1 ว		
2 3	1	Short and long-term prognosis of glycemic control in COVID-19 patients with type
4 5	·	Short and long term prognosis of grycenne control in CO (12 1) patients (in type
5 6	2	2 diabetes
7 8 9	3	Running title: Glycemic control and outcomes in COVID-19 patients with T2D
9 10 11	4	Kegang Zhan ^{1,2,†} , Xiaohua Zhang ^{3,†} , Bin Wang ^{4,†} , Zheng Jiang ^{5,†} , Xiaoyu Fang ^{1,2} , Sha
12 13	5	Yang ⁶ , Hong Jia ¹ , Li Li ⁷ , Guoqiang Cao ⁷ , Kejun Zhang ^{8,#} , Xiangyu, Ma ^{2,#}
14 15	6	Affiliations:
16 17	7	¹ College of Public Health, Southwest Medical University, Luzhou, Sichuan, China
18	8	² Department of Epidemiology, College of Preventive Medicine, Third Military Medical University
19 20	9	(Army Medical University), Chongqing, China
20 21	10	³ Department of General Surgery, Daping Hospital, Third Military Medical University (Army Medical
22		
23 24	11	University), Chongqing, China
25	12	⁴ Pulmonary and critical care medicine center, Chinese PLA Respiratory Disease Institute, Xinqiao
26	13	Hospital, Third Military Medical University (Army Medical University), Chongqing, China
27 28	14	⁵ Yidu Cloud Technology Co. Ltd., Beijing
20 29	15	⁶ Department of Infectious Diseases, Southwest Hospital, Third Military Medical University (Army
30	16	Medical University), Chongqing 400038, P.R. China
31 32	17	⁷ Department of Respiratory Medicine, Daping Hospital, Third Military Medical University (Army
33	18	Medical University), Chongqing, China
34 35	19	⁸ Department of Outpatients, Daping Hospital, Third Military Medical University (Army Medical
36	20	University), Chongqing, China
37 38	21	[†] These authors contributed equally to this work.
39	22	# These authors jointly directed this project and share the co-corresponding
40 41	23	authorship
42 43	20	
44	25	To whom correspondence should be addressed:
45 46		
47 48	26	Pro Xiangyu Ma
49	27	Address: Gaotanyan Street 30, Shapingba district, Chongqing, China 400038
50 51	28	Email: <u>xymacq@hotmail.com; xymacq@tmmu.edu.cn</u>
52 53	29	Tel/fax: 0086-23-68771538
54	30	OR Pro Kejun Zhang
55 56 57	31	Email: <u>kejunzhang@tmmu.edu.cn</u>
58 59		[©] The Author(s) 2022. Published by Oxford University Press on behalf of the Association of Physicians.

32	ABSTRACT	

33 Background and aim

To systematically evaluate the associations between glycemic control and short- to longterm outcomes in coronavirus disease 2019 (COVID-19) patients with type 2 diabetes (T2D).

37 Design and methods

38 A multi-center prospective cohort study including 574 COVID-19 patients with T2D

39 were conducted in Wuhan, China. All patients were followed-up 1 year after hospital

40 discharge using a uniformed questionnaire including self-reported symptoms, and the

41 chronic obstructive pulmonary disease (COPD) assessment test (CAT) items.

Results

43 Of the 574 patients, 443 (77.2%) had well-controlled blood glucose. Glycemic control

44 was significantly associated with decreased risk of death (OR: 0.24, 95% CI: 0.10-0.57),

45 ICU admission (OR: 0.22, 95% CI: 0.10-0.49), invasive mechanical ventilation (OR:

46 0.25, 95% CI: 0.08-0.72), disease progression (OR: 0.25, 95% CI: 0.11-0.55), and

47 composite outcome (OR: 0.26, 95% CI: 0.14-0.49). The top five long-term sequelae

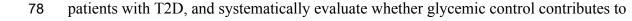
48 include fatigue (31.5%), sweating (21.2%), chest tightness (15.1%), anxiety (12.2%),

49 myalgia (10.6%), and short breath (6.4%). Glycemic control was associated with

50 decreased risk of respiratory sequelae (OR: 0.42, 95% CI: 0.18-0.99, P=0.048).

51 Conclusions

- 52 Glycemic control was significantly associated with short-term outcomes in COVID-19
- 53 patients with T2D, and showed a significant association with long-term respiratory


1		
2 3		
4	54	sequelae. The management and control of blood glucose has a positive impact on
5 6	55	prognosis of COVID-19.
7 8	56	Keywords: COVID-19; type 2 diabetes; glycemic control; long-term; prognosis
9		
10 11		
12		
13 14		
15		
16		
17 18		
19		
20		
21 22		
23		
24		
25 26		
27		
28		
29 30		
31		
32 33		
33 34		
35		
36 37		
38		
39		
40 41		
42		
43		
44 45		
46		
47		
48 49		
50		
51 52		
52 53		
54		
55 56		
57		
58		
59 60		https://mc.manuscriptcentral.com/qjm
~~		

57 Introduction

Type 2 diabetes (T2D) has been identified as the second most common comorbidity of coronavirus disease 2019 (COVID-19), and patients with T2D are at increased risk of severe COVID-19 complications and worse prognosis (1-3). In a multicenter national study in China, T2D was present in 8.2% of patients, and the severe group had a higher proportion of T2D (23.7% vs 6.8%) (4). Living systematic review and meta-analyses showed that diabetes was independently associated with increased risk of in-hospital severity and death of COVID-19 (5, 6).

To date, no study has yet systematically evaluated whether glycemic control contributes to short-term prognosis of COVID-19, as well as the long-term outcomes of survivors of COVID-19 with T2D. Current evidence focused on the comparisons between pre-existing T2D groups and control group to explore the risk factor ordinarily (2, 3, 5). However, T2D is a highly complex and heterogeneous disease, for which studies have found that different glycaemia status (e.g. glycemic control rate) could result in different outcomes (6, 7). Even different antidiabetic medications can cause very different treatment outcomes of COVID-19, although the results might be biased (8-13). More attention should be focused on the glycaemia status, and only effective glycemic control are crucial for COVID-19 patients with T2D (14).

In this study, we aimed to present the short- to long-term outcomes of COVID-19

1 2		
2 3 4	79	short-term prognosis of COVID-19, and long-term outcomes of survivors of COVID-19
5 6	80	with T2D in a multi-center prospective cohort study in Wuhan, China.
7 8	81	
9	01	
10 11		
12		
13 14		
14		
16		
17 18		
19		
20 21		
22		
23		
24 25		
26		
27 28		
29		
30 31		
32		
33		
34 35		
36		
37 38		
39		
40 41		
42		
43 44		
45		
46 47		
47 48		
49		
50 51		
52		
53 54		
55		
56 57		
58		
59		https://mc.manuscriptcentral.com/qjm
60		https://ne.manasciptcentral.com/qjm

82 Materials and Methods

83 Study design and patients

Included in this multi-center prospective cohort study were all laboratory-confirmed COVID-19 patients with T2D, who were admitted to the two designated hospitals in Wuhan, China (Huoshenshan Hospital and Taikang-Tongji Hospital) between Feb 12 and Apr 10, 2020 (2, 15, 16). Baseline information, including demographic characteristics, coexisting disorders, clinical symptoms and laboratory findings were collected from electronic medical record system, and validated by a telephone-interview. All discharged patients met the uniform discharge criteria of the World Health Organization interim guidance (17). Follow-up data were obtained from telephone interviews by two trained physicians between Mar 1, 2021 and Mar 20, 2021, using a uniformed questionnaire including self-reported symptoms, and the chronic obstructive pulmonary disease (COPD) assessment test (CAT) score items (Supplementary Table 1). Patients were asked to report any persistent or emerging symptoms, respectively. The patient's current symptoms are carefully distinguished from their pre-disease status or other underlying diseases that are not associated with infection of COVID-19. All survey data was double entered and validated using EpiData (version 3.1, EpiData Association, Odense, Denmark) software, and disputes were arbitrated by the expert committees composed of experts of respiratory and critical care medicine, and epidemiology. This study was approved by the institutional review board of Daping Hospital of Army Medical University (Ethics number 202153), and verbal informed consent was obtained from all patients or their legal guardians prior to the follow-up.

