on Q-TSMRs for chocolate quality control, [103],
SWCNT/organic materials on Q-TSMRs for ambient air com-
position (as example) [252], porphyrin Q-TSMRs for vapor
released by microorganisms [104], polymer films on Si canti-
levers for VOCs, [253, 254] and MIP on SAW for CWA
detection [255]. In order to increase the accuracy of gas sens-
ing, arrays of GGSs together with other types of gas sensors
have been devised and tested. They will not be fully addressed
in this review, but examples include integrated micro-
cantilevers with micro-calorimeters and capacitors
[256–258], Q-TSMRs with chemo-resistors [231, 259],
SAW, Q-TSMRs and silica optical fiber [260]. An extended
overview is available in the table as Annex.

The studies in the field of EN are quite old, some of them
resulting in commercial instrumentation [220]. Amodular hybrid
EN (MOSES ll) was devised by Ulmer et al., including
QTSMRs together with metal oxide, electrochemical and calori-
metric sensors [261]. It uses an Agilent/HP 7694 headspace
autosampler when required. In evaluation tests, the VOC mix-
tures, coffee and tobacco flavors and other odors were well sep-
arated and recognized. McGill et al. reported an EN (NRL-
SAWRHINO) based on SAW sensing devices coated with func-
tionalized polymers for CWA [262]. The instrument employs, as
a first stage, a trap-and-purge gas–solid chromatographic col-
umn. The discrimination and clustering in the first two principal
components of the nerve and blister chemical agents, with vari-
ous interferents in the background, was error-free. AnENusing a
chromatographic column and poly(isobutylene) virtual SAW ar-
ray was developed by Chen et al. to detect lung cancer through
11 marker VOCs [239]. The postprocessing of the signals was
conducted using a BP-ANN which delivered a graphical output
towards an image recognition approach. There was no incorrect
disease identification, but one ill and one healthy person (from 5
ill and 5 healthy) were categorized as suspects only. Starting
from an eight-cantilever array functionalized with polymers,

Lang et al. [263] built an EN for fragrance characterization
and identification of disease-specific odors. The transduc-
ers were operated in proportional bending mode, induced
by swelling of the sensing layers, with optical readout.
The acquisition of beam deflection amplitudes at five suc-
cessive time points during the exposure increased the di-
mension of the array output to 40. The nose was able to
separate very well, in the plane of the first two principal
components, the common VOCs, different natural scents
and VOCs specific to diseases. With a cantilever EN
employing ANN, Leis et al. were able to detect DMMP
in ppbv range in ternary mixtures with water and ethanol
in ppmv ranges [264]. Although scientifically relevant,
this performance would not be enough in a practical ap-
plication, where the humidity is much higher. Fernandes
et al. used a SAW-EN to detect VOCs [265]. The PCA
discrimination for equal analyte concentrations (50 ppmv)
in mixtures was good, but when the concentrations were
spread over large ranges, the clusters overlapped. A chro-
matographic column connected to Q-TSMRs was utilized
by Rivai et al. to construct an EN for VOCs and odors
[266]. Electronic signal conditioning and ANN pattern
recognition allowed the authors to map a large number
of odors and to discern more the 20 of them in a 2D
PCA plot. Magna et al. utilized gas specificity induced
by the preparation route of porphyrin-functionalized
ZnO (coated on Q-TSMRs) to enable selective operation
of an EN designed to detect VOCs [94]. Some studies
addressing both sensor SA and EN were already consid-
ered in the SA paragraph above, while reports on practical
applications with EN will be referred to in the dedicated
section “Targeted analytes and applications”. Pertinent re-
views devoted to bioelectronic noses, related biomaterials
and artificial olfaction were published not too long ago by
Wasilewski et al. [46, 224] and Barbosa et al. [45]. There
are also studies investigating accessories for SA and EN
as pre-concentration units [267, 268] or ASIC interfaces
for TSMRs and micro-resistors (μR) [269]. In the litera-
ture, reviews can be found dedicated to gravimetric sen-
sors, SA and EN based on given types of MSTs [219,
222, 270, 271] for instance.

Deposition methods for sensing layers
on MSTs

The most appropriate receptors for MSTs are thin sensing
layers firmly attached to the transducer surface. The thickness
should fit the MST operating requirements addressed in the
section “Mass-sensitive transducers” of the first review part.
Therefore, coating procedures for thin films are largely
employed, and are well surveyed by the general literature
[272–279]. A schematic overview of several surface coating
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methods as proposed byOluwatosin Abegunde et al. is includ-
ed in Fig. 9 [272].

A few of these will be referred to below, with additional
references. A complete overview of the most commonly
employed methods for the manufacture of GGSs is contained
in Annex, where they are reported together with sensor
performance.

Dip and drop coating/casting are the simplest coating
methods, but have lower precision and result in large spreads
of the morphology and geometric parameters of the deposited
layers [280]. Therefore, they are mainly utilized in the incip-
ient phases of an investigation. Automated variants of the
methods can enable the manufacture of less demanding films.
Das et al. [281] reported a process involving dipping followed
by polymerization to coat castor oil with different amounts of
benzoyl peroxide on TSMRs sensitive to aliphatic amine va-
pors. Ayad et al. used drop casting to prepare chitosan/
poly(aniline) nanofibers for TSMR detection of methyl/
dimethyl amine and ethanol [282]. Poly(aniline) emeraldine
salt thin films doped with different acids were also deposited
by dip coating on TSMRs as VOC sensors [283]. Figure 10
shows the morphology of drop-coated Q-TSNRs with hexanal
MIPs and their composite with hydrophobic silica, as prepared
by Chen et al. [180].

Spray coating, inkjet printing, electrospray coating,
spin coating and electrospinning enable the covering of sur-
faces with materials solubilized or suspended as powders in
carrier solvents. Through spray coating, solutions/suspensions
are transformed into aerosol flow by a nozzle [284–286].
Spray coating is very popular for polymeric coating of
TSMRs [185, 186]. Sometimes a manual version, airbrush
coating, is preferred [243, 287]. The morphology of a layer
family (GO, PANI, and GO/SnO2/PANI) deposited by air-
brush spray coating on an Ag Q-TSMR electrode by Zhang

et al. is shown in Fig. 11 [287]. Humidity evaluation with this
layer is addressed in the paragraph “Humidity” below. Inkjet
printing is the modern version of spray coating inspired by
paper printing technologies [288]. It allows for better control
of the coated area and film thickness and porosity, being suit-
able for small devices where precision is a key requirement.
Figure 12 shows the SEM image of carboxyl group-
functionalized mesoporous silica nanoparticles (C-MSNs)
inkjet-printed on the active area of a Si micro-cantilever for
ammonia detection [289]. Spin coating combines drop casting
with high-speed rotation of the substrate. Because of centrifu-
gation, rather uniform and smooth layers can be produced.
Electrospray coating [290, 291] and electrospinning [292,
293] use electrical fields to improve the deposition and to
produce fiber layers/structures. Jia et al. deposited nanofibers
with different specific surface areas on Q-TSMRs from poly(-
styrene-block-maleic acid) by electrospinning [294] and
poly(acrylic acid) (PAA) by electrospray/electrospinning for
ammonia detection [295] (see Fig. 13). Electro-netting and
electrospinning were employed by Wang et al. to coat
TSMRs with two-dimensional layers of pure and NaCl-
doped poly(acrylic acid) for trimethylamine detection [296]

Self-assembly and Langmuir-Blodgett techniques en-
able the formation/deposition of molecular monolayers, main-
ly of organic compounds, through supramolecular processes
[297–301]. The methods have also been used for the prepara-
tion of gas-sensing monolayers [102]. Xie at al. reported ZnO
colloid spheres for alcohol detection prepared via self-
assembly [302]. Figure 14 shows the self-assembly of a
hyper-branched polymer on a Si micro-cantilever for
DMMP detection prepared by Guo et al. [303].

Chemo-physical methods The methods included here are
numerous [273]: chemical vapor deposition (CVD),

Fig. 9 Schematic overview of several surface coating methods. Reproduced (the remake was necessary due to reduced resolution of original figure,
whose faithful copy is) with the kind permission of the authors and AIMS Press from reference [272]
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plasma-enhanced chemical vapor deposition (PECVD),
sputtering (with the variants direct current [304], radiofre-
quency, reactive and magnetron), thermal evaporation (TE)
(with the electron gun/beam variant), atomic layer deposi-
tion (ALD) [305–308], molecular beam epitaxy (MBE)
[284], pulsed laser vaporization and deposition (PLD)
[309], and other laser processing techniques [310, 311].
They are suitable for inorganic thin and very thin layers.
Some of them, CVD, PECVD and TE, can also be
employed for soft organic materials [312].

Electrochemical methods Almost all the MSTs contain metal-
lic electrode structures. Certain types of electrodes are appro-
priate for electrochemical deposition of sensing materials, or
at least for electrochemical polymerization. Because their
electrodes cover a compact device area, TSMRs have been
mostly used in electrochemically assisted processes. Pristine
and Pd-doped ZnO nanorods have been electrochemically
grown (in two steps) on quartz TSMRs and used for volatile
organic compound (VOCs) detection at room temperature
[313].

Fig. 11 The morphology of GO (a), PANI (b) and GO/SnO2/PANI (c), (d) deposited by airbrush spray coating on Ag Q-TSMR electrode. Reproduced
with the kind permission of Elsevier B.V. from reference [287]

Fig. 10 Hexanal MIP (a) and
hydrophobic hexanal MIP–SiO2

NPs composite (b) deposited by
drop coating. The inset pictures
indicate the water contact angles
(WCA) of the films. Reproduced
with the kind permission of
Elsevier B.V. from reference
[180]
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Nonconventional deposition approaches Many sensing
layers, based on composite materials or stacking layers
of dissimilar structure, have also been considered for gas
sensing. In order to coat layers with complicated morphol-
ogies on MST surfaces, researchers have been pushed to
find original deposition procedures. For example, Yan
et al. employed a biosynthetic approach to prepare

poly(dopamine) nanotubes sensitive to CHOH [314].
Sabri et al. produced poly(styrene) (PS) monodispersed
nanosphere monolayers (MNM) on Q-TSMRs by disper-
sion polymerization, which were then coated by electron
beam evaporation with Au and Ag thin films to obtain
(Au-MNM) and Ag (Ag-MNM) nanostructures sensitive

Fig. 12 SEM image of carboxyl
group-functionalized mesoporous
silica nanoparticles (C-MSNs)
inkjet-printed on the active area of
a Simicro-cantilever. Reproduced
with the kind permission of
Elsevier B.V. from reference
[289]

Fig. 13 FE-SEM of PAA layers deposited by electrospinning/electrospray: NPs (a), bead and string (b), fibers (c–f) from different solutions.
Reproduced with the kind permission of Elsevier B.V. from reference [295]
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to Hg vapor [315]. Figure15 displays the SEM images of
the films addressed above.

