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Psoriasis vulgaris is a chronic inflammatory skin disease characterized by

well-demarcated scaly plaques. Oxidative stress plays a crucial role in the psoriasis

pathogenesis and is associated with the disease severity. Dimethyl fumarate modulates

the activity of the pro-inflammatory transcription factors. This is responsible for the

downregulation of inflammatory cytokines and an overall shift from a pro-inflammatory to

an anti-inflammatory/regulatory response. Both steps are necessary for the amelioration

of psoriatic inflammation, although additional mechanisms have been proposed.

Several studies reported a long-term effectiveness and safety of dimethyl fumarate

monotherapy in patients with moderate-to-severe psoriasis. Furthermore, psoriasis is

a chronic disease often associated to metabolic comorbidities, as obesity, diabetes,

and cardiovascular diseases, in which glutathione-S transferase deregulation is present.

Glutathione-S transferase is involved in the antioxidant system. An increase of its

activity in psoriatic epidermis in comparison with the uninvolved and normal epidermal

biopsies has been reported. Dimethyl fumarate depletes glutathione-S transferase by

formation of covalently linked conjugates. This review investigates the anti-inflammatory

role of dimethyl fumarate in oxidative stress and its effect by reducing oxidative

stress. The glutathione-S transferase regulation is helpful in treating psoriasis, with an

anti-inflammatory effect on the keratinocytes hyperproliferation, and in modulation of

metabolic comorbidities.
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INTRODUCTION

Psoriasis vulgaris is a chronic inflammatory skin disease
characterized by well-demarcated erythema and scaly plaques. It
is reported that an enhanced oxidative stress is associated with
the severity of psoriasis (1). Karabowicz et al. investigated the
intensity of oxidative stress and the expression and activity of the
proteasomal system, as well as the autophagy, responsible for the
degradation of oxidatively modified proteins in the blood cells of
patients with psoriasis (2). Oxidative-antioxidant system plays a
crucial role in the psoriasis pathogenesis (3). Numerous studies
reveal significantly increased levels of oxidative stress markers, as
malondialdehyde, nitric oxide end products, and 8-hydroxy-2′ -
deoxyguanosine in the plasma of psoriatic patients. Meanwhile,
a decreased total antioxidant capacity, reduced vitamin A and
E levels, and a diminished activity of the main antioxidant
enzymes were also detected in these patients (4). The antioxidant
system involved in oxidative stress reduction is constituted
by the glutathione-S transferase (GST). An increased reactive
oxygen species (ROS) and insufficient antioxidant activity
have been detected in psoriatic lesions (5). Pro-inflammatory
cytokines are involved in redox skin balance perturbation in
patients with psoriasis (3). Dimethyl fumarate (DMF) and
its metabolite monomethyl fumarate (MMF) modulate some
signaling proteins activity and intracellular concentration, such
as the nuclear factor (erythroid-derived 2)-like 2 (Nrf2), nuclear
factor-kappa B (Nf-κB), and cyclic adenosine monophosphate.
Some studies showed that DMF can also affect the hypoxia-
inducible factor-1 alpha. These actions seem to be responsible
for i) the downregulation of inflammatory cytokines and ii)
an overall shift from a pro-inflammatory (Th1/Th17) response
to an anti-inflammatory/regulatory (Th2) response. Both steps
are necessary for the amelioration of psoriatic inflammation,
although additional mechanisms have been proposed. There is a
growing body of evidence to support the notion that DMF/MMF
may also exert effects on granulocytes and non-immune cell
lineages, including keratinocytes and endothelial cells. A better
understanding of the multiple molecular mechanisms involved
in the cellular action of fumaric acid esters (FAEs) will help to
adapt and to further improve the use of such small molecules
for the treatment of psoriasis and other chronic inflammatory
diseases (6). Superoxide dismutase (SOD) and glutathione
peroxidase (GP) activity in erythrocytes are involved in the
psoriasis onset (7). Imbalance in the oxidant-antioxidant system
in psoriasis is involved. The DMF is considered as a prodrug,
after oral administration, rapidly hydrolyzed by esterases in
the small intestine and converted to MMF representing an
intermediate of tricarboxylic acid cycle (TCA) (7). This molecule
has been successfully used in psoriasis treatment for more than
40 years. Several clinical trials have demonstrated the FAEs
efficacy in this role (6, 8). In 1994, a mixture of MMF and
DMF (Fumaderm R©) was approved for the oral treatment of
psoriasis in Germany, Switzerland, and Austria (9). In 2019,
DMFwas approved for the treatment ofmild-to-moderate plaque
psoriasis. Several studies reported a long-term effectiveness and
safety of DMF monotherapy in patients with moderate-to-
severe psoriasis (9). In humans, people with polymorphisms