Page 7 of 36

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
15
16
17
18
10
19 20
20
21
22
23
24
24
25
26
27
28
20
29
30
31
32
22
33
34
35
36
37
38
39
40
40
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

105 **Definition and outcomes**

106 Disease severity at admission was defined by World Health Organization (WHO) guideline for COVID-19.(18) Identification of T2D was based on an ICD-10 code for a 107 108 diagnosis of Type 2 diabetes in the electronic medical record. Well-controlled blood 109 glucose was defined as glycemic variability upon admission lower than 10.0mmol/L, 110 while the poorly-controlled blood glucose was defined when exceeding 10.0mmol/L according to the guideline for the prevention and treatment of T2D in China (2020 111 edition) (19). Intensive care unit (ICU) admission, the need for invasive mechanical 112 113 ventilation, in-hospital death and disease progression are short-term outcomes in our study. Disease progression was defined as the occurrence of a progression in a disease 114 115 category during hospitalization. The short-term composite outcome is defined as a 116 composite endpoint of the need for intensive care unit (ICU) admission, mechanical ventilation, in-hospital death, or disease progression. Post-sequelae and CAT scoring one 117 118 year after discharge were the primary indicator of long-term outcomes. Post-sequelae 119 includes any one of systemic sequelae, respiratory sequelae, cardiovascular sequelae, 120 neurological sequelae and digestive sequelae, while emerging sequelae was defined as 121 symptoms that were not observed during hospitalization but were reported in follow-up. 122 Meanwhile, CAT was commonly used to assess symptom burden of COVID-19 patients, 123 and CAT scores ≥ 10 was recommended as the threshold for maintenance treatment in 124 COPD (20).

125

60

126 Statistical analysis

127	Demographic characteristics and clinical consequences in patients were presented as
128	median (interquartile range, IQR) for continuous variables, and expressed as counts and
129	percentages for categorical variables. Means of continuous data from two groups were
130	compared using the Mann-Whitney U test. The frequencies of categorical variables were
131	compared using Chi-squared test or Fisher's exact test (when one or more of the cell
132	counts in a 2×2 table is less than 5). Survival curve was conducted by the Kaplan–Meier
133	method. We also used logistic regression model to find risk factors for the short- to long-
134	term outcomes of COVID-19 patients with T2D. All variables associated with endpoints
135	were included in the univariate regression model, and variables with $P < 0.1$ in univariate
136	analyses were entered into the multivariate regression models. To reduce the effects of
137	selection bias and confounding factors caused by loss of follow-up in prognosis
138	comparison, propensity score matching (PSM) was performed to create comparable
139	groups. We evaluated the stability of the results by comparing the differences between
140	totally enrolled patients and patients selected by PSM. The factors for propensity score
141	calculation include age, sex, disease severity at admission and clinical symptoms with
142	statistically significant differences, and 1:1 matching was performed using a 0.1 caliper
143	width. All analyses were done with R software (Institute for Statistics and Mathematics,
144	Vienna, Austria), version 4.0.2. The reported statistical significance levels were all 2-
145	sided, and $P < 0.05$ was considered to indicate statistical significance.

https://mc.manuscriptcentral.com/qjm

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
11	
14	
15	
16	
12 13 14 15 16 17 18	
18	
19	
20	
21 22 23	
21	
22	
23	
24	
25	
26	
27	
28	
29	
29	
30 31 32 33 34	
31	
32	
33	
34	
35	
36	
50	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59 60	
60	

60

147	Results
148	Baseline characteristics
149	A total of 574 COVID-19 patients with T2D were included in this study (Table 1
150	presented the baseline characteristics). Of them, 443 (77.2%) had well-controlled blood
151	glucose, while 131 (22.8%) had poorly-controlled blood glucose (Figure 1). The median
152	age of the eligible patients was 65.0 (IQR: 58.0-72.0) years old, with 311 (54.2%) being
153	male. A total of 262 (40.4%) patients were categorized as severe. There was no
154	significant difference in age, sex, disease severity and clinical symptoms at baseline (all
155	P-value >0.05).
156	
157	Associations of glycemic control with short-term outcomes of COVID-19
158	As shown in Table 2, totally 24 deaths, 29 ICU admissions, 15 invasive mechanical
159	ventilation, 27 disease progression, and 51 composite outcomes occurred during
160	hospitalization. As expected, the percentages of all short-term outcomes in the well-
161	controlled group were significantly lower, compared with those in the poorly-controlled
162	group (P<0.05) (Figure 2). Glycemic control was significantly associated with decreased
163	risk of death (OR: 0.24, 95% CI: 0.10-0.57), ICU admission (OR: 0.22, 95% CI: 0.10-
164	0.49), invasive mechanical ventilation (OR: 0.25, 95% CI: 0.08-0.72), disease
165	progression (OR: 0.25, 95% CI: 0.11-0.55), and composite outcome (OR: 0.26, 95% CI:
166	0.14-0.49), after adjusted for disease severity at admission, age and sex (Table 2).
167	Survival curve also showed that there was a significant difference in terms of survival
168	rate between two groups (P<0.001) (Figure 3). We also explored the risk factors of the
169	short-term composite outcome using a multivariate logistic regression model, and
	٥

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

170 identified that glycemic control (OR: 0.23, 95% CI: 0.12-0.43), disease severity at 171 admission (OR: 2.03, 95% CI: 1.04-3.97), dyspnea (OR: 4.35, 95% CI: 2.14-8.81), and cardiovascular disease (OR: 3.84, 95% CI: 1.97-7.48), were independently associated 172 173 with composite outcome (Table 3). 174 Associations of glycemic control with long-term outcomes of COVID-19 175 Patients included in this study were further followed-up one year after hospital discharge. 176 As shown in Figure 4, of the 574 COVID-19 patients with T2D, 263 were not available 177 178 because of died during hospitalization (n=24) or decline to participate (n=136) or unable 179 to be contacted (n=103). Hence, 311 (54.2%) patients with complete follow-up data were enrolled. The median (IQR) age of the enrolled participants was 63.0 (53.0-70.0) years, 180 181 with 163 (52.4%) men and 148 (47.6%) women. The median (IQR) time from discharge to follow-up was 362.0 (357.0-370.0) days. Of the 311 eligible patients, 153 patients 182 (49.2%) report at least one sequelae at follow up (Table 4). The top five post-sequelae 183 include fatigue (31.5%), sweating (21.2%), chest tightness (15.1%), anxiety (12.2%), 184 myalgia (10.6%), and short breath (6.4%). Of them, fatigue, chest tightness, myalgia, and 185 186 short breath are persistent symptoms, although the prevalence rate dropped sharply (Supplementary Table 2, and Figure 5). Sweating, and anxiety are emerging sequelae 187 188 (Supplementary Table 2, and Figure 5). The median of CAT score was 2(0-5) in all 189 patients, while a total of 26 patients (8.4%) had CAT scores ≥ 10 (Table 4). 190 We then evaluated the associations of glycemic control with different long-term 191

192 outcomes COVID-19, including systemic sequelae, neurological sequelae, cardiovascular

Page 11 of 36

1	
2	
2 3	
4	
5	
6 7	
7	
8	
9	
10	
11 12	
12 13	
14	
15	
16	
16 17	
18	
19	
20	
20 21 22 23 24	
22	
23	
24 25	
26	
)/	
28	
29	
30	
31	
32	
33	
34	
35 36	
36 37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48 49	
49 50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