Evaluating the performance of the gas
sensors and sensor arrays26

The data provided by the GSs or SAs have very limited utility
without appropriate handling. As ascertained in the paragraph
“The performance of GGSs” of the first review part, in the case
of individual sensors, this mainly involves the determination of
the calibration curves (see the paragraph “Univariate and mul-
tivariate calibration” of this section), sensitivity, detection
limits, response/recovery times and cross-sensitivity (the sensi-
tivity towards gases/vapor other than the targeted one) [316].
On the other hand, SAs acquire large amounts of experimental
data which need to be converted into chemical information such
as chemical nature and concentration of the components in the
gaseous samples. The best way to accomplish this task is to
appeal to appropriate chemometric methods, which use
mathematical/statistical approaches for data processing and, as
such, significantly increase the accuracy of the information pro-
vided [316–330]. Kiralj and Ferreira give a nice and unique
“etymological, linguistic, and bibliometric” perspective on
chemometrics until 2006 [331]. Chemometric software pack-
ages such as Unscrambler® (Camo Analytics, https://www.

camo . com/unsc r amb l e r / ) , S IMCA® (Ume t r i c s /
SartoriusStedim Biotech https://umetrics.com/products/simca)
and PLS Toolbox® (EigenVector Research Inc. http://
eigenvector.com/software/pls-toolbox/) are available on the
market. Not all chemometric methods are equally utilized in
the field of GGSs, as obvious from the content of the articles
published by different authors. The most relevant ones are
briefly presented below and summarized in Table 1.

The structure and properties of the data provided by
SAs

The bare output of the GGSs, usually delivered as electrical
signals, is preprocessed by the readout electronics or hardware
stages, which provide amplification, noise reduction and the
conversion to digital signals. The obtained digital data can
undergo simple upgrade (coding) as scaling (division by a
value representative for the set, like statistical dispersion, ma-
trix norm, etc.), centering (shifting of the mean to zero) [323],
or even smoothening and derivation [347]. More complex
data conditioning, such as Fourier transform or wavelet trans-
form, often related to the spectroscopic analytical methods,
are less commonly employed in gravimetric gas sensing.

In the SA evaluation approach, the data are obtained from
series of M gas exposures (events) under the influence of I
different conditions (factors) {fi}. The individual outputs of
the N sensors in the array are expressed as features, {xn}.
During an event, one has/sets a certain value for each factor
and, correspondingly, one obtains a value for each feature.

26 This topic exceeds the frame of the present review and is kept at a minimal
extent. The formal terminology and the mathematical rigor were not the main
priority of this section. Complementary information about the considered
topics can be found in the addressed references.

Fig. 14 Batch self-assembly of a hyper-branched polymer on a Si micro-cantilever. Reproduced with the kind permission of Elsevier B.V. from
reference [303]
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The raw factors have a chemical or physical nature (the con-
centrations of different gases and vapor in the test mixture, and
the temperature, pressure, flow rate of the test mixture, respec-
tively), while the features usually lose their physical identity in
the preprocessing stages, becoming abstract numbers.
Actually, the factors can also undergo some coding proce-
dures when handled by different chemometric methods.
From an algebraic point of view, the factors are independent
variables, while the features are dependent ones (for linear
algebra concepts please consider appropriate textbooks, like
those of Strang [348], or Anton and Rorres [349]). The fea-
tures belong to anN-dimensional space whose coordinates are
not linearly independent because of some similarities in the
sensor responses [350]. This complicates the estimation of the
distance between events in the feature space and the analysis
of the possible relationships among them. The SA data are
usually organized in a data matrix [351] X = {xm, n}, where
m ∈ [1,M] and n ∈ [1,N] index the events and the features,
respectively. For instance, the matrix element xm, n reflects

the output of the sensor number n when exposed to the con-
ditions of the eventm. Each rowm of the data matrix is a set of
features (scores) recorded for a given event, implicitly con-
taining the dependence on the factors acting during that event.
It can be regarded as a row matrix (raw score vector) xm, with
the dimensionN. A column ofX, in its turn, is a column vector
(column matrix) xn in the event space bearing the information
about all M events corresponding to the feature n (that is, all
the information outputted by the SA sensor with the number
n). The larger the variability27 among the components of xn,
the more information about the set of events is carried by the
feature nwith respect to the other features. In order to compare
the data on different columns of X, they must be normalized
(divided by their matrix norm, that is, by the square root of the
sum of their squares), because different sensors can give dif-
ferent types/ranges of responses. Care is required when

27 The imprecise term “variability” is used here, because the “variance” of the
data has not been addressed here.

Fig. 15 “SEM images representing (a1) close-packed Au-MNM, (a2)
surface coverage of Au-MNM on the Ti electrode of QCM transducer,
(b1) close-packed Ag-MNM, and (b2) surface coverage of Ag-MNM on

the Ti electrode of QCM transducer” (original caption). Reproduced with
the kind permission of ACS Publications from reference [315]
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identifying the meaning of the notations in the data reported in
the literature. It is possible that the same character has two or
more meanings. For instance, “x” could be used for indepen-
dent variables in the experimental design and for dependent
variables in PCA (see below). In following, this double use is
avoided.

Experimental design

Before evaluating the GSAs based on the experimentally ac-
quired data, it is good to appropriately conceive the experi-
ments themselves through an “experimental design” [328,
329, 352–354]. Accordingly, one has to identify the factors
influencing the responses (features) of the SA in a screening
process. The most relevant factors in gas sensing are the target
analyte concentration and the influence of the main
interferents (like humidity, concentration of the known gases
in the sample, temperature and pressure). A good experimen-
tal design must provide a choice of factors to be considered
and the number of experimental events (including replicates)
needed for correct GSA characterization [352, 353]. Response
surface methodologies are often employed. They consider that
the response xm, n of a given sensor n, in the experimental
event number m (a certain gas exposure for instance), to the
selected factors {fi} (gas concentrations for example) can be
approximated through a polynomial of low order, containing
linear and quadratic terms [323, 355]:

xm;n≅∑
i¼I ; j¼I ;kiþk j ≤2
i¼1; j¼1;ki; j¼0 cm;n; i; j � f kim; i � f k j

m; j ð1Þ

where cm, i, j are polynomial coefficients, I the total number of
considered factors, and i, j, ki, j,m, n indices (natural numbers).
In Eq. (1) there are 1 free term, I linear terms, I quadratic one-

variable terms, and
I
2

� �
quadratic mixed (factor interaction)

terms, leading to G ¼ 2I þ 1þ I
2

� �
coefficients (parame-

ters). A full experiment having M events (gas exposures) can
be represented in the above approximation by an M ×G de-
sign matrix D (M rows and G columns). Its elements, Dm, n,

are the monomials f kim;i � f k j
m; j contained in Eq. (1) for the fac-

tor values taken during event m ∈ [1, M]28. The index n ∈ [1,
N] of the column stands for combinations of the factor indices
i, j in any order (preserved along the design procedure).
Inspection of the design matrix or significance tests enables
the identification of the relevant factors. Current experimental
design approaches include full and fractional factorial designs
[323, 352]. The full factorial design includes devised events

28 In the design matrix, as in the data matrix, the rows express events (design
events in this case), but the columns, in contrast, contain factor values (or
products of factor values for the second-order terms) as they appear in the
polynomial approximation given by Eq. (1).T
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including all I factors, each with different L values (levels).
Thoughmore accurate, the full factorial design requires a huge
number of experiments (M = LI). Therefore, a screening pro-
cedure at two relevant levels is commonly used in a prelimi-
nary step. The fractional factorial design discards, in a system-
atic manner, part of the events considered in the full factorial
one, reducing the dimensionality of the design matrix.
Although the design of the SAs with regard to the receptor
materials, structure and number of devices has frequently been
considered in the literature devoted to GGSs, there are very
few attempts to design experiments for the evaluation of SAs.
For example, in a paper dating back to 1995, Hierlemann et al.
employed Box-Behnken and factorial design to reduce the
calibration time of the Q-TSMR-SA and optimize the exper-
iments [226].

Sensor data evaluation

The data collected during SA evaluation experiments require
multivariate analysis because of their statistical nature, large
number of factors being considered, and hidden correlations
or structure [356, 357]. Dedicated multivariate methods pro-
vide the classification of the experimental events (cluster anal-
ysis [CA], discriminant analysis [DA], partial least squares
discriminant analysis [PLS-DA]) [358–361], reduction of data
dimensions without significant loss of information (principal
component analysis [PCA] or factor analysis [FA]) [362–366]
and multivariate calibration (multiple linear regression
[MLR], principal component regression [PCR], partial least
squares regression [PLSR]) [367, 368].

Unsupervised multivariate methods do not use a priori as-
sumptions about the number, structure or identity of the data,
unlike the supervised methods, which are based on previous
information, typically gathered during training sets of experi-
ments. This prior information can be the number and type of
event classes.

Unsupervised multivariate data analysis

Cluster analysis [358] is a common unsupervised exploratory
classification method. Events with similar patterns are includ-
ed in the same homogeneous class/cluster. Because the pat-
terns appear as points in the space of the features (the sensor
outputs in the case of SAs), the clusters are spontaneously
formed based on the distances between the events in this
space. Generally, Euclidian metrics is employed to calculate
the distances:

di; j ¼ ∑q
n¼1 xi;n−x j;n

� �2h i1
2 ð2Þ

This supposes orthogonal, linearly independent coordi-
nates, which is mainly not the case, the responses of the

sensors being often correlated. Moreover, starting with four
features, it is not possible to graphically visualize the cluster-
ing process. A frequent solution is the projection of data on
orthogonal coordinate axes built up as a linear combination of
the dependent variables in the feature space. Further simplifi-
cation of the procedure may be achieved by using the PCA
(see next paragraph and the examples in Table 1).
Alternatively, the Mahalanobis distance may be employed
[369–371]. Once the problem of correct calculation of dis-
tances is worked out, the classes can be hierarchically con-
structed, starting with one-element clusters and merging, step
by step, the closest ones. The plot of the distances between
clusters appears as a dendrogram (the plot resembles the
branches of a tree), as displayed in Fig. 16. Alongside crisp/
hard clusters habitually reported in the literature, fuzzy clus-
tering has also been considered [372]. In this case, the events
belong to different classes with different degrees of
membership.

Principal component analysis (PCA) is the most widely
used unsupervised exploratory multivariate method for eval-
uating the SA output [323, 362–365]. PCA replaces the N
correlated coordinates in the feature space with a set of A ≤
N linear combinations of them, which are orthogonal to each
other, and hierarchically ordered according to the amount of
variability transferred from the original data. Named by
Hotelling [373], principal components (PCs) define new ab-
stract features, generally with no experimental meaning.