193	sequelae, respiratory sequelae, digestive sequelae, emerging sequelae, and CAT score \geq
194	10. We found glycemic control was associated with decreased risk of respiratory sequelae
195	(OR: 0.42, 95% CI: 0.18-0.99, P=0.048) (Table 5), and blood glucose levels was
196	significantly associated with increased risk of respiratory sequelae (OR for per unit: 1.11,
197	95% CI: 1.02-1.21, P=0.017) (Supplementary Table 3).
198	
199	As the patients lost to follow-up before were a little older than those enrolled (P<0.001,
200	Supplementary Table 4), PSM was conducted to evaluate the lost to follow-up bias in the
201	sensitivity analysis. Totally 189 patients in the enrolled population were matched
202	successfully with those lost to follow-up, and the baseline characteristics were
203	comparable (Supplementary Table 4). We then compared the post-sequelae one year after
204	hospital discharge between totally enrolled patients (n=311) and those selected by PSM
205	(n=189), and didn't find any significant difference of the long-term outcomes
206	(Supplementary Table 5, all $P > 0.05$). This indicates the lost to follow-up bias was
207	negligible, and the enrolled patients were representative.
208	

Discussion

 glycemic control and short- to long-term outcomes of COVID-19 patients with T2D. Of the 574 patients, 443 (77.2%) had well-controlled blood glucose. For short-term outcomes, glycemic control was significantly associated with decreased risk of death, ICU admission, invasive mechanical ventilation, disease progression, and composite outcome. For long-term outcomes, glycemic control was significantly associated with decreased risk of respiratory sequelae. Taken together, our study verified that glycemic control was significantly associated with short- term outcomes in COVID-19 patients with T2D, and showed a significant association with long-term respiratory sequelae. It is known that hyperglycemic environment is detrimental to the clinical prognosis of COVID-19. However, whether glucose-lowering drugs affect the prognosis of COVID- 19 patients with T2D is still inconclusive (14). Currently, several glucose-lowering drugs were mainly used in COVID-19 patients, including metformin, insulin, sodium-glucose cotransporter 2 (SGLT2) inhibitor, sulfonylureas and dipeptidyl peptidase 4 (DPP4) inhibitors, and a combination of such drugs would be used depending on the clinical practice (21, 22). According to a national study in England, metformin, SGLT2 inhibitors, and sulfonylureas were associated with reduced risks of the COVID-19-related mortality, while insulin and DPP4 inhibitors were associated with increases in risk (23). A study conducted in Wuhan, China also reported that insulin treatment was associated with increased mortality in COVID-19 patients with T2D (24). However, another study in Wuhan found metformin was associated with increased incidence of acidosis, and not 	210	In this prospective cohort study, we systematically evaluated the associations between
 outcomes, glycemic control was significantly associated with decreased risk of death, ICU admission, invasive mechanical ventilation, disease progression, and composite outcome. For long-term outcomes, glycemic control was significantly associated with decreased risk of respiratory sequelae. Taken together, our study verified that glycemic control was significantly associated with short- term outcomes in COVID-19 patients with T2D, and showed a significant association with long-term respiratory sequelae. It is known that hyperglycemic environment is detrimental to the clinical prognosis of COVID-19. However, whether glucose-lowering drugs affect the prognosis of COVID- 19 patients with T2D is still inconclusive (14). Currently, several glucose-lowering drugs were mainly used in COVID-19 patients, including metformin, insulin, sodium-glucose cotransporter 2 (SGLT2) inhibitor, sulfonylureas and dipeptidyl peptidase 4 (DPP4) inhibitors, and a combination of such drugs would be used depending on the clinical practice (21, 22). According to a national study in England, metformin, SGLT2 inhibitors, and sulfonylureas were associated with reduced risks of the COVID-19-related mortality, while insulin and DPP4 inhibitors were associated with increases in risk (23). A study conducted in Wuhan, China also reported that insulin treatment was associated with increased mortality in COVID-19 patients with T2D (24). However, another study in 	211	glycemic control and short- to long-term outcomes of COVID-19 patients with T2D. Of
 ICU admission, invasive mechanical ventilation, disease progression, and composite outcome. For long-term outcomes, glycemic control was significantly associated with decreased risk of respiratory sequelae. Taken together, our study verified that glycemic control was significantly associated with short- term outcomes in COVID-19 patients with T2D, and showed a significant association with long-term respiratory sequelae. It is known that hyperglycemic environment is detrimental to the clinical prognosis of COVID-19. However, whether glucose-lowering drugs affect the prognosis of COVID-19 patients with T2D is still inconclusive (14). Currently, several glucose-lowering drugs were mainly used in COVID-19 patients, including metformin, insulin, sodium-glucose cotransporter 2 (SGLT2) inhibitor, sulfonylureas and dipeptidyl peptidase 4 (DPP4) inhibitors, and a combination of such drugs would be used depending on the clinical practice (21, 22). According to a national study in England, metformin, SGLT2 inhibitors, and sulfonylureas were associated with reduced risks of the COVID-19-related mortality, while insulin and DPP4 inhibitors were associated with increases in risk (23). A study conducted in Wuhan, China also reported that insulin treatment was associated with increased mortality in COVID-19 patients with T2D (24). However, another study in 	212	the 574 patients, 443 (77.2%) had well-controlled blood glucose. For short-term
 outcome. For long-term outcomes, glycemic control was significantly associated with decreased risk of respiratory sequelae. Taken together, our study verified that glycemic control was significantly associated with short- term outcomes in COVID-19 patients with T2D, and showed a significant association with long-term respiratory sequelae. It is known that hyperglycemic environment is detrimental to the clinical prognosis of COVID-19. However, whether glucose-lowering drugs affect the prognosis of COVID- 19 patients with T2D is still inconclusive (14). Currently, several glucose-lowering drugs were mainly used in COVID-19 patients, including metformin, insulin, sodium-glucose cotransporter 2 (SGLT2) inhibitor, sulfonylureas and dipeptidyl peptidase 4 (DPP4) inhibitors, and a combination of such drugs would be used depending on the clinical practice (21, 22). According to a national study in England, metformin, SGLT2 inhibitors, and sulfonylureas were associated with reduced risks of the COVID-19-related mortality, while insulin and DPP4 inhibitors were associated with increases in risk (23). A study conducted in Wuhan, China also reported that insulin treatment was associated with increased mortality in COVID-19 patients with T2D (24). However, another study in 	213	outcomes, glycemic control was significantly associated with decreased risk of death,
 decreased risk of respiratory sequelae. Taken together, our study verified that glycemic control was significantly associated with short- term outcomes in COVID-19 patients with T2D, and showed a significant association with long-term respiratory sequelae. It is known that hyperglycemic environment is detrimental to the clinical prognosis of COVID-19. However, whether glucose-lowering drugs affect the prognosis of COVID- patients with T2D is still inconclusive (14). Currently, several glucose-lowering drugs were mainly used in COVID-19 patients, including metformin, insulin, sodium-glucose cotransporter 2 (SGLT2) inhibitor, sulfonylureas and dipeptidyl peptidase 4 (DPP4) inhibitors, and a combination of such drugs would be used depending on the clinical practice (21, 22). According to a national study in England, metformin, SGLT2 inhibitors, and sulfonylureas were associated with reduced risks of the COVID-19-related mortality, while insulin and DPP4 inhibitors were associated with increases in risk (23). A study conducted in Wuhan, China also reported that insulin treatment was associated with increased mortality in COVID-19 patients with T2D (24). However, another study in 	214	ICU admission, invasive mechanical ventilation, disease progression, and composite
 control was significantly associated with short- term outcomes in COVID-19 patients with T2D, and showed a significant association with long-term respiratory sequelae. It is known that hyperglycemic environment is detrimental to the clinical prognosis of COVID-19. However, whether glucose-lowering drugs affect the prognosis of COVID- 19 patients with T2D is still inconclusive (14). Currently, several glucose-lowering drugs were mainly used in COVID-19 patients, including metformin, insulin, sodium-glucose cotransporter 2 (SGLT2) inhibitor, sulfonylureas and dipeptidyl peptidase 4 (DPP4) inhibitors, and a combination of such drugs would be used depending on the clinical practice (21, 22). According to a national study in England, metformin, SGLT2 inhibitors, and sulfonylureas were associated with reduced risks of the COVID-19-related mortality, while insulin and DPP4 inhibitors were associated with increases in risk (23). A study conducted in Wuhan, China also reported that insulin treatment was associated with increased mortality in COVID-19 patients with T2D (24). However, another study in 	215	outcome. For long-term outcomes, glycemic control was significantly associated with
 with T2D, and showed a significant association with long-term respiratory sequelae. It is known that hyperglycemic environment is detrimental to the clinical prognosis of COVID-19. However, whether glucose-lowering drugs affect the prognosis of COVID- 19 patients with T2D is still inconclusive (14). Currently, several glucose-lowering drugs were mainly used in COVID-19 patients, including metformin, insulin, sodium-glucose cotransporter 2 (SGLT2) inhibitor, sulfonylureas and dipeptidyl peptidase 4 (DPP4) inhibitors, and a combination of such drugs would be used depending on the clinical practice (21, 22). According to a national study in England, metformin, SGLT2 inhibitors, and sulfonylureas were associated with reduced risks of the COVID-19-related mortality, while insulin and DPP4 inhibitors were associated with increases in risk (23). A study conducted in Wuhan, China also reported that insulin treatment was associated with increased mortality in COVID-19 patients with T2D (24). However, another study in 	216	decreased risk of respiratory sequelae. Taken together, our study verified that glycemic
 It is known that hyperglycemic environment is detrimental to the clinical prognosis of COVID-19. However, whether glucose-lowering drugs affect the prognosis of COVID- 19 patients with T2D is still inconclusive (14). Currently, several glucose-lowering drugs were mainly used in COVID-19 patients, including metformin, insulin, sodium-glucose cotransporter 2 (SGLT2) inhibitor, sulfonylureas and dipeptidyl peptidase 4 (DPP4) inhibitors, and a combination of such drugs would be used depending on the clinical practice (21, 22). According to a national study in England, metformin, SGLT2 inhibitors, and sulfonylureas were associated with reduced risks of the COVID-19-related mortality, while insulin and DPP4 inhibitors were associated with increases in risk (23). A study conducted in Wuhan, China also reported that insulin treatment was associated with increased mortality in COVID-19 patients with T2D (24). However, another study in 	217	control was significantly associated with short- term outcomes in COVID-19 patients
 It is known that hyperglycemic environment is detrimental to the clinical prognosis of COVID-19. However, whether glucose-lowering drugs affect the prognosis of COVID- 19 patients with T2D is still inconclusive (14). Currently, several glucose-lowering drugs were mainly used in COVID-19 patients, including metformin, insulin, sodium-glucose cotransporter 2 (SGLT2) inhibitor, sulfonylureas and dipeptidyl peptidase 4 (DPP4) inhibitors, and a combination of such drugs would be used depending on the clinical practice (21, 22). According to a national study in England, metformin, SGLT2 inhibitors, and sulfonylureas were associated with reduced risks of the COVID-19-related mortality, while insulin and DPP4 inhibitors were associated with increases in risk (23). A study conducted in Wuhan, China also reported that insulin treatment was associated with increased mortality in COVID-19 patients with T2D (24). However, another study in 	218	with T2D, and showed a significant association with long-term respiratory sequelae.
 COVID-19. However, whether glucose-lowering drugs affect the prognosis of COVID- 19 patients with T2D is still inconclusive (14). Currently, several glucose-lowering drugs were mainly used in COVID-19 patients, including metformin, insulin, sodium-glucose cotransporter 2 (SGLT2) inhibitor, sulfonylureas and dipeptidyl peptidase 4 (DPP4) inhibitors, and a combination of such drugs would be used depending on the clinical practice (21, 22). According to a national study in England, metformin, SGLT2 inhibitors, and sulfonylureas were associated with reduced risks of the COVID-19-related mortality, while insulin and DPP4 inhibitors were associated with increases in risk (23). A study conducted in Wuhan, China also reported that insulin treatment was associated with increased mortality in COVID-19 patients with T2D (24). However, another study in 	219	
 19 patients with T2D is still inconclusive (14). Currently, several glucose-lowering drugs were mainly used in COVID-19 patients, including metformin, insulin, sodium-glucose cotransporter 2 (SGLT2) inhibitor, sulfonylureas and dipeptidyl peptidase 4 (DPP4) inhibitors, and a combination of such drugs would be used depending on the clinical practice (21, 22). According to a national study in England, metformin, SGLT2 inhibitors, and sulfonylureas were associated with reduced risks of the COVID-19-related mortality, while insulin and DPP4 inhibitors were associated with increases in risk (23). A study conducted in Wuhan, China also reported that insulin treatment was associated with increased mortality in COVID-19 patients with T2D (24). However, another study in 	220	It is known that hyperglycemic environment is detrimental to the clinical prognosis of
 were mainly used in COVID-19 patients, including metformin, insulin, sodium-glucose cotransporter 2 (SGLT2) inhibitor, sulfonylureas and dipeptidyl peptidase 4 (DPP4) inhibitors, and a combination of such drugs would be used depending on the clinical practice (21, 22). According to a national study in England, metformin, SGLT2 inhibitors, and sulfonylureas were associated with reduced risks of the COVID-19-related mortality, while insulin and DPP4 inhibitors were associated with increases in risk (23). A study conducted in Wuhan, China also reported that insulin treatment was associated with increased mortality in COVID-19 patients with T2D (24). However, another study in 	221	COVID-19. However, whether glucose-lowering drugs affect the prognosis of COVID-
 cotransporter 2 (SGLT2) inhibitor, sulfonylureas and dipeptidyl peptidase 4 (DPP4) inhibitors, and a combination of such drugs would be used depending on the clinical practice (21, 22). According to a national study in England, metformin, SGLT2 inhibitors, and sulfonylureas were associated with reduced risks of the COVID-19-related mortality, while insulin and DPP4 inhibitors were associated with increases in risk (23). A study conducted in Wuhan, China also reported that insulin treatment was associated with increased mortality in COVID-19 patients with T2D (24). However, another study in 	222	19 patients with T2D is still inconclusive (14). Currently, several glucose-lowering drugs
 inhibitors, and a combination of such drugs would be used depending on the clinical practice (21, 22). According to a national study in England, metformin, SGLT2 inhibitors, and sulfonylureas were associated with reduced risks of the COVID-19-related mortality, while insulin and DPP4 inhibitors were associated with increases in risk (23). A study conducted in Wuhan, China also reported that insulin treatment was associated with increased mortality in COVID-19 patients with T2D (24). However, another study in 	223	were mainly used in COVID-19 patients, including metformin, insulin, sodium-glucose
 practice (21, 22). According to a national study in England, metformin, SGLT2 inhibitors, and sulfonylureas were associated with reduced risks of the COVID-19-related mortality, while insulin and DPP4 inhibitors were associated with increases in risk (23). A study conducted in Wuhan, China also reported that insulin treatment was associated with increased mortality in COVID-19 patients with T2D (24). However, another study in 	224	cotransporter 2 (SGLT2) inhibitor, sulfonylureas and dipeptidyl peptidase 4 (DPP4)
 inhibitors, and sulfonylureas were associated with reduced risks of the COVID-19-related mortality, while insulin and DPP4 inhibitors were associated with increases in risk (23). A study conducted in Wuhan, China also reported that insulin treatment was associated with increased mortality in COVID-19 patients with T2D (24). However, another study in 	225	inhibitors, and a combination of such drugs would be used depending on the clinical
 mortality, while insulin and DPP4 inhibitors were associated with increases in risk (23). A study conducted in Wuhan, China also reported that insulin treatment was associated with increased mortality in COVID-19 patients with T2D (24). However, another study in 	226	practice (21, 22). According to a national study in England, metformin, SGLT2
 A study conducted in Wuhan, China also reported that insulin treatment was associated with increased mortality in COVID-19 patients with T2D (24). However, another study in 	227	inhibitors, and sulfonylureas were associated with reduced risks of the COVID-19-related
230 with increased mortality in COVID-19 patients with T2D (24). However, another study in	228	mortality, while insulin and DPP4 inhibitors were associated with increases in risk (23).
	229	A study conducted in Wuhan, China also reported that insulin treatment was associated
231 Wuhan found metformin was associated with increased incidence of acidosis, and not	230	with increased mortality in COVID-19 patients with T2D (24). However, another study in
	231	Wuhan found metformin was associated with increased incidence of acidosis, and not