The event producing the original score vector xm will also
produce an abstract score vector (single row matrix) tm = (tm, 1,
tm, 2,…tm, α, .. tm, A) with dimensionality A in the new feature
space. Formally, each element tm, α of the vector tm can be
expressed as a linear combination of the elements xm, n of xm:
tm;α ¼ ∑N

n¼1wm;α;n � xm;n ð3Þ

Fig. 16 Hierarchical cluster analysis. Dendrogram obtained with 14
fluoroalkyloxy-substituted phthalocyanines. Reproduced with the kind
permission of Elsevier B.V. from reference [107]
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where wm, α, n are the combination coefficients (weights of the
original features) and α∈ [1,Α] is the index of the PCs. In prin-
ciple, one has to seek all coefficients wm, α, n so that all PCs are
orthogonal and PC1 carries the largest variability, PC2 the next
largest, and so on (see Fig. 17a). It is worth noting that an arbitrary
increase of allwm, α, nwill result in an arbitrary increase of all tm, α,
leading to the failure of the procedure. Therefore, it is necessary to
additionally request the normalization of the coefficient set {wm, α,

n} for fixedm&α. Inmany cases, the first fewPCs are enough to

bear almost all information contained by X, so that the matrix bX
(the hut is a common notation for estimated values), estimated
with the help of these PCs, differs from the original X by some
small amounts only, the residuals, stored in thematrix of residuals

E ¼ X−bX . In this way, PCA ensures a practical reduction of the
dimensionality of the feature space. Furthermore, X can now be
factorized using the values of the new features for the given events
(the new “scores”) and the “loadings” (components) of thePCs in
the old feature frame:

X ¼ TPT þ E ¼ bX þ E ð4Þ
The matrix T of scores (actually new sores) is M × A-di-

mensional, and that of loadings, P, N × A-dimensional, so that
its transpose TT is A ×N-dimensional. PCA, in the limit of

selected PCs, explains a fraction Xk k2− Ek k2
h i

= Xk k2 ¼
bX��� ���2= Xk k2 of the variability contained by X [365]. The PCA

estimations are mainly visualized as scatter plots of scores and
loadings either separated or together in a common biplot. In the
case of biplots, the graphical separation of the events might not
be the real one due to the different units or scaling factors being
used (commonly, the loadings are scaled to 1 while the scores
bear the variability of the corresponding PC). There are several
available approaches to find the PCs, including nonlinear itera-
tive partial least squares (NIPALS) [362, 374], singular value
decomposition (SVD) [349] and covariance matrix. The authors
reporting on GGSs mainly use PCA to check event clustering
and present their results as score plots. More than half of the
papers listed in Table 1 include PCA approaches. A graphical
example is reproduced in Fig. 17b.

Factor analysis (FA), despite its formal resemblance to
PCA, adopts a different point of view [366, 375–377].
Instead of seeking a linear combination of dependent variables
to obtain new ones (the PCs), orthogonal and ordered with
respect to the carried variability (as PCA does), FA looks for a
set of m independent (random) variables (common factors—

) whose linear combinations render the dependent vari-
ables up to a residual variable (specific factor)29 e:

ð5Þ

The coefficients anm are the factor loadings of the variable xn
on the mth factor. By using the name “common factor”, one
intends to point out the influence of such independent variable
on all dependent variables. Equation (5) is apparently identical to
the linear part of Eq. (1), but apparently only because the factors fi
in Eq. (1) are real factors, with physicochemical relevance, while
the factors of FA lack this character, being formal entities. In
matrix form, Eq. (5) becomes x ¼ AF þ e and shows that FA is
amodel (regression—see next paragraph)-based approach, while
PCA is not (in fact, not necessarily).

Supervised multivariate data analysis

Discriminant analysis (DA) [359] attempts to assign events
(objects) whose features are categorical variables to
predefined classes. The factors considered by DA are contin-
uous variables. The method seeks discriminant functions of
independent variables simultaneously, leading to the largest
separation between classes and the smallest ones inside each
class. Commonly used approaches include linear discriminant
functions (LDA, initially introduced by Fisher for two classes
only [378]30), soft independent modelling of class analogy
(SIMCA), [379, 380] and k-means clustering [381]. Nice
LDA discrimination of methanol, ethanol, acetone and tetra-
hydrofuran with a very simple paper cantilever SAwas report-
ed by Fraiwan et al. [240]. By using quadratic DA (QDA) and
a virtual Q-TSMR-SA, Speller et al. obtained good separation
of a large number of VOCs [236].

Univariate and multivariate calibration

Calibration entails establishing a connection between two
sets (blocks) of variables. For SA data, they are the sensor
responses {xm, n} =X, one for each sensor n in the mea-
surement number m, and the factors {fm, i} =F, mainly the
concentrations {cm, i} =C of different I gases in the test
mixture employed during measurement m. The number M
of calibration tests must exceed the number N of the sen-
sors in the SA in order to allow a nontrivial solution for
the approach (M ≥N).

Univariate calibration relates one feature (sensor re-
sponse) to one factor (target gas concentration).
However, it does not involve only one event. To reduce
the effect of experimental errors affecting both feature
and factor, and to identify the type of relationship be-
tween them, a series of measurements (with replicates)
is performed. In this way, one obtains a column vector
of features x, containing the responses of the sensor to
the corresponding concentrations of the analyte (also

29 This term might also contain the errors.

30 The article was cited exclusively for multivariate data analysis purposes.
The authors delimit themselves from the legally and morally inadequate con-
tent of the article and publishing journal.
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written as a column vector). In many cases, the relation-
ship sought appears to be a linear regression x = s ∙ c + ex which,
through simple matrix algebra, results in [323]:

s≅ ∑M
m¼1cm � xm

� �
= ∑M

m¼1 xmð Þ2
� �

ð6Þ

Here, the scalar s is the sensor sensitivity and ex the error-
vector of responses. The index 1 of the first rank columnmatrices
(expressing only one feature) was omitted. Because the task of
the sensors is to provide the value of the factor (concentration)
when the feature (response) is known, one needs to consider an
inverse calibration c = b ∙ x + ec, where ec is the error-vector of
concentrations. In the limit of experimental errors, b is the inverse
of the sensitivity, and its estimation is given by:

b≅ ∑M
m¼1cm � xm

� �
= ∑M

m¼1 xmð Þ2
� �

ð7Þ

If the sensor has a nonzero baseline (the sensor response in
the absence of the analyte is not zero, but x0), then one has to
subtract the baseline vector x0 from the vector of the responses
x in the calibration equation, so that c = b ∙ (x − x0) + ec. The
vector x0 contains the actual values of the baseline during the
experiments m ∈ [1,M].

Multivariate calibration broadens the univariate calibra-
tion towards the case of multiple factors and features (several
analytes and several sensors, possible in a SA)

Multiple linear regression (MLR) is a generalization of
the univariate linear regression and is expressed by the matrix
extension of the corresponding univariate equations31:

C¼X � BþEC → bB¼ XTX
� �−1

XTC. With the matrixbB obtained in the calibration procedure, one can predict
(estimate) the unknown concentrations for a new sample con-

taining the same analytes: bCnew¼Xnew � bB. The method has a
non-negligible disadvantage. It requires knowledge of the re-
sponses and concentrations for all relevant compounds in the
training sample.

Principal component regression (PCR) was developed to
directly relate the factors (concentrations of the analytes) to
the scores on the first PCs, through an abstract matrix R,
avoiding the large amount of data and computations
demanded by MLR. Thus:

C ¼ T � Rþ EC → bR ¼ XTX
� �−1

XTC & bCnew

¼ Xnew � bR: ð8Þ

(The index “new” addresses the values in a new experi-
ment, either validation or prediction).

Partial least squares regression (PLSR)32 [346, 367, 382,
383] uses two matrix decompositions (often referred to as
models), one for the features, as in PCA, and another for the
factors (concentrations in the gas sensor case):

X ¼ TPT þ EX & C ¼ UQT þ EC ð9Þ
where U and Q play roles analogous to scores and loadings,
respectively, for the data block C. The presence of the matri-
ces of residuals for features and factors in Eq. (9) indicates that
a reduction of dimensionality is performed, so that some un-
explained variability remained. If the sensor responses and

31 The algebraic trick of multiplication with the transpose matrix in the fol-
lowing equation is required because X is generally not a square matrix and
therefore is not invertible.

32 The PLSR variant presented here is known as PLSR II and allows one to
tackle all factors C at once. An older version, PLSR I, introduces the factors
one by one as column vectors cα (one element for each event).

Fig. 17 (a) Two classes of events in a bidimensional feature space, which
appear as mixed on both linearly dependent axes x1 and x2, are
discriminated on the principal components. Moreover, the whole
variability is carried by PC1. The example could express the responses

of two gas sensors which have a certain degree of similarity. (b) Example
of PCA score plot displaying analyte clustering. Panel (b) was
reproduced with the kind permission of Elsevier B.V. from reference
[251]
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concentrations are directly proportional, then one would ex-
pect a linear relation ui = biti between the elements ofU and T.
ui and ti are column vectors of U and T, while bi is the equiv-
alent of the regression coefficients inMLR or PCR [323, 367].

The best prediction bC is obtained when the matrix of the

residuals EC ¼ C−UQT ¼ C−bC reaches its minimum for
the given events. PLSR is well suited for overdetermined data
sets (more events than features). PLSR is rather widespread in
the GGS community. For instance, the application of PLSR to
the shelf life of eggs gives good results, as Fig. 18 shows.

Partial least squares discriminant analysis (PLS-DA) is
an algorithm (certain authors consider it a method) used to
perform supervised classification adapting PLSR to clustering
problems [360, 361, 386].

Artificial intelligence in chemometrics

Artificial intelligence (AI) has emerged from the increasing
capability of computers to perform complex tasks, some of
them already listed/foreseen in the birth document of the con-
cept [387]. “A historical survey of algorithms and hardware
architectures for neural-inspired and neuromorphic computing
applications” was published not too long ago [388]. The im-
pact of AI on chemometrics is constantly growing [325, 389,
390], with the most widely employed being the artificial neu-
ral networks (ANN) [391–397], support vector machines
(SVM) [398–404], genetic algorithms (GA) [405, 406] and
expert systems (ES) [404, 407–409]. The use of AI in con-
junction with GGSs is summarized in Table 2.

Artificial neural networks (ANN) are computing algo-
rithms loosely mimicking the human brain and neural system.
The origins of ANN are related to the relevant papers of
McCulloch and Pitts and of Hebb, which provide a logical/
mathematical understanding of the nervous [415] and sensorial
[416] activity, respectively bridges “the gap between neurophys-
iology and psychology”, addressing synaptic plasticity and asso-
ciative learning [417]. The building block of the ANN is the
artificial neuron (AN) as a conceptual counterpart of its biological
model (for the anatomy and physiology of biological neurons and
neural systems, please refer to the literature [418, 419]). The first
AN implementation (the logic threshold unit [LTU]) by
McCulloch and Pitts has several Boolean inputs and a single digit
output, which is 1 if an internally threshold is exceeded by the
sum of all inputs and 0 otherwise. The “perceptron”33 proposed
by Rosenblatt [420] and refined by Minsky and Papert [421]
increased the functional capability of LTU. It allows for weighted
inputs, expressing different degrees of importance, but retains the
same two-level output triggered by a discrete decision function.
The utility of separated neurons is reduced, and their applicative
power comes out from interconnections in ANN [388, 391, 396,

422]. The network approach requires new or improved/adapted
features of ANs. Figure 19a illustrates a widely used AN
structure.

ANNs are built following two main architectures: feed-
forward networks (FFN) and recurrent networks (RN). FFNs
(see Fig. 19b) are constructed from two or more layers of ANs.
The input layer is suppliedwith the data to be processed (a vector
xm expressing the eventm in theN-dimensional feature space of a
SA, for example). The output of each AN from one layer is sent
to all inputs of the ANs in the next layer up to the output layer,
which delivers an output variable ym (here symbolized as a vec-
tor, which could indicate the class to which the eventm belongs,
if a classification problem is to be solved by the ANN). To fit the
ANN to its task, an adaptive control is realized, usually by tuning
the weights at each node. It has been shown that the functionality
of ANNs can be increased significantly when recurrent architec-
ture is chosen, that is, feedback loops are considered [422–425].
The most commonly employed feedback type is the “back-prop-
agation” (BP). It involves two operating steps. In the first step the
ANN accomplishes its task in a feed-forward mode, with all
weights fixed. Afterwards, it estimates the error it made, provid-
ing error parameter(s). In the next step the weights are actualized
to correct/minimize the error. An unsuitable choice of starting
weights and of their tuning procedure might result in unstable
ANN operation and eventually oscillating/divergent output (this
is a common issue in the systems controlled by feedback) [396,
426]. The ANNs are able to learn, that is, to adapt their free
parameters in such a way as to be able to perform certain tasks
[427]. In supervised learning, a training set of known events is
run by the ANN, which receives for each input vector the true
output value(s). Based on these data, the algorithm adapts itself to
provide maximal accuracy during a given number of training
cycles. If it fails, it must be improved and checked again. In the
case of unsupervised learning, no “true” output data are available,
so the training is successful when producing consistent output,
like good classification patterns. Zupan andGasteiger proposed a
short and intuitive approach to this topic [392]. An exhaustive
overview on “deep learning in neural networks” up to 2015 was
provided by Schmidhuber [428]. Very frequently researchers in
the field of GGSs use standard chemometric methods, mainly
PCA, together with ANN (see Table 2).

Support vectormachines (SVM) are supervised algorithms
employed for non-probabilistic classification and regressions.
SVM started from linear binary classification [398] (analogous
to LDA) and evolved towards elaborate nonlinear algorithms.
Initially a “training algorithm for optimal margin classifiers”
[429] was conceived, whose task was to find the hyperplane in
the feature space that best discriminated two classes of events34

33 The term “perceptron” is used either to define a certain type of AN, or to
address a class of simple ANNs containing perceptron-ANs in its nodes.

34 In the classification methods, the feature space of the data set becomes an
input space, while the output space is categorical. For SVM, the term “feature
space” is therefore employed for a higher-dimensional space obtained by the
mapping of the input space (see later in the text). Thus, the SVM feature space
is in fact a space of features of features.
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(see Fig. 20a). Mathematically, this means that the sum of dis-
tances from this hyperplane to the closest event(s) of each
class—the margin—has to be maximized [399, 430]. The vec-
tors in the feature space [431] that specify the position of the
margin events—the “support vectors”—play a special role in
the approach, determining the location of the discriminant hyper-
plane [399, 430]. The “hard margin” addressed above can sel-
dombe obtained because of the experimental noise or incomplete
variability explanation. Therefore, Cortes andVapnik relaxed the
separation condition at the expense of classification accuracy,
building up a soft margin classifier [432]. In this case, the set
of the support vectors is completed by additional, non-margin,
ones. The maximum margin hyperplane approach can also be
extended for nonlinear classifiers, as emerged from the paper by
Boser et al. [429]. First, one should note that the margin optimi-
zation problem for both hard and soft cases involves the event
vectors as direct products 〈xi, xj〉 only. Therefore, if one maps the
event vectors from theN-dimensional feature space into a higher-
dimensional space (see footnote 34) x→φφ xð Þ the optimization
problem will “move” into the new space, but will still be based
on the direct products of the type 〈φ(xi),φ(xj)〉 only. Provided
the function φ is suitably chosen, a linear discriminant might be
found in the new space. However, instead of looking for conve-
nient mapping functions φ, it is much easier to seek “kernel
functions” k of two event variables that straightforwardly map
the pair (xi, xj) to direct products 〈φ(xi),φ(xj)〉. It remains now to
replace the direct products 〈φ(xi),φ(xj)〉 in the optimization
problem with the corresponding kernel function k(xi, xj) and to
train the algorithm.Detailed explanations and examples are given
by Burges [399] and Luts et al. [403].

Looking to Fig. 20a, one could think that the vector w
indicating the direction of the discriminating plane Δ would
be the same as that of PC1 in a PCA approach to the data set.
That is usually not the case, because PC1 is chosen to maxi-
mize the explained variability of the whole data set, while w is

used to maximize the margin, which depends on only a few
data points, pointed to by the support vectors. Generally, it
worth noting that all AI methods involve adaptive and auton-
omous algorithms, while “traditional” multivariate data anal-
ysis is based on stated numerical procedures.

An example of combining kernel functions with PCA to-
wards KPCA and further use of PLSR is given in Fig. 18
above.

The genetic algorithms and expert systems are not popular
in the field of GGS.

A general approach to chemometric and AI topics is given
in the Handbook of Machine Olfaction [433].

Unconventional theoretical and numerical
approaches to sensor data analysis

Unconventional theoretical and numerical approaches to
sensor data analysis are used by the researchers in their
attempt to better understand, simulate and fit the experi-
mental information. Davide et al. propose a block-
structured mathematical model for the GGS based on
TSMRs [434, 435]. From the adsorption isotherms of
formaldehyde on bio-inspired poly(dopamine) Yan et al.
derive the standard enthalpy of sorption which well cor-
relates with the DFT simulations [314]. Sharma et al. used
a relatively simple approach, based on the time depen-
dence of the sensor response, to obtain analyte recogni-
tion [436]. Accordingly, the maxima of the sensor re-
sponses for an exposure to analyte concentration pulses
(named “dynamic headspace technique” by the authors)
are shifted in time, somehow as by a chromatographic
column, improving the recognition procedure. This pro-
vided a better way to evaluate the amount of linalool,
which is a relevant VOC for traditional tea flavor.
Regmi et al. observed that the ratio of the change in

Fig. 18 PLSR prediction of the on-shelf life of eggs. (a) PLSR results for
original data, (b) PLSR results after an intermediate KPCA processing.
KPCA (Consider references [384] and [385] for additional information on

KPCA. See also the section dedicated to support vector machines below.)
stands for kernel PCA. Reproduced with the kind permission of Elsevier
B.V. from reference [343]
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resonance frequency to the change in motional resistance
(the resistance in the equivalent circuit of the TSMRs
which corresponds to the mechanical damping of the crys-
tal) was concentration-independent but proportional to the
molecular weight of the absorbed analyte [178]. This pro-
portionality allowed the identification of the VOCs for
which the device was sensitive according to their mass.
The procedure was upgraded through the use of virtual
sensor arrays [237] (see Fig. 20b). A molecular dynamics
approach was successfully used by Khanniche et al. to fit

the output of a TSMR covered with methylated mesopo-
rous silica in interaction with vapors of the nitroaromatic
compounds 2,4-dinitrotoluene (2,4-DNT) and trinitrotolu-
ene (TNT) [437]. A humidity correction was performed so
that the simulations agreed with the experimental data.
Based on the information from the gravimetric responses
of TSMRs coated with calixarene films and colorimetric
analysis, Kostyukevych et al. proposed a nanostructure
model of the material in which almost spherical stochas-
tically distributed nanocavities enabled the gas (ethanol)

Fig. 19 (a) The conventional sketch of an artificial neuron. The inputs
{xn} (vector x) are adjusted with the weights {wn} (vector w) and added
with the blockΣ. The result is squashed with the transfer function ∫ and

delivered as output y (a scalar in the sketch). (b) Simple feed-forward
ANNwith four layers of which two are hidden. The data flow from left to
right in the sketch

Fig. 20 (a) Hard-margin SVM: two-dimensional sketch. The events are
displayed as x– vectors with two components x1 and x2, and are classified
as class A (green open circles) and B (blue open rhombs), respectively.
The classes are disjoint and best separated by the plane Δ. The margin
events (orange filled symbols) are specified by the support vectors (from
which only x+ and x− are depicted in blue and green, respectively). The
vector w (perpendicular to Δ) mathematically describes the discriminant

plane direction which lies at the distance b from the origin. The margin δ
is measured along w. xi is a generic event, as used in SVM formalism. (b)
Analyte discrimination through the proportionality of the TSMR output
parameter ratio (frequency shift over dissipation factor) and the molar
mass. Panel (b) reproduced with the kind permission of Elsevier B.V.
from reference [237]
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adsorption [99]. Nimsuk and Nakamoto proved the utility
of an original and unexpected approach to the classifica-
tion of apple and muscat flavors with variable concentra-
tions [438]. They applied the short-time Fourier transform
to the SA data, which indicated different time constants of
the sensors for different flavors. In the final step, a linear
vector quantization (LVQ) ANN was used for successful
discrimination of the two flavors. Iglesias et al. used
blank Si micro-cantilevers to discriminate and quantify
H2, CO, CO2, CH4, He and O2 diluted in nitrogen in
percent ranges [439]. The physical sensing principle is
based on the differences in the density and viscosity of
these gases, which modify the resonant frequency and
quality factor of the device upon environment composi-
tion. In the space of the relative density and viscosity
(referred to nitrogen), each analyte appears on a certain
straight line, whose angle with the carrier gas (N2) line
indicates the analyte type, while the distance from the
origin is proportional to the concentration (see Fig. 21).

Targeted analytes and application

The spectrum of GGS applications reported in the literature is
very large and overlaps that of other sensor types, even that of
established ones such as the capacitive for humidity or
chemoresistive for reducing gases. A full characterization of
the sensors/SAs is not always performed or provided in the
papers, probably because of the effort and time expense in-
volved. The authors usually indicate the target analytes for their
sensors and warn of possible interference, contamination or
adverse action from other gases/vapors. In the case of critical
requirements, researchers also prove the suitability of their de-
vices for the given task. The review includes two paragraphs
below dedicated to GGS and SA applications, one addressing
targeted analytes and the other the expected sensor use.
Subsequent rough classifications are also given. Almost all
papers addressed in this section are listed in the Annex table.

Targeted analytes

Relevance of gaseous analytes detected with GGSs
and legal/institutional regulations concerning
their concentration limits

There are several kinds of analytes appropriate for detection with
GGSs. Some have injurious biological effects (are toxic, irritants,
carcinogenic, mutagenic, reprotoxic) [440], while others are
flammable or explosive [441]. There are many others which
are chemically inoffensive but their concentration in the atmo-
sphere or in closed spaces is relevant for industry, agriculture and
other human activities. The physiological and clinical conse-
quences of harmful gases/vapors, starting with cutaneous contact