Page 13 of 36

232	was not associated with increased 28-day all-cause mortality (8). A study in Korea
233	impacted that DPP-4i in monotherapy or combination with renin-angiotensin system
234	blockers shown protective effects against severe/lethal cases (25). Even some research
235	reported that there is no significant association between poor prognosis and glucose-
236	lowering drugs in patients with COVID-19 (21, 26). There is no clear indication to
237	change prescribing of glucose-lowering drugs in COVID-19 patients to date, as these
238	results may be biased by the glycemic control effect.
239	
240	Previous studies have demonstrated glycemic control is significantly associated with risk
241	of severe complications and death of severe acute respiratory syndrome (SARS) and
242	middle east respiratory syndrome (MERS) with T2D (27, 28). For short-term outcomes,
243	Klonoff et al reported that admission glucose was a strong predictor of death among
244	patients directly admitted to the ICU (29), while Zhu et al verified that well-controlled
245	blood glucose was associated with markedly lower mortality compared to individuals
246	with poorly-controlled blood glucose (24). These results verified our findings, which
247	revealed that glycemic control was significantly associated with decreased risk of death,
248	ICU admission, invasive mechanical ventilation, disease progression, and composite
249	outcome in COVID-19 patients with T2D. Therefore, proper control of blood glucose
250	levels is important to improve the short-term prognosis of COVID-19 patients with T2D.
251	The possible explanations for COVID-19 patients with poorly-controlled blood glucose
252	more likely to develop poor outcomes include, first, hyperglycemic environment could

cell exhaustion and local innate immune response (30, 31). Second, in poorly controlled

exacerbate insulin resistance, leading to increased β-cell stress naturally and eventually β-

2	
3	
4	
5 6	
6 7	
8	
9	
10	
11 12	
13	
14	
15	
16	
17 18	
19	
20	
21	
22 23	
23 24	
25	
26	
27	
28 29	
30	
31	
32	
33 34	
35	
36	
37	
38 39	
40	
41	
42	
43 44	
45	
46	
47	
48 49	
49 50	
51	
52	
53 54	
54 55	
56	
57	
58	
59 60	
00	

patients, potentially high glycosylated angiotensin-converting enzyme 2 (ACE2) in
various organs may also increase SARS-CoV-2 viral binding sites, leading to a higher
propensity for COVID-19 infection and higher disease severity (32).

258

1

259 In addition to short-term outcomes, we also followed-up the long-term outcomes of 260 COVID-19 patients with T2D. After one year follow-up, the clinical symptoms of patients were greatly relieved, and 49.2% patients in our study reported at least one 261 sequelae, consistent with results in other populations (33, 34). Among the top five long-262 263 term sequelae, sweating and anxiety are emerging sequelae, which indicated that the psychological comfort after hospital discharge of COVID-19 should not be neglected 264 265 (35). Our results indicated that glycemic control was significantly associated with 266 decreased risk of respiratory sequelae, and blood glucose levels was significantly associated with increased risk of respiratory sequelae one year after hospital discharge. It 267 268 can be interpreted that hyperglycemia-induced pulmonary connective tissue change, 269 inflammatory response, and microangiopathy are the most likely causative mechanisms 270 leading to pulmonary function and respiratory symptoms (36).

271

Our study also has several limitations. First, similar to other follow-up studies, high rate
of loss to follow-up possibly caused by individual willingness of patients not to be
continuously concerned might bias the incidence of post-sequelae. However, the PSM
suggests this bias might be limited. Second, because both the two hospitals (Huoshenshan
Hospital and Taikang-Tongji Hospital) are emergency admission hospitals of COVID-19,
glycaemia was the only blood glucose parameter that was assayed and included in the

1	
2	
3	
4	
5	
2	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
17	
20	
21	
22	
~~	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
22	
33	
34	
35	
36	
37	
38	
39	
40	
41	
40	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52	
53	
54	
55	
56	
57	
58	
59	
60	

278	data analyses, which could introduce unexpected confounding if another parameter,
279	unmeasured but correlated to blood glucose concentration, were the actual driver of the
280	shown effect. Third, long-term outcomes may have been influenced by a severer short-
281	term outcome, and the glycemic control status might vary after hospital discharge.
282	Fourth, telephone follow-up relied on self-reported symptoms may affect the accuracy of
283	the long-term outcomes, although we performed rigorous quality control and repeat
284	surveys of partial samples.
285	
286	Conclusions
287	In conclusion, our study provides valuable clues that glycemic control was significantly
288	associated with short -term outcomes in COVID-19 patients with T2D, and showed a
289	significant association with long-term respiratory sequelae. The management and control
290	of blood glucose has a positive impact on overall prognosis of COVID-19. Studies among
291	different population and exploring relevant mechanisms are warranted to validate the
292	results and popularize our findings.
293	
294	
295	Funding
296	The present study was funded by Outstanding Youth Science Foundation of Chongqing
297	(cstc2020jcyj-jqX0014), Chongqing Talents: Exceptional Young Talents Project
298	(CQYC202005003), and the Science Foundation for Outstanding Young People of the
299	Army Medical University (grant to Pro Xiangyu Ma and Li Li). The funders had no role
300	in study design, data collection and analysis, decision to publish, or preparation of the
	45

2	
3 4	301
5 6	302
7 8	303
9	
10 11	304
12 13	305
14 15 16	306
17	307
18 19	308
20	309
21	310
22 23	311
24	312
25 26	313
26 27	313
28	
29 30	315
31	316
32	317
33 34	318
35	319
36 37	320
38	321
39	322
40 41	323
42	324
43	325
44 45	326
46	327
47 48	328
49	329
50	330
51 52	331
53	332
54 55	002
55 56	
57	
58 59	
60	

manuscript.

302	
303	Conflict of interest
304	All authors have no conflicts of interest to declare.
305	
306	References
307	1. Seiglie J, Platt J, Cromer SJ, Bunda B, Foulkes AS, Bassett IV, et al. Diabetes as a Risk
308	Factor for Poor Early Outcomes in Patients Hospitalized With COVID-19. Diabetes Care.
309	2020;43(12):2938-44.
310	2. Li L, Fang X, Cheng L, Wang P, Li S, Yu H, et al. Development and validation of a prognostic
311	nomogram for predicting in-hospital mortality of COVID-19: a multicenter retrospective cohort
312	study of 4086 cases in China. Aging. 2021;13(3):3176-89.
313	3. Fang X, Li S, Yu H, Wang P, Zhang Y, Chen Z, et al. Epidemiological, comorbidity factors
314	with severity and prognosis of COVID-19: a systematic review and meta-analysis. Aging.
315	2020;12(13):12493-503.
316	4. Liang W, Liang H, Ou L, Chen B, Chen A, Li C, et al. Development and Validation of a
317	Clinical Risk Score to Predict the Occurrence of Critical Illness in Hospitalized Patients With
318	COVID-19. JAMA Intern Med. 2020;180(8):1081-9.
319	5. Longmore DK, Miller JE, Bekkering S, Saner C, Mifsud E, Zhu Y, et al. Diabetes and
320	Overweight/Obesity Are Independent, Nonadditive Risk Factors for In-Hospital Severity of
321	COVID-19: An International, Multicenter Retrospective Meta-analysis. Diabetes Care. 2021.
322	6. Schlesinger S, Neuenschwander M, Lang A, Pafili K, Kuss O, Herder C, et al. Risk
323	phenotypes of diabetes and association with COVID-19 severity and death: a living systematic
324	review and meta-analysis. Diabetologia. 2021;64(7):1480-91.
325	7. Zaharia OP, Strassburger K, Strom A, Bonhof GJ, Karusheva Y, Antoniou S, et al. Risk of
326	diabetes-associated diseases in subgroups of patients with recent-onset diabetes: a 5-year
327	follow-up study. The lancet Diabetes & endocrinology. 2019;7(9):684-94.
328	8. Cheng X, Liu YM, Li H, Zhang X, Lei F, Qin JJ, et al. Metformin Is Associated with Higher
329	Incidence of Acidosis, but Not Mortality, in Individuals with COVID-19 and Pre-existing Type 2
330	Diabetes. Cell Metab. 2020;32(4):537-47 e3.
331	9. Yu B, Li C, Sun Y, Wang DW. Insulin Treatment Is Associated with Increased Mortality in
332	Patients with COVID-19 and Type 2 Diabetes. Cell Metab. 2021;33(1):65-77 e2.