and inhalation, and following the whole metabolic process, are
the subject of numerous articles [442, 443] and textbooks [440,
444] (also for veterinary use [445]). Efforts are spent in identify-
ing hazards as sources of potential damage/harm to individuals
and optimizing their assessment [446–449]. The exposure of
persons, animals and the environment to harmful gases/vapors
is legally regulated worldwide. Accordingly, several concentra-
tion limits are established for noxious agents which, according to
medical investigations, would be still acceptable without adverse
effects. They differ, more or less, from country to country, and
are included in the documentation of the authorized national,
European and international institutions such as the
Occupational Safety and Health Administration (OSHA) and
National Institute for Occupational Safety and Health (NIOSH)
in the United States (USA), the European Chemicals Agency
(ECHA) of the European Union (EU) through its Registration,
Evaluation, Authorisation and Restriction of Chemicals
(REACH) regulation, the German Institute for Work Safety
(Institut für Arbeitsschutz [IFA]), British Health and Safety
Laboratory (HSL), Japanese National Institute of Occupational
Safety and Health (JNIOSH), Chinese Standard Committee of
Public Health (CSCPH) and Council for Occupational Health
and Safety of South Africa (SACOH). Through the implemen-
tation of the Globally Harmonized System of Classification and
Labelling of Chemicals (GHS), an international agreement man-
aged by the United Nations, the national/regional safety norms
should converge towards joint regulations, simplifying sensor
evaluation and certification procedures [450–452]. In the case
of gases, both the exposure dose and maximal concentration
are relevant for the evaluation of professional hazards. At present,
the US standards are the most commonly used in the literature.
The permissible exposure limit (PEL) is the legal exposure limit
for employees in the USA. PEL values are given by the Code of
Federal Regulations (CFR), Part 1910–Occupational Safety and
Health Standards, Section 1910.1000, Air contaminants. The
threshold limit value (TLV) of a toxic substance is the concen-
tration at which a person can be exposed at work every day for
whole life. TLV is a reserved term of the American Conference
of Governmental Industrial Hygienists (ACGIH) and has no reg-
ulatory nature. It can be evaluated for 8-hour working days, 5
working days aweek, as the threshold limit value–time-weighted
average (TLV-TWA). The short-term exposure limit (TLV-
STEL) indicates the concentration limit for 15 minutes of expo-
sure, while the ceiling limit (TLV-C) is the upper concentration
for any exposure which still does not affect the health. The rec-
ommended exposure limit (REL) and immediately dangerous to
life and health (IDLH) are reserved terms fromNIOSH as guide-
lines of this institution. In the framework of EU–REACH, two
concentration limits have been defined: the derived no-effect
level (DNEL) is the “exposure level abovewhich humans should
not be exposed”, and the predicted no-effect concentration
(PNEC) is the concentration for which “no adverse effects” are
expected. The Arbeitsplatzgrenzwert (AWG) is the German
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(IFA) equivalent of PEL. It replaces the older Maximale
Arbeitsplatz Konzentration (MAK). International occupational
exposure limits and many safety details can be retrieved from
the large open-access database of the “Information system on
hazardous substances of the German social accident insurance”
GESTIS (Gefahrstoffinformationssystem) [453, 454]. As obvi-
ous from the tables associated with the norms, the values of the
different limits are steadily decreasing. This fact reflects, on one
hand, the increase in the known harmful consequences of diverse
chemicals (thanks to progress in biology and medicine), and on
the other hand amore restrictive definition of a healthy organism.
Table 3 includes some example of concentration limits for the
gases/vapor frequently addressed by researchers in the field of
GGSs.

Highly toxic substances, some possibly produced as chem-
ical warfare agents (CWA) [455], are the subject of a different
jurisdiction. The harmful effect of these substances is mea-
sured by the lethal dose/concentration (LD100/LC100) or me-
dian lethal dose/concentration (LD50/LC50), which gives the
amount of the agent that would cause death with an indicated
probability of 100% or 50% [456, 457]. The required toxico-
logic experiments are performed on test animals under legally/
ethically acceptable conditions and extrapolated to humans.
For safety reasons, the very toxic gases and vapors are re-
placed in gas-sensing tests with simulants, which are chemi-
cally very close to the substituted compounds but with no/low
toxicity [456]. Lavoie et al. have given useful information on
simulant types and their similarity to a large number of
CWAs, suggesting chemoinformatic methods to detect them
[458]. Additional information about toxic substances can be
found on the NIOSH webpage or in EC No. 1272/2008
“Guidance on the Application of the CPL Criteria”. Table 4
includes a few CWAs and the simulants commonly investi-
gated for gravimetric detection. As for flammable/explosive
gases/vapors, there are no official standards concerning dan-
gerous concentrations, because these concentrations express

physicochemical properties of gaseous mixtures which cannot
be influenced by norms. Legislation tries only to prevent and
reduce the consequences of inadequate handling of related
hazards. Several concentration limits are relevant for flamma-
ble mixtures. They emerge from the characteristics of com-
bustion processes for different stoichiometric composition of
the fuel (gas/vapor) and oxidant gas (oxygen), ambient pres-
sure and presence of other gases (nitrogen in the case of air)
[441, 459–462]. A too lean or too rich flammable mixture will
not burn. The lowest concentration of fuel for which the fuel–
oxidant mixture still burns is known as the lower flammability
limit (LFL), and the highest as the upper flammability limit
(UFL). Often addressed are the lower explosion limit (LEL)
and upper explosion limit (UEL). These terms are not very
appropriate. Indeed, according to the combustion speed, one
has deflagration for subsonic processes (speed of combustion
lower than the speed of sound in air) and detonation for su-
personic processes. Both can produce an explosion, that is,
blowing up the vessel in which the combustion takes place
because of increased pressure. A flammability/explosion limit
is always an IDLH level, since it is immediately dangerous to
life and health. The LFL and UFL for some analytes are given
in Table 5. More comprehensive tables can be found in the
references above [441, 459–462]. A general perspective on
hazardous chemicals is given in the “Hazardous Chemicals
Handbook” of Carson and Mumford [463].

Overview of the target analytes detected by GGSs

In many cases, the specific detection of gases and vapor with
GGSs is based on the weak interactions between the analyte
and the receptor, as previously accounted for in the section
“Receptors for MST” of the first (published [1]) part of this
review and in the section “Increasing the specificity of the
receptors” above. Combined with chemical and geometric
complementarity, these interactions can result in molecular
recognition and, consequently, in increased sensitivity and

Fig. 21 Physical detection and
discrimination of gases with
uncoated micro-cantilevers.
Reproduced with the kind
permission of Elsevier B.V. from
reference [439]

6735Gas sensors based on mass-sensitive transducers. Part 2: Improving the sensors towards practical application



Table 3 Some concentration limits for harmful gases. All data except
IDLH values have been taken from the GESTIS databank (see the text).
The IDLH values are reproduced from the online table of the NIOSH

webpage. They are older than GESTIS data, that is, were published
mainly before 1994 and only a few of them afterwards

Compound CAS No. PEL      C: ceiling IDLH DNEL AWG TLV-TWA TWA* Year Adversity

OSHA
C: ceiling

NIOSH EU-REACH
ST: short term

IFA ACGIH
C: ceiling

Other 
countries GHS

ppmv mg/m3 ppmv ppmv mg/m3 ppmv ppmv pictograms

Ace�c acid 64-19-7 10 25 50 10 25 10 10 2019

Acetone 67-64-1 1000 2 400 2 500 500 1 210 500 250   2019

Acetonitrile 75-05-8 40 70 137 40 70 10 20 2019

Ammonia 7 664-41-7 50 35 300 20 14 20 25 2019

n-Amyl alcohol 71-41-0 - - - - - 20 - 2019

Aniline 62-53-3 5 19 100 - - 2 1

Benzene 71-43-2 1 - 500 1 3.25 0.6 0.5 2019

n-Butanol 71-36-3 100 300 1400 - - 100 -

Carbon dioxide 124-38-9 5 000 9 000 40 000 5 000 9 000 5 000 5 000 2019

Carbon monoxide 630-08-0 50 55 1 200 20 23 30 35 2019

Chlorine 7 782-50-5 C 1 C 3 10 0.5 ST 1.5 0.5 0.1 2019

Chloroform (TCM) 67-66-3 C 50 C 240 500 2 10 0.5 2 2019

Cyclohexane 110-82-7 300 1050 1 300 - - - 100 2019

Dibutyl phthalate 84-74-2 0.45 5 720 - - 0.05 2019

Dichloromethane 75-09-2 25 - 2 300 100 353 50 100 2019

Diethylamine 109-89-7 25 75 200 5 15 2 10 2019

Ethanol 64-17-5 1000 1 900 3 300 - - 200 1000 2019

Fluorine 7 782-41-4 0.1 0.2 25 1 1.58 1 0.1 2019

Formaldehyde 50-00-0 0.75 - 20 - - 0.3 0.016 2019

Formic acid 64-18-6 5 9 30 5 9 5 5 2019

n-Hexane 110-54-3 500 1 800 1 100 20 72 50 50 2019

1-Hexanol 111-27-3 - - - - - 50 - 2019

Hydrogen chloride 7 647-01-0 - - 50 5 8 2 - 2019

Hydrogen cyanide 74-90-8 10 11 50 ST 0.9 ST 1 ST 0.9 C 4.7 2019

Hydrogen sulfide 7 783-06-4 - - 100 5 7 5 - 2019

Mercury (metal vapor) 7 439-97-6 - - - - - 0.002* 0.005* 2019

Methanethiol 74-93-1 C 10 C 20 150 - - 0.5 C 0.5 2019
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Table 3 (continued)

Methanol 67-56-1 200 260 6 000 200 260 200 200 2019

Methylamine 74-89-5 10 12 100 10 10 2019

Naphthalene 91-20-3 10 50 250 - - 0.4 10 2019

Nitrobenzene 98-95-3 1 5 200 0.2 1 0.1 1 2019

Nitrogen dioxide 10 102-44-0 C 5 C 9 20 0.5 0.96 0.5 C 1 2019

Nitrogen monoxide 10 102-43-9 25 30 - 2 2.5 2 25 2019

Ozone 10 028-15-6 0.1 0.2 5 - - - - 2019

Pentan-1-ol 71-41-0 - - - - - 20 - 2019

Phenol 108-95-2 5 19 250 2 8 2 5 2019

Phosphine 7 803-51-2 0.3 0.4 50 0.1 0.14 0.1 0.3 2019

Propan-1-ol 71-23-8 200 500 800 - - - 200 2019

Propan-2-ol 67-63-0 400 980 2 000 - - 200 400 2019

Propylamine 107-10-8 - - - - - - - RO 0.2 2019

Sulphur dioxide  7 446-09-5 5 13 100 0.5 1.3 1 2 2019

Toluene 108-88-3 200 - 500 50 192 50 100 2019

Trimethylamine 75-50-3 - - - - - 2 10 2019

Trinitrotoluene 118-96-7 0.17* 1.5 55 - - 0.05* 0.01

Xylene (mixed isomers) 95-47-6 100 435 900 50 221 100 100 2019

*If no value is available for the selected norms (the previous columns), a known limit value from another country given for reference. The value is also
taken from the GESTIS database and the country symbol is placed before

**Values converted from mg/m3 in ppmv by the review’s authors, assuming ppbv level of Hg vapor to ideal gas

Table 4 Toxicity of selected CWAs and their simulants. Compiled from references [457] and [458]

CWA CAS
CWA

LD50 Simulant Abbreviation CAS Simulant Similarity
mg/min/
m3

%

Sarin (GB) 107-44-8 35 Di-isopropyl fluorophosphate DFP 55-91-4 87.5

Di-isopropyl methyl phosphonate DIMP 1 445-75-6 75.0

Dimethyl methyl phosphonate DMMP 756-79-6 66.7

Soman (GD) 96-64-0 35 Di-isopropyl fluorophosphate DFP 55-91-4 84.0

Di-isopropyl methyl phosphonate DIMP 1 445-75-6 72.0

Dimethyl methyl phosphonate DMMP 756-79-6 64.0

Tabun (GA) 77-81-6 70 Diethyl ethyl phosphonate DEEP 78_38_6 53.7

Triethyl phosphate TEP 38-40-0 52.5

Diethyl 4-nitrophenyl phosphonate Paraoxon 311-45-5 47.2

Distilled mustard
(HD)

505-60-2 1000 2-Chloroethyl ethyl sulfide CEES 693-07-2 64.7

2-Chloroethyl methyl sulfide CEMS 542-81-4 52.9

Chloroethyl phenyl sulfide CEPS 5 535-49-9 42.1
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selectivity of the sensing process. In the context of the linear
solvation energy relationship (LSER), numerous combina-
tions of analyte–receptor material have been established,
whose LSER parameters indicate the strength of different con-
tributions to the recognition process [5, 464–466]. The chem-
ical and physical properties of gases and vapors which might
be relevant for gas sensing can be found in general chemistry
textbooks [467–471] or technical literature [472–475]. The
data from the technical literature will be used in the following
for exemplifications without additional citation.