1		
2 3	000	
4	333	10. Riahi S, Sombra LRS, Lo KB, Chacko SR, Neto AGM, Azmaiparashvili Z, et al. Insulin Use,
5 6	334 225	Diabetes Control, and Outcomes in Patients with COVID-19. Endocr Res. 2021;46(2):45-50.
7	335	11. Hariyanto TI, Lugito NPH, Yanto TA, Siregar JI, Kurniawan A. Insulin therapy and outcome
8 9	336	from coronavirus disease 2019 (COVID-19): A Systematic Review, Meta-Analysis, and Meta-
10	337	Regression. Endocrine, metabolic & immune disorders drug targets. 2021.
11 12	338	12. Dandona P, Ghanim H. Diabetes, Obesity, COVID-19, Insulin, and Other Antidiabetes
12	339	Drugs. Diabetes Care. 2021.
14	340	13. Riahi S, Lo KB, Anastasopoulou C, Rangaswami J. Insulin Use and Poor COVID-19
15 16	341	Outcomes among Diabetes Patients: Association Not Necessarily Causation. Endocr Res.
17	342	2021;46(2):53-4.
18 19	343	14. Schernthaner G. Can glucose-lowering drugs affect the prognosis of COVID-19 in patients
20	344	with type 2 diabetes? The lancet Diabetes & endocrinology. 2021;9(5):251-2.
21 22	345	15. Zhang X, Wang F, Shen Y, Zhang X, Cen Y, Wang B, et al. Symptoms and Health
22 23	346	Outcomes Among Survivors of COVID-19 Infection 1 Year After Discharge From Hospitals in
24	347	Wuhan, China. JAMA Netw Open. 2021;4(9):e2127403.
25 26	348	16. Fang X, Ming C, Cen Y, Lin H, Zhan K, Yang S, et al. Post-sequelae one year after hospital
27	349	discharge among older COVID-19 patients: a multi-center prospective cohort study. The Journal
28 29	350	of infection. 2021.
30	351	17. Organization WH. Clinical management of severe acute respiratory infection (SARI) when
31	352	COVID-19 disease is suspected: interim guidance. Geneva: World Health Organization; 2020
32 33	353	[cited 2020 13 March]. 19 p.]. Available from: https://www.who.int/docs/default-
34	354	source/coronaviruse/clinical-management-of-novel-cov.pdf.
35 36	355	18. Organization WH. Clinical management of severe acute respiratory infection (SARI) when
37	356	COVID-19 disease is suspected: interim guidance 2020 [Available from:
38 39	357	https://apps.who.int/iris/handle/10665/331446.
40	358	19. Society CD. Guideline for the prevention and treatment of type 2 diabetes mellitus in China
41 42	359	(2020 edition). Chinese Journal of Diabetes Mellitus. 2021;37(4):311-98.
42 43	360	20. Daynes E, Gerlis C, Briggs-Price S, Jones P, Singh SJ. COPD assessment test for the
44	361	evaluation of COVID-19 symptoms. Thorax. 2021;76(2):185-7.
45 46	362	21. Perez-Belmonte LM, Torres-Pena JD, Lopez-Carmona MD, Ayala-Gutierrez MM, Fuentes-
47	363	Jimenez F, Huerta LJ, et al. Mortality and other adverse outcomes in patients with type 2 diabetes
48 49	364	mellitus admitted for COVID-19 in association with glucose-lowering drugs: a nationwide cohort
50	365	study. BMC Med. 2020;18(1):359.
51 52	366	22. Nakhleh A, Shehadeh N. Interactions between antihyperglycemic drugs and the renin-
52	367	angiotensin system: Putative roles in COVID-19. A mini-review. Diabetes & Metabolic Syndrome:
54	368	Clinical Research & Reviews. 2020;14(4):509-12.
55 56		
57		
58 59		17
60		https://mc.manuscriptcentral.com/gim

1 2		
3	369	23. Khunti K, Knighton P, Zaccardi F, Bakhai C, Barron E, Holman N, et al. Prescription of
4 5	370	glucose-lowering therapies and risk of COVID-19 mortality in people with type 2 diabetes: a
6	371	nationwide observational study in England. The lancet Diabetes & endocrinology. 2021;9(5):293-
7 8	372	303.
9	373	24. Zhu L, She ZG, Cheng X, Qin JJ, Zhang XJ, Cai J, et al. Association of Blood Glucose
10 11	374	Control and Outcomes in Patients with COVID-19 and Pre-existing Type 2 Diabetes. Cell Metab.
12	375	2020;31(6):1068-77 e3.
13	376	25. Rhee SY, Lee J, Nam H, Kyoung DS, Shin DW, Kim DJ. Effects of a DPP-4 Inhibitor and
14 15	377	RAS Blockade on Clinical Outcomes of Patients with Diabetes and COVID-19. Diabetes Metab J.
16	378	2021;45(2):251-9.
17 18	379	26. Mehta PB, Kohn MA, Koliwad SK, Rushakoff RJ. Lack of association between either
19	380	outpatient or inpatient glycemic control and COVID-19 illness severity or mortality in patients with
20 21	381	diabetes. BMJ Open Diabetes Res Care. 2021;9(1).
22	382	27. Badawi A, Ryoo SG. Prevalence of Diabetes in the 2009 Influenza A (H1N1) and the Middle
23 24	383	East Respiratory Syndrome Coronavirus: A Systematic Review and Meta-Analysis. J Public
25	384	Health Res. 2016;5(3):733.
26 27	385	28. Yang JK, Feng Y, Yuan MY, Yuan SY, Fu HJ, Wu BY, et al. Plasma glucose levels and
27 28	386	diabetes are independent predictors for mortality and morbidity in patients with SARS. Diabetic
29	387	medicine : a journal of the British Diabetic Association. 2006;23(6):623-8.
30 31	388	29. Klonoff DC, Messler JC, Umpierrez GE, Peng L, Booth R, Crowe J, et al. Association
32	389	Between Achieving Inpatient Glycemic Control and Clinical Outcomes in Hospitalized Patients
33 34	390	With COVID-19: A Multicenter, Retrospective Hospital-Based Analysis. Diabetes Care.
35	391	2021;44(2):578-85.
36 37	392	30. Kahn BB, Flier JS. Obesity and insulin resistance. J Clin Invest. 2000;106(4):473-81.
38	393	31. Shulman GI. Cellular mechanisms of insulin resistance. J Clin Invest. 2000;106(2):171-6.
39	394	32. Brufsky A. Hyperglycemia, hydroxychloroquine, and the COVID-19 pandemic. J Med Virol.
40 41	395	2020;92(7):770-5.
42	396	33. Peghin M, Palese A, Venturini M, De Martino M, Gerussi V, Graziano E, et al. Post-COVID-
43 44	397	19 symptoms 6 months after acute infection among hospitalized and non-hospitalized patients.
45	398	Clinical microbiology and infection : the official publication of the European Society of Clinical
46 47	399	Microbiology and Infectious Diseases. 2021.
48	400	34. Stavem K, Ghanima W, Olsen MK, Gilboe HM, Einvik G. Persistent symptoms 1.5-6 months
49 50	401	after COVID-19 in non-hospitalised subjects: a population-based cohort study. Thorax. 2020.
51	401	35. Chen GF, Cheng YR, Ye L, Wang MW, Zhou MY, Zhang F, et al. Psychological support and
52	402	the COVID-19 - A short report. European review for medical and pharmacological sciences.
53 54	403	2020;24(15):8185-6.
55	404	
56 57		
58		18
59 60		https://mc.manuscriptcentral.com/gim

1 2		
2 3	405	
4	405	36. Vanidassane I, Malik R, Jain N. Study of Pulmonary function tests in Type 2 Diabetes
5	406	Mellitus and their correlation with glycemic control and systemic inflammation. Advances in
6 7	407	respiratory medicine. 2018.
8	408	
9	409	
10		
11		
12 13		
13 14		
15		
16		
17		
18 10		
19 20		
21		
22		
23		
24 25		
25 26		
27		
28		
29		
30		
31 32		
33		
34		
35		
36		
37 38		
39		
40		
41		
42		
43 44		
45		
46		
47		
48 40		
49 50		
51		
52		
53		
54 55		
55 56		
57		
58		
59		
60		https://mc.manuscriptcentral.com/qjm