Volatile organic compounds VOCs are the most commonly
addressed target analytes forGGSs. Inmany cases, the sensitivity
of one sensor for several VOCs is reported. This feature, fre-
quently seen as a useful characteristic, indicates however limited
sensor selectivity. Previous sections (“Increasing the specificity
of the receptors” and “Evaluating the performance of the gas
sensors and sensor arrays”) show how this drawback can be
overcome by building up SAs and using chemometric methods.

Aromatic VOCs are stable compounds, with low reactivity,
mainly detected through hydrogen bonds with the receptor.
Monocyclic arene vapors are mostly reported. They are rather
volatile (12.7 kPa for benzene, 3.8 kPa for toluene and 0.79 kPa
for xylene at 25 °C). Toluene is often reported, as the TLV-TWA
is rather high (100 ppmv) while the vapor pressure (VP) is not
too great. Poly(aniline) emeraldine salt thin films doped with
different acids (hydrochloric, dodecylbenzene sulfonic, 1,5-
naphthalene disulfonic) were deposited by dip coating on
TSMRs as VOCs sensors [283]. Good sensitivity to aromatic

VOCs in dry nitrogen was obtained, but it decreased in the
presence of humidity. The influence of oxygen on layer stability,
which might be an issue for the given material, was not
discussed. Siloxanes including triMethylSilane (3MS),
D i E t h o x y M e t h y l S i l a n e ( D E M S ) a n d
OctaMethylCycloTetraSiloxane (OMCTS), deposited on
TSMRs through PECVD by Sabahy et al., were able to detect
toluene at concentrations below TLV-TWA [312]. These silox-
ane layers were hydrophobic, with contact angles larger than
95°, and response achieved with only a few Hz at 35% RH
variation. Even so, this reduced cross-sensitivity to humidity is
still not enough for analyte concentrations below TLV, where
the sensor responses to toluene are comparable to those of water.
The same group of authors also used finite element theory to
analyze the thermodynamics of the toluene sorption process in
organic films [476]. Zhang et al. reported selective sensing of
dibutyl phthalate (DBP) from 2ppbv to 30ppmv, with 0.66 ppbv
LDL and 3810 Hz/ppmv sensitivity, performed with TSMRs
covered with Au-decorated ZnO porous microspheres [477], as
illustrated in Fig. 22. The cross-sensitivity to dimethyl and
diethyl phthalates is significant, but the cross-sensitivity to other
VOCs appears to be reduced in the plots, as they are given at
levels much lower than the TLV-TWA of these compounds (see
Fig. 22). The effect of humidity, which is not addressed, might
also limit sensor performance. Öztürk et al. utilized Pd-doped
ZnO nanorods electrochemically deposited on TSMRs to detect
xylene and other VOCs [313]. The response to xylene was
highest (3.3 Hz/ppmv, 5 ppmv LDL), but the sensitivity to other
VOCs (mainly ethanol and propanol) was also good, leading to a
critical selectivity issue. Very good sensitivity for toluene
(LDL=1ppmv, that is 1% from TLV-TWA) was obtained by
Yamagiwa et al. with both Q-TSMR and Si micro-cantilevers
coated with self-assembled MOFs, but with reduced specificity,
due to a strong response to ethanol [175]. Selectivity problems
were also encountered by Kumar et al. in detecting toluene with
phthalocyanine-covered Q-TSMRs, because the sensitivity to
xylene was practically the same [115]. Bachar et al. compared
chemoresistive and gravimetric (TSMR) SAs based on heavy
polycyclic aromatic hydrocarbons [231]. The gravimetric SA
exhibited different sensitivity for different compounds, while
the chemoresitive SA did not. Both arrays were evaluated for
alkanes, alcohols, mesitylene, ether and water with chemometric
methods. They were able to separate the polar compounds
(mainly alcohols) from the nonpolar ones (mainly alkanes), with
the help of DFA, in humidity background from 5% to 80% RH.

Aliphatic VOCs. Several classes of gases and vapors are includ-
ed here. The aliphatic alcohols are polar and volatile (VP is
13 kPa for methanol and 0.65kPa for butanol), with different
degrees of toxicity. The aldehydes are less polar. Formaldehyde
is very toxic (TLV-TWA of 16 ppbv) and gaseous at room
temperature, while acetaldehyde boils at just 20°C and is not
as toxic as formaldehyde. Being slightly polar and gaseous or

Table 5 Flammability limits of selected gaseous mixtures with air.
Values taken from reference [461]

Compound CAS LFL UFL Remarks
Volume % Volume %

Acetone 67-64-1 2.6 13.0

Acetylene 74-86-2 2.5 100

Ammonia 7 664-41-7 15.0 28.0

Benzene 71-43-2 1.3 7.9 Both FL at
100°C

n-Butane 106-97-8 1.8 8.4

Carbon monoxide 630-08-0 12.5 74.0

Ethane Z4-84-0 3.0 12.4

Ethanol 64-17-5 3.3 19.0 UFL at 60°C

n-Hexane 110-54-3 1.2 7.4

Hydrogen 1 333-74-0 4.0 75.0

Methane 74-82-8 5.0 15.0

Methanol 67-56-1 6.7 36.0 UFL at 60°C

n-Octane 111-65-9 0.95 –

Propane 74-98-6 2.1 9.5

Toluene 108-88-3 1.2 7.1 Both FL at
100°C
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very volatile, the amines are toxic (TLV-TWA in 10 ppmv
range). The alkanes are nonpolar and not very toxic but easily
flammable. They are permanent gases for low molecular mass
(until butane) at room temperature. Yang and He performed
formaldehyde detection with graphene oxide coated on quartz
TSMRs in the presence of humidity [478]. The specificity was
good, except for ethanol, for which relevant cross-sensitivity
was observed. For the same analyte, Wang et al. proposed a
TSMR GGS having a novel copper (II) complex as sensing
layer, whichwas very sensitive (LDL only 1.3% from PEL and
62% from TLV-TWA) and quite selective [120]. The cross-
sensitivity to humidity was, however, significant for atmo-
spheric values. Therefore, almost the same group of authors
tested a hydrophilic poly(dopamine) passivated against humid-
ity by a super-hydrophobic poly(n-octadecylsiloxane) film as
sensing material for formaldehyde [187]. The influence of wa-
ter was drastically reduced, but the detection limit decreased to
0.5 ppmv (value estimated by the authors of this review).
Formaldehyde detection with hollow mesoporous silica
spheres (HMSS) functionalized with poly(dopamine) (PDA)
was reported by Zong et al. [117]. The authors employed Q-
TSMRsMST operating at 10MHz. The sensor performance is
displayed in Fig. 23. A review of TSMR-based sensors for
formaldehyde is provided by reference [479].

Alcohols have been reportedmainly in conjunction with prac-
tical applications such as VOC discrimination with LDA [240]
and food quality evaluation [249, 480]. Amines have generated
much interest. Das et al. demonstrate the use of polymerized
castor oil for the detection of aliphatic amines (LDL of 10% from
TLV-TWA) [281]. The sensitivity decreased slightly with amine
molar mass, leading only to class recognition. Ammonia pro-
duces significant interference. Li and Chu obtained good sensi-
tivity (see Fig. 24) to propylamine in measurements performed
on Q-TSMRs coated with ionic liquids (5.4 ppbv LDL and 2000
Hz/ppmv sensitivity) [189]. The sensors were quite sluggish.
Their response was not affected by traces of water, but a test of
cross-sensitivity to humidity was not considered.

Zhang et al. [182] and Chen et al. [481] reported on
trimethylamine (TMA) detection with Q-TSMRs and GO-based
layers (GO/chitosan and GO/Cu2O nanocomposite, respectively).
Both receptor materials were sensitive (4.8 Hz/ppmv and 8.9 Hz/
ppmv, respectively), but theGO/Cu2Onanocomposite had amuch
lower LDL (230ppbv) than that of GO/chitosan (1.3 ppmv). The
cross-sensitivity to other amines was high, but the response to
other VOCs was limited in the case of GO/chitosan films. The
strong influence of humiditywas a common issue for both sensors,
acknowledged by the authors, who informed the reader that they
would continue the investigation in this regard. To reduce cross-
sensitivity to water, Chen et al. produced composite films of
hexanal-imprinted MIPs and hydrophobic silica NPs [180]. The
efficiency of the approach can be observed in Fig. 25. Methane
detectionwith cryptophane-A/E films was reported byWang et al.
and Shen et al., respectively, using Q-SAW transducers at
300MHz and 204MHz [482, 483]. The sensitivity was sufficient
to measure well below the LFL of 5%. However, in the case of
cryptophane-A, 70%RHgave the same response as LFLmethane
concentration. For cryptophane-E, the cross-sensitivity to humidity
was not reported. Molecularly imprinted polymers (poly(methyl
methacrylate)) have shown good sensitivity for terpenes, but with
significant cross-sensitivity to humidity [91].

Chemical warfare agents and other special analytes. As
specified above, the detection of CWAs has been investigated on
simulants, most of them included in Table 4. TSMR with meso-
porous TiO2 -SiO2 functionalized with p-hexa-fluoroisopropanol
aniline (HFIP) showed acceptable sensitivity and specificity to-
wards the nerve agent simulant DMMP [118]. The influence of
humidity was not discussed. Sulfur mustard and DMMP sensors
based on composite materials were reported by Lal and Ziwari
[179] (see the subsection 'Composite, polymorph and unusual re-
ceptormaterials' above) andYang et al. [484]. Di Pietrantonio et al.
used laser-induced forward transfer (LIFT) to deposit thin polymer
layers on Q-SAW, which were very sensitive to the simulant
DMMP [485]. The experiments were repeated on real CWA (sarin

Fig. 22 Dibutyl phthalate
detection with Q-TSMRs coated
with Au-decorated ZnO. (a)
Calibration curve. (b) Cross-
sensitivity to VOCs. DEP and
DMP stand for diethyl and di-
methyl phthalate, respectively.
Reproduced with the kind per-
mission of the authors and MDPI
from reference [477]
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in this case) with even better performance (649 Hz/ppmv sensitiv-
ity and 150 ppbv LDL). Despite certain selectivity displayed by
different polymers, a dedicated cross-sensitivity test was not per-
formed, but was planned. Employing a Love-SAW array coated
with six dissimilar polymers, Matatagui et al. also achieved very
good performance for CWA detection (40,200 Hz/ppmv sensitiv-
ity and 40 ppbv LDL) [229]. Moreover, they were able to discrim-
inate the tested agent simulants, with scores in the first two PCs
nicely clustered for the whole concentration range. In a later inves-
tigation by almost the same authors, a GO sensing layer was cho-
sen [486]. The good sensitivity of the device is demonstrated by the
plots in Fig. 26. Chen et al. achieved successful detection of
DMMPwith a wireless Q-TSMR having both resonance frequen-
cy and dissipation output [487]. TheMST was covered by hollow
ball-like indium oxide and enabled 2.1 Hz/ppmv sensitivity and an
LDL below 5 ppmv. The vapors of explosive nitroaromatic com-
pounds 2,4-dinitrotoluene (2,4-DNT) and trinitrotoluene (TNT)

were specifically recognized by TSMRs coated with methylated
mesoporous silica [437]. This approach was already addressed in
“Unconventional theoretical and numerical approaches to sensor
data analysis” above. The same types of compoundswere detected
by Eslami and Alizadeh with poly(pyrrole) (PPy)–bromophenol
blue (BPB) layers on Q-TSMRs [488]. Comparative responses
for several analytes including TNT, [3-nitrooxy-2,2-bis
(nitrooxymethyl)propyl] nitrate (PETN), 1,3,5-trinitroperhydro-
1,3,5-triazine (RDX) and octahydro-1,3,5,7-tetranitro-1,3,5,7-
tetrazocine (HMX) given by the selected sensing materials are
included in Fig. 27. The detection of toxic hydrogen cyanide with
CuO nanoparticles appears promising from the contribution of
Yang et al. [489]. The material seems to have certain selectivity
towards HCN due to the unexpected positive gravimetric response
of the coated TSMRs, opposite to the “normal” response to the
other tested analytes, which was negative. The authors attributed
the sensor behavior to mass loss during recognition redox reaction.

Fig. 23 Formaldehyde detection with PDA-functionalized HMSS. (a) Dynamic response. (b) Calibration curves. Reproduced with the kind permission
of Elsevier B.V. from reference [117]

Fig. 24 Propylamine detection with 9 MHz Q-TSMRs coated with ionic liquids. (a) Dynamic response. (b) Calibration curves. Reproduced with the
kind permission of ACS Publications from reference [189]
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However, the response in atmosphere containing both analyte and
interfering gaswas not evaluated, despite possible compensation of
the effects. Also, the humidity was kept constant, at a low level of
10%, hindering a more realistic characterization. In a follow-up
paper, the authors reconsidered the investigation and obtained high
cross-sensitivity to humidity [490]. Precursors of illicit compounds
have been recognized and detectedwith high-frequencyQ-TSMRs
(195MHz) coated with five microporous triptycene-based affinity
materials [491]. Prantl et al. did not report metric and cross-
sensitivity data, but the approach seems interesting.

Inorganic gases. From the class of inorganic gases, those most
investigated are the hazardous gases (CO, CO2, NO2, SO2, HN3,
H2S) whose presence in the atmosphere is of major concern. CO
detection has been addressed several times by researchers in the
field. Ippolito et al. employed for this purpose a heated SAW
coated with In2O3 [304]. Its operating principle was already
addressed in the paragraph “SAW transducers” of the first re-
view part [1]. H2, NO2 and CO were detected at room

temperature when the same type of SAW was coated with a
poly(aniline)/In2O3 nanofiber composite [492]. Bayram et al. de-
tected CO with ferrocene-branched chitosan derivatives on
quartz TSMR, but with rather low sensitivity [493]. Tian et al.
obtained acceptable SO2 andNO2 sensitivity and selectivity with
electropolymerized ring-substituted (2-methyl, 2-metoxy)
poly(aniline)s on TSMRs [494]. However, it was not possible
to evaluate concentrations separately if both analytes were pres-
ent in the sample. Using micro-cantilevers coated with metal
organic framework crystals of Ni-MOF-74 (also Fe, Mn and
Mg tested with less success), Lv et al. were able measure CO
concentrations below 10ppbv due to the large BET surface area
of the receptor material (1150m2/g) [495]. The signals were
strong, but the response/recovery times were also long, due to
rather high adsorption enthalpy of ~53kJ/mol (see Fig. 28). Good
repeatability, selectivity, long-term stability (sensitivity degrada-
tion of 1% in 6 months) and manufacture reproducibility (12%
spread over 4 samples) indicated a good sensor performance.
The calibration curves were strongly nonlinear, favoring the

Fig. 25 Hexanal detection with Q-TSMRs coated with hydrophobicMIP-SiO2 NP composite. (a) Dynamic response. NIP andMIP signals are provided by
the non-imprinted and imprinted materials alone. (b) Calibration curve. Reproduced with the kind permission of Elsevier B.V. from reference [180]

Fig. 26 Dynamic response (a) and calibration curve (b) of a GO-coated Love-SAW sensor exposed to CWAs. Reproduced with the kind permission of
Elsevier B.V. from reference [486]
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low concentration levels. The influence of humidity, however,
was not addressed. Wang et al. detected (see Fig. 29) low am-
monia levels (60 ppbv LDL)with high sensitivity (100Hz/ppmv)
with 10 MHz Q-TSMRs covered by La-doped framework
AlPO-5 [158]. Cross-sensitivity to humidity, carbon dioxide,
acetone and nitrogen dioxide were discussed. Hydrogen sulfide
detection has been addressed by two authors. Asad et al. evalu-
ated H2S concentrations between 5 and 200 ppmv using a
LiNbO3 SAW operated at 104 MHz and room temperature
[136]. The sensing material, Cu-NP-SWCNT, was drop-cast
on the MST surface, and conferred high sensitivity (3750 Hz/
ppmv) and reasonable selectivity. Responses ~10 times lower
than those for hydrogen sulfide were obtained for ethanol, hy-
drogen and acetone. At operating temperatures below 100 °C,
the sensor response was influenced by humidity, but thanks to
the high-temperature piezoelectric material of the transducer,
operation at over 100°C could be considered and thewater vapor
removed from the sensor surface. TheH2S sensor prepared by Li
et al. is based on a Q-SAW-MST, spin-coated with CuO

prepared by a sol–gel route [496]. It has 4kHz/ppmv sensitivity
and 0.5 ppmv LDL in a humid environment. The authors tried to
explained this behavior through the shift in the equilibrium of the
reaction H2S +CuO⇌CuS+H2O due to increased water con-
centration, but they produced no evidence in this respect. The
cross-sensitivity to VOCs and inorganic gases was low.
Hydrogen is not toxic, but the evaluation of its concentration in
the range of LFL (4%) has fire safety relevance. Viespe andMiu
reported good hydrogen detection (59 ppmv LDL and 0.51 Hz/
ppmv sensitivity) with Pd/Zn bilayers produced by pulsed laser
deposition (PLD) on 70MHz Q-SAWs [497]. Using only Pd
films on silicon micro-cantilevers and static bending operating
mode, McKeown et al. detected 250 ppmv of hydrogen in air
[498].

Humidity. Humidity is the third/fourth component of atmo-
spheric air (around 1% volume for 50% RH at room tempera-
ture, like argon). It is not toxic, but water vapor concentrations
that are too low or too high cause discomfort. Additionally, it is

Fig. 27 (a) “The response of differently prepared sensors including poly
BPB (PBPB), PPy-BPB co-polymer (PPy/BPB C), PPy/BPB thin film
(PPy/BPB T), PPy/BPB nanospheres (PPy/BPB S) and PPy/BPB nano-
rods (PPy/BPB R) toward nitroexplosives” (original caption). (b) The

calibration curves of the PPy-BPB/QCM sensor for TNT, PETN, RDX
and HMX with low LDLs (500 ppt for TNT, 800 ppt for PETN, 1 ppbv
for RDX and 2 ppbv for HMX). Reproduced with the kind permission of
Elsevier B.V. from reference [488]

Fig. 28 Dynamic response to carbon monoxide (a) and cross-sensitivity (b) of a micro-cantilever coated with Ni-MOF-74. Reproduced with the kind
permission of Elsevier B.V. from reference [495]
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the main interferent in the case of environmental gas sensors.
This issue, as already addressed at the beginning of the first
review part [1], emerges from naturally large values of absolute
humidity in the atmosphere, much larger than the detected
levels of almost any other analyte. Traditionally, one evaluates
the relative humidity, that is, the ratio of the water partial and
saturation vapor pressure at themeasurement temperature. This
brings additional inconvenience, because the absolute water
concentration for a given relative concentration increases with
temperature following Antoine’s law (as does the saturation
vapor pressure) [469]. Although polymer capacitive sensors
are the state of the art in humidity sensing, several studies still
investigate sensors based onMSTs [499]. This interest is prob-
ably because most of the plain sensing materials have large
dispersion interaction, which favors the detection of the analyte
with highest concentration, usually humidity. Yuan et al. used
spray coating to deposit thin nanocomposite layers of
poly(ethylenimine)-graphene oxide on quartz TSMRs which
were sensitive to humidity [186]. The resulting sensors exhib-
ited low cross-sensitivity to formaldehyde, carbon dioxide, am-
monia and sulfur dioxide, reduced response and recovery
times, and good long-term stability. TSMRs based on a
graphene oxide/tin dioxide/poly(aniline) (GO/SnO2/PANI)
composite fabricated via in situ oxidative polymerization by
Zhang et al. showed wide pore size distribution and large sur-
face area but low contact angle, being well suited for humidity
detection [287] (see Fig. 30). Xuan et al. achieved good hu-
midity estimation with GO deposited by spin coating or drop
casting on 140 MHz and 225 MHz ZnO-SAWs manufactured
on glass substrates [500]. The sensors had exponential calibra-
tion curves, which could be linearized for low humidity (7 Hz/
ppmv=1.448 kHz/%RH in this range). Many authors have re-
ported on humidity sensors based on different materials such as
mesoporous SnO2–SiO2 [501] or porous poly(methyl methac-
rylate) [502]. The measurement of humidity at atmospheric
concentrations seems to be an easy task, even in the presence
of other gases, because of the large absolute values of water

concentration (see above and the paragraph “The performance
of GGSs” of the first review part), which leads to an increase of
the relative response to humidity with respect to almost any
other compound at the TLV-TWA level. However, condensa-
tion, possibly connected to the presence of interfering gases,
can result in significant inaccuracy [503]. In order to facilitate
sensor calibration at low humidity, Tsukahara et al. developed
an original method to produce water vapor at the ppmv level
[504], which used the controlled retention of water on the inner
surface of a pipeline.

Targeted applications

The reports on GGSs seldom specify only a targeted applica-
tion for the sensors studied. As shown in the previous para-
graph, most of authors indicate the main analyte and sensor
performance, leaving open the choice for its future use. There
are, however, several exceptions. Among these, food quality
control, medical instrumentation, detection of very dangerous
industrial emissions and ambient air quality are the most
relevant.