410	Table 1: Baseline characteristics

Variables	Total (N=574)	Poorly-controlled (N=131)	Well-controlled (N=443)	P-valı
Age (years), median (IQR)*	65(58-72)	63(57-71)	65(58-72)	0.269
17-65	301(52.4%)	68(51.9%)	210(47.4%)	0.372
≥66	281(47.6%)	63(48.1%)	233(52.6%)	
Sex				
Male	311(54.2%)	74(56.5%)	237(53.5%)	0.551
Female	263(45.8%)	57(43.5%)	206(46.5%)	
Severity at admission				
Non-severve	342(59.6%)	70(53.4%)	272(61.4%)	0.106
Severe	262(40.4%)	61(46.6%)	171(38.6%)	
Coexisting disorders				
Hypertension	352(61.3%)	78(59.5%)	274(61.9%)	0.683
Coronary heart disease	83(14.5%)	15(11.5%)	68(15.3%)	0.322
Cardiovascular disease	111(19.3%)	23(17.6%)	88(19.9%)	0.616
Cerebrovascular disease	60(10.5%)	13(9.9%)	47(10.6%)	0.873
Tumor	25(4.4%)	7(5.3%)	18(4.1%)	0.625
Chronic kidney disease	33(5.7%)	9(6.9%)	24(5.4%)	0.670
COPD	4(0.7%)	0(0%)	4(0.9%)	1.000
Symptoms				
Myalgia	148(26.0%)	41(31.3%)	107(24.2%)	0.112
Chill	15(2.6%)	1(0.8%)	14(3.2%)	0.210
Fatigue	327(57.0%)	79(60.3%)	248(56.0%)	0.422
Cough	401(69.9%)	99(75.6%)	302(68.2%)	0.129
Sore throat	29(5.1%)	6(4.6%)	23(5.2%)	0.827
Hemoptysis	3(0.5%)	0(0%)	3(0.7%)	1.000
Expectoration	118(20.6%)	28(21.4%)	90(20.3%)	0.806
Nasal congestion	6(1.0%)	2(1.5%)	4(0.9%)	0.624
Anorexia	306(53.5%)	72(55.0%)	234(52.8%)	0.691
Diarrhea	33(5.7%)	9(6.9%)	24(5.4%)	0.670
Nausea	11(1.9%)	4(3.1%)	7(1.6%)	0.283
Vomiting	13(2.3%)	3(2.3%)	10(2.3%)	1.000
Dizziness	17(3.0%)	5(3.8%)	12(2.7%)	0.557
Headache	15(2.6%)	4(3.1%)	11(2.5%)	0.756
Chest tight	184(32.1%)	36(27.5%)	148(33.4%)	0.241
Short breath	259(45.1%)	69(52.7%)	190(42.9%)	0.057
Dyspnea	63(11.0%)	19(14.5%)	44(9.9%)	0.097

Endpoints	Poorly-controlled	Well-controlled		OR(95%CIs)*	P-value
	(N=131)	(N=443)			
Death	13(9.9%)	11(2.5%)	Unadjusted	0.23(0.10-0.53)	0.001
			Adjusted**	0.24(0.10-0.57)	0.001
ICU admission	16(12.2%)	13(2.9%)	Unadjusted	0.22(0.10-0.57)	< 0.001
			Adjusted	0.22(0.10-0.49)	< 0.001
Invasive mechanical	8(6.1%)	7(1.6%)	Unadjusted	0.25(0.09-0.69)	0.009
ventilation			Adjusted	0.25(0.08-0.72)	0.010
Disease progression	14(10.7%)	13(2.9%)	Unadjusted	0.25(0.12-0.55)	0.001
			Adjusted	0.25(0.11-0.55)	0.001
Composite outcome***	25(19.1%)	26(5.9%)	Unadjusted	0.26(0.15-0.48)	< 0.001
			Adjusted	0.26(0.14-0.49)	< 0.001

ECOVID 10 **T 11 A A** • .. 6 1 . . .

* The uncontrolled group was used as the benchmark for comparison

**Adjusted for disease severity at admission, age and sex.

***Composite outcome is defined as a composite endpoint of ICU admission, the need for invasive

mechanical ventilation, in-hospital death and disease progression.

420 Table 3: Risk factors associated with the short-term composite outcome

Variables	Univariate			Multivariate		
	OR	95%CIs	P-Value	OR	95%CIs	P-Valu
Sex						
Male	1					
Female	0.72	0.40-1.29	0.577			
Age						
17-65	1					
≥66	2.20	1.19-4.07	0.012			
Glycemic control	0.26	0.15-0.48	< 0.001	0.23	0.12-0.43	< 0.001
Disease severity at admission						
Non-severve	1					
Severe	3.28	1.79-6.03	< 0.001	2.03	1.04-3.97	0.038
Symptoms						
Myalgia	1.17	0.62-2.20	0.626			
Fatigue	0.73	0.41-1.29	0.281			
Cough	1.06	0.56-1.98	0.862			
Sore throat	1.21	0.35-4.14	0.761			
Expectoration	1.46	0.76-2.78	0.255			
Nasal congestion	2.10	0.24-18.31	0.503			
Anorexia	1.10	0.62-1.96	0.737			
Diarrhea	1.370	0.46-4.04	0.570			
Nausea	2.36	0.50-11.22	0.280			
Chest tight	1.65	0.93-2.59	0.090			
Short breath	1.56	0.88-2.77	0.126			
Dyspnea	5.69	2.98-10.86	< 0.001	4.35	2.14-8.81	< 0.001
Coexisting conditions						
Hypertension	1.11	0.61-2.00	0.740			
Coronary heart disease	2.40	1.24-4.64	0.010			
Cardiovascular disease	4.29	2.38-7.73	< 0.001	3.84	1.97-7.48	< 0.001
Cerebrovascular disease	2.63	1.27-5.44	0.009			
Tumor	3.58	1.36-9.39	0.010			
Chronic kidney disease	3.75	1.60-8.80	0.002			
Chronic liver disease	2.63	0.95-7.29	0.063			

Endpoints	Total (n=311)	Poorly-controlled (N=75)	Well-controlled (N=236)	P-valu
Any one of post-sequelae	153(49.2%)	37(49.3%)	116(49.2%)	1.000
Systemic sequelae	101(32.5%)	26(34.7%)	75(31.8)	0.672
Fatigue	95(30.5%)	26(34.7%)	69(29.2%)	0.390
Myalgia	32(10.3%)	7(9.3%)	25(10.6%)	0.831
Respiratory sequelae	25(8.0%)	10(13.3%)	15(6.4%)	0.084
dyspnea	10(3.2%)	4(5.3%)	6(2.5%)	0.261
Cough	14(4.5%)	6(8.0%)	8(3.4%)	0.111
Expectoration	10(3.2%)	4(5.3%)	6(2.5%)	0.564
Sore throat	3(1.0%)	1(1.3%)	2(0.8%)	0.482
Nasal congestion	1(0.3%)	1(1.3%)	0	0.241
Cardiovascular sequelae	56(18.0%)	11(14.7%)	45(19.1%)	0.399
Edema	4(1.3%)	0	4(1.7%)	0.576
Chest tightness	44(14.1%)	9(12%)	35(14.8%)	0.577
Short breath	18(5.8%)	4(5.3%)	14(5.9%)	1.000
Palpitation	12(3.9%)	3(4.0%)	9(3.8%)	1.000
Neurological sequelae	130(41.8%)	32(42.7%)	98(41.5%)	0.894
Dizziness	12(3.9%)	4(5.3%)	8(3.4%)	0.492
Headache	7(2.3%)	2(2.7%)	5(2.1%)	0.676
Anxiety	38(12.2%)	11(14.7%)	27(11.4%)	0.543
Sweating	66(21.2%)	18(24.0%)	48(20.3%)	0.519
Smell reduction	7(2.3%)	2(2.7%)	5(2.1%)	0.676
Taste change	8(2.6%)	3(4.0%)	5(2.1%)	0.405
Digestive sequelae	8(2.6%)	2(2.7%)	6(2.5%)	1.000
Diarrhea	1(0.3%)	0	1(0.4%)	1.000
Nausea	2(0.6%)	0	2(0.8%)	1.000
Vomiting	1(0.3%)	0	1(0.4%)	1.000
Anorexia	4(1.3%)	2(2.7%)	2(0.8%)	0.247
CAT scores	2(0-5)	2(0-5)	2(0-5)	0.528
CAT score ≥ 10	26(8.4%)	6(8.0%)	20(8.5%)	1.000

			P-valu
Any one of post-sequelae	1.0	0.59-1.69	0.995
Systemic sequelae	0.89	0.51-1.56	0.690
Respiratory sequelae	0.42	0.18-0.99	0.048
Cardiovascular sequelae	1.38	0.67-2.85	0.377
Neurological sequelae	0.97	0.57-1.66	0.913
Digestive system sequelae	0.86	0.17-4.42	0.860
Emerging sequelae	0.80	0.45-1.41	0.436
CAT score ≥ 10	1.01	0.41-2.09	0.980

Figure legends

the well-controlled group.

point of time of the two groups.

Figure 1 Distribution of the blood glucose level among the poorly-controlled group and

Figure 2 The comparison of percentage of the short-term outcomes between the poorly-

controlled group and the well-controlled group. Outcomes are shown on the x-axis, and

Figure 3 Kaplan-Meier survival curves for the poorly-controlled group and the well-

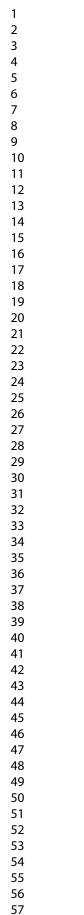
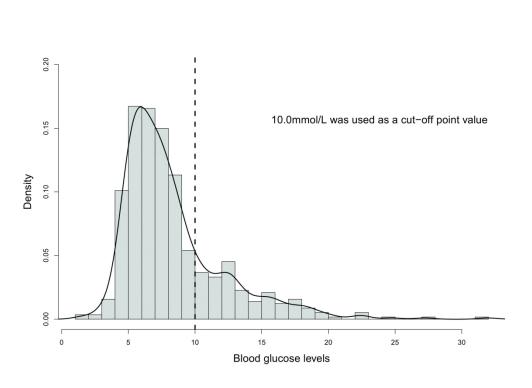
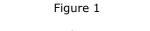
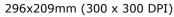
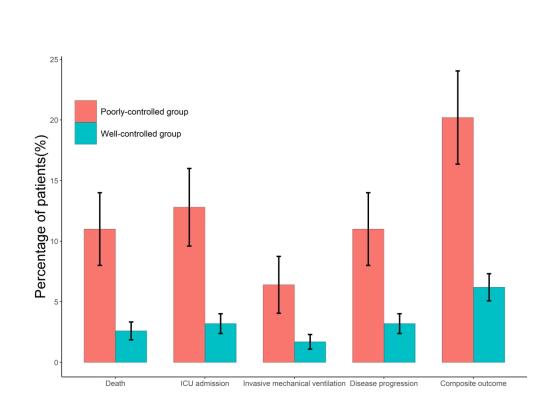

Figure 4 Flow chart of the follow-up of the enrolled COVID-19 patients with T2D.

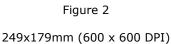
Figure 5 Clinical symptoms during hospitalization and one year after discharge

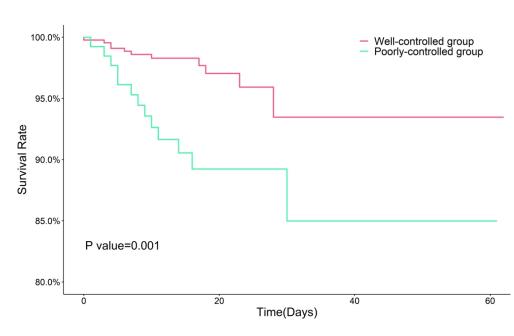

controlled group. The two survival curves to compare the survival probability at different

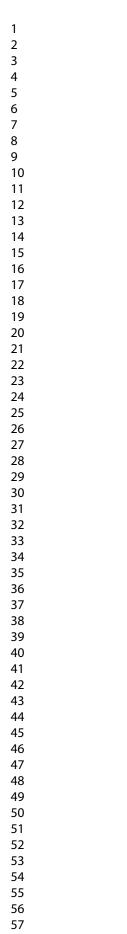

the percentage of patients in each outcome group is shown on the y-axis.


1 2	
2 3 4	432
5 6	433
7 8 9	434
10 11	435
12 13	436
14 15	437
16 17 18	438
19 20	439
21 22	440
23 24 25	441
26 27	442
28 29	443
30 31 32	444
33 34	445
35 36	446
37 38	447
39 40 41	
42 43	
44 45	
46 47	
48 49 50	
51 52	
53 54	
55 56	
57 58 59	









299x179mm (600 x 600 DPI)

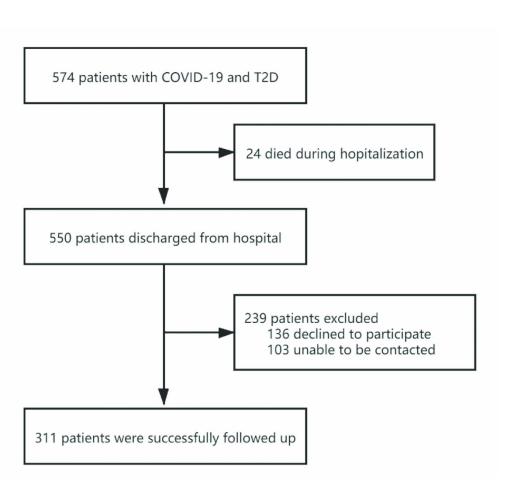
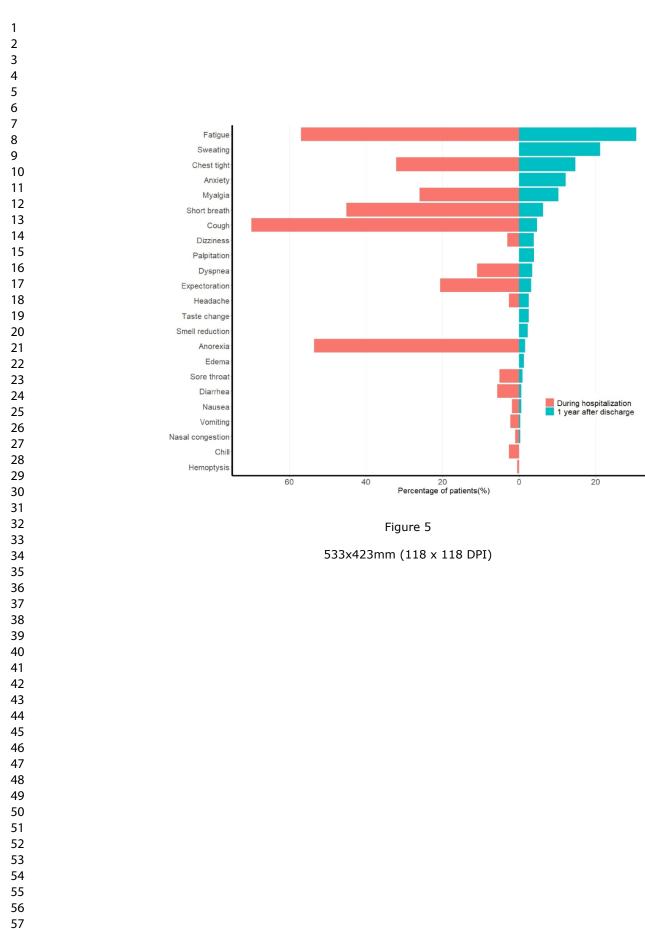



Figure 4

209x189mm (300 x 300 DPI)