Freshness, quality and flavor of food Traditionally, quality
assessment in the food industry has been performed by panels
of human experts. Researchers in the field of gas sensing have
tried to automate and simplify this process by building dedicat-
ed SAs and evaluating their data with chemometric methods.
Some approaches are based on GGSs only. Sharma et al. ana-
lyzed the headspace vapor containing linalool to discern the
flavor of black tea [436]. The pseudo-chemometric procedure
was already explained in the section “Evaluating the perfor-
mance of the gas sensors and sensor arrays”, last paragraph
(“Unconventional theoretical and numerical approaches to sen-
sor data analysis”). The fermentation of black tea has been
monitored through a similar approach [505]. TSMRs coated
with poly(dimethyl siloxane) were employed to evaluate the
ripening degree of mango fruits after the released amount of

Fig. 29 The responses to different analytes (a) and the calibration curves for ammonia (b) of Q-TSMRs coated with AlPO-5 and La-doped AlPO-5.
Reproduced with the kind permission of Elsevier B.V. from reference [158]

6743Gas sensors based on mass-sensitive transducers. Part 2: Improving the sensors towards practical application



3-carene [506]. The assessment of virgin oil quality through
gravimetric arrays was reported by Escuderos et al. [338]. A
percentage of 91.7% correct classification was obtained in the
first two PCA components. Compagnone et al. used two types
of TSMR-based GGSs for quality control of chocolate [103].
Both the porphyrin and the gold-nanoparticle-peptide GGS
were able to separate the batches with standard flavor from
the rest in the frame of PLS-DA. With peptide/gold nanoparti-
cle Q-TSMR arrays, it was possible to detect/discriminate food
aromas [51]. Toniolo et al. estimated food quality bymeans of a
Q-TSMR array coated with ionic liquids [342], while Cui et al.
assessed the degree of freshness/storage time of fish, eggs and
mangos [480] (see Fig. 31). The TSMRs were covered with
poly(pyrrole)/TiO2 nanocomposite assembled through layer-
by-layer self-assembly. Using ZnO NPs modified with four
different molecularly modeled peptides, Mascini et al. pro-
duced a Q-TSMR array with low sensitivity to humidity which
could separate VOCs relevant for fruit juice identification
[249]. The PCA biplot in Fig. 32 demonstrates the right choice
of the sensing materials (according to the loadings of the four
sensors indexed as WHVSC, LAWHC, IHRIC and TGKFC)
and the good separation of the juice scores in the first two PC

planes. The freshness of eggs was checked by Deng et al. using
a Q-TSMR SA dip-coated with different receptor materials
(multi-walled carbon nanotubes, graphene, copper oxide and
poly(aniline)) [343]. The PLSR and PLSR/KPCA plots of the
predicted versus actual storage times of eggs were already giv-
en as an example in Fig. 18, and confirm the success of the
attempt. The potential for a polymer-functionalized SAWSA to
recognize coffee flavor through the scores in the first two PCs
was analyzed by Barié et al. [507].

Medical and biological applications The increasing need for
noninvasive and cheap investigative tools for medical use has
led to growing interest in gas sensor research in this field.
Because the gaseous markers of diseases are released in very
small amounts from clinical samples, sensors with very low
LDLs and high sensitivity are suitable. In the case of breath
analysis, the sample is taken from the patient exhalation and
contains water vapor almost at saturation (66,000 ppmv at
human body temperature). These special operating conditions
can seldom be fulfilled by individual sensors, and SAs and
chemometric methods are typically employed to gather the
medical information. Ogimoto et al. prepared porous films

Fig. 30 (a) “Dynamic frequency shift of the three QCM sensors
switching under various RH levels.” (b) “Frequency shift of the three
QCM sensors as a function of RH.” (c) “Repeatability of the QCM-3
sensor switched from 0%RH to 33%RH, 52%RH and 75%RH.” (d)

“Selectivity of the QCM-3 sensors towards RH and various gas species."
(Original caption; here RH stands for relative humidity). Reproduced
with the kind permission of Elsevier B.V. from reference [287]
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comprising silica nanoparticles/poly(allylamine hydrochlo-
ride) (SiNPs/PAH) infused with poly(acrylic acid) (PAA) on
Q-TSMRs to detect ammonia in breath analysis as a biomark-
er of renal insufficiency or hepatic dysfunction [119]. Using
two transducers, one coated with SiNPs/PAH and the other
with SiNPs/PAH/PAA, the authors built a differential sensor
system able to subtract the influence of breath humidity (see
Fig. 33) and to measure the ammonia concentration of the
physiological samples. A breath analysis array of six Q-
TSMRs coated with organic and composite nanometric films
was devised and tested by Selyanchyn et al. [246]. Because
the sensor system considers the influence of the temperature
and exhalation flow, extended health control can be per-
formed. Jha and Hayashi succeeded in detecting organic acids
or aldehyde in body odor with a Q-TSMR array covered with
molecularly imprinted polymers [247, 248]. The experimental
data resulted in good clustering in the first two PCA compo-
nents. Also, diseases which are not “visible” in exhalation can
be detected with GGSs, like urinary tract cancer. Bernabey
et al. employed an EN based on eight Q-TSMR sensors with
dissimilar porphyrin receptors to discriminate scents among
three groups of individuals: healthy persons and bladder and
prostate cancer patients [344]. The evaluation of the experi-
mental data with PCA showed reasonable separation trends.
However, a few patients with bladder cancer were included
among those with prostate cancer. No healthy person was
identified as ill (see Fig. 34).

De Cesare et al. employed a gravimetric EN to detect the
“olfactory fingerprints” of microorganisms in soil, with poten-
tial relevance for agriculture [340]. The eight Q-TSMRs of the
nose were coated with organic polymers and exposed to the
headspace atmosphere generated by the investigated samples.
Discrimination of PCA scores between non-inoculated and
bacterially inoculated soils was possible. Using PLSR, the
authors could predict, with reasonable accuracy, the number
of inoculated microorganisms.

Metallic vapor Industrial emissions can release metallic pollut-
ants into the environment, often directly into the atmosphere, as
metallic vapor. For example, Kabir et al. measured the concen-
tration of metallic quicksilver vapor at the ppbv level (1.4 ppbv
LDL) with a SAW transducer covered with a Au sensing layer
and having Ni electrodes (to avoid amalgam formation) [508].
Instead of gold as sensing material, silver has also been used
[509]. Sabri et al. created Au nanoparticles on the electrodes of a
Q-TSMR to detect Hg vapor with 2.4 ppbv LDL [510].

When considering the achievements addressed in this sec-
tion reflecting the results reported by several authors, one has
to keep in mind that these successes have been obtained in
investigations carried out under very controlled conditions, in
a friendly laboratory environment, and many more real-world
studies will be required before the applications can be widely
used.

Achievements and perspectives
on gravimetric gas sensors

The first conclusive accounts below refer to topics contained in
this part of the review and are followed by statements emerging
from the whole review. They attempt to establish the degree to
which the expectations in the field of GGSs have been met and
to understand why the advances did not mirror the prospects.

Efforts to improve gravimetric gas sensor
performance and their practical implementation

Because of their simple transduction, appropriate for all rec-
ognition processes resulting in receptor mass change, GGSs
have been and remain a very attractive choice for applications.
As the whole section “Increasing the specificity of the recep-
tors” shows, many attempts have been made to increase the
strength and specificity of the analyte–receptor interaction
through several types of approaches:

– increasing the complementarity of the receptor towards a
given analyte by molecular tailoring, molecular imprint-
ing, use of molecular symmetry (the chiral one, for exam-
ple), use of cavitands and/or functionalized compounds,
use of materials with an enhanced degree of thermody-
namic non-ideality (composite, polymorphs, ionic fluids)

– bymeans ofGGSarrays or systemswith improved selectivity
– employing adequate sensor data processing at the hard-

ware (analogic) level, or through online/offline dedicated
software, based on chemometric methods (PCA, CA,
DA, PLS-DA, PLSR) or artificial intelligence

– developing evaluation approaches for specific devices/
applications.

The methods used to coat the MSTs with the sensing layers,
chosen to be compatible with the required structure/morphology
of the material, are very diverse, ranging from simple (like drop
casting, spray coating) to complicated (like atomic layer deposi-
tion, biosynthetic methods), sometimes including compound
preparation stages (for instance, electro-polymerization). The de-
vised devices have been utilized for the detection of different
classes of gases/vapor (flammable/toxic hydrocarbons, inorganic
gases, CWAs, humidity, metal vapor), in some cases in the con-
text of well-defined applications: freshness and quality of food,
identification of human diseases and personal safety in industrial
activity. However, the characterization of the reported devices or
applications is not exhaustive or adequately relevant. Several
researchers do not thoroughly use their experimental data to infer
the sensor parameters (this can be seen in Annex, which
encompasses many parameters evaluated by the authors of the
present review from data already existing in the published
reports). Moreover, the chemometric methods are employed to
a limited extent, even for sensor arrays, where they would
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contribute to an increase in the sensor system specificity and
accuracy.

The actual development stage of gravimetric gas
sensors: expectations, achievements and
disappointments

Despite good scientific understanding and technological
progress, the expected breakthrough of GGSs has occurred
to a very limited extent in the application field and is almost
invisible on the market. Even after increasing the effort spent
for devising adsorption-based devices, the market situation
did not improve. Some possible reasons are:

a. the mismatch between the operational parameters required
by the industrial/customer applications and the “offer”
coming from the prototype GGSs.

b. the large market request for the detection of certain gases
(toxic and flammable/explosive ones) for which the sens-
ing capability andmainly the specificity of GGSs is limited.
The optimistic picture of GGSs selectivity in the literature
is often misleading, because the cross-sensitivity tests,
though performed at relatively high concentrations with
respect to that of the target analyte, are not as large as
TLV-TWA levels which might actually be encountered in
the atmosphere. The most critical is the case of humidity,
where the usual environmental level is about 10,000 ppmv.

c. the questionable reliability, mainly due to the soft organic
material employed for the receptor manufacture, but also
to the mechanical component of the transducer operation
(resonant ultra-acoustic vibration). The changes in the
sensing layer stiffness, occurring together with changes
in the mass, might also alter accurate responses.

d. the sensor price, largely decided by the price of MTS
(often using single crystals) is usually higher than the

Fig. 31 PCA score clustering for
stored fruits according to storage
time. Evaluation made with GGS
array based on poly(pyrrole) and
TiO2 composite. Reproduced
with the kind permission of
Elsevier B.V. from references
[480]

Fig. 32 The biplot of the scores
and loadings in the first two PCs
resulting from the responses of a
four-sensor SA when exposed to
headspace samples of fruit juices.
The table in the right panel indi-
cates the average composition of
these commercial beverages.
Reproduced with the kind per-
mission of Frontiers Media SA
from reference [249]
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one of some competing categories of devices such as
SMOX chemoresitive or polymer capacitive gas sensors.

e. the accuracy of the GGSs is below the one offered by the
electrochemical or optical/spectral sensors, which are su-
perior even if more expensive and bulkier.

f. the readout is still more complicated than in the case of the
other sensors.

Final remarks

The investigation on gas sensing devices, particularly gravi-
metric gas sensors, is continuously growing in importance,

volume and geographic extent. The considerable interest
in this scientific and applicative topic, witnessed by the
increasing number of published reports, publications and
patents, reflects the increasing market needs but also the
limited success of the previous research approaches in
the field. Here, one has to acknowledge the still unripe
stage, at least from a market point of view, of gravi-
metric gas sensors, even after decades of investigations
leading to pertinent scientific knowledge. This uncom-
mon situation has, nevertheless, a positive side. It shows
that many opportunities are still open, and innovative
solutions for gravimetric gas sensors are needed and
anticipated.
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Fig. 33 The response of a
differential Q-TSMR sensor sys-
tem for ammonia detection in
large humidity background (refer
to the text). The comparison with
the exhaled ammonia in human
breath demonstrates the potential
of the approach. Reproduced with
the kind permission of Elsevier
B.V. from reference [119]

Fig. 34 The PCA score plots with spontaneous clustering of urine analysis
results. The event scores are displayed in the first two PCs as red open circles.
Events numbered “0” and without cluster structure belong to healthy persons.
The events numbered “1” and “2” indicate patients having bladder (green
cluster) and prostate (yellow cluster) cancer, respectively. Some bladder
cancer events are spread among the prostate ones. They are displayed as
green filled circles with red contour. Reproduced with the kind permission
of Elsevier B.V. from reference [344]
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