in GST genes were described to be susceptible to various
disorders, including psoriasis (10, 11), coronary artery diseases
(12), chronic obstructive pulmonary diseases (13), rheumatoid
arthritis (14), or neoplastic diseases, as breast, esophageal, and
gastric cancers (15, 16). Furthermore, psoriasis is a chronic
disease often associated with metabolic comorbidities, as obesity,
diabetes, and cardiovascular diseases, wherein GST deregulation
is present (17). Environmental and genetic risk factors have
been implicated in obesity etiopathology (18). Also, the oxidative
stress could lead to obesity, and the related comorbidities, by
promoting a white adipose tissue deposition (19). Several in
vitro studies documented that an increased oxidative stress and
an ROS could augment adipocyte proliferation, differentiation,
and growth (20–22), and control hunger and satiety behaviors
(23). Interestingly, there is a mutual relation between oxidative
stress and obesity, as abnormal fat accumulation can stimulate
a pro-inflammatory and a pro-oxidant state through various
biochemical and cellular mechanisms (24–26). The GST, which
removes the electrophilic compounds, including the lipid
peroxidation products, showed a white adipose tissue-specific
downregulation (26). Additionally, the antioxidant enzyme
activities of GP and superoxide dismutase were reported to be
dysregulated in red blood cells and serum of obese individuals
compared to controls (27, 28). Enzyme-converting glutathione
is constitutionally expressed by keratinocytes (29). An increase
of GST activity in psoriatic epidermis in comparison with
uninvolved and normal epidermal biopsies has been reported.
The DMF depletes glutathione by formation of covalently linked
conjugates. Consequently, oxidized glutathione is converted to
a reduced glutathione and is also depleted by DMF (30). The
GST includes glutathione enzyme catalyzing conjugation with
various hydrophobic compounds (29). Many data evaluated the
role of conjugating activity of hydrophobic molecules, such as
bilirubin and hematin linkage and selenium-independent GP
activity, toward organic hydroperoxides in the oxidative stress
cycle (31).

This review investigates the anti-inflammatory role of DMF
in oxidative stress and its effect by reducing ROS through
glutathionemodulation. The GST regulation is helpful in treating
psoriasis, with anti-inflammatory effect on the keratinocytes
hyperproliferation and in modulation of metabolic comorbidity.

DMF ANTIOXIDANT ACTIVITY

Dimethyl fumarate (DMF) is considered a prodrug as, after
oral administration, it is rapidly hydrolyzed by esterases in
the small intestine and converted to MMF (32). The MMF
is highly bioavailable and is rapidly hydrolyzed inside cells to
fumaric acid, which in mitochondria, represent an intermediate
of TCA (33, 34). It is mostly believed that DMF exerts its
therapeutic effects through antioxidant and anti-inflammatory
pathways (Figure 1). Both MMF and fumarate are believed to be
responsible for the primary therapeutic effects of DMF through
activation and inhibition of the transcription factors, Nrf2 (35,
36) and Nf-κB (37), respectively. It has been well-described
that DMF activates the Nrf2 signaling pathway through the
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FIGURE 1 | Effects of DMF on intracellular signaling pathways. Upon ingestion, most of the DMF (about 90%) is rapidly converted to MMF by hydrolization in the small

intestine (5). The full pharmacokinetic profile of DMF and MMF remains to be elucidated. DMF, dimethyl fumarate; MMF, monomethil fumarate; FAEs, fumaric acid

esters; GP, glutathione peroxidase; GST, glutathione-S transferase; NF-kappaB, nuclear factor-kappa B; Nrf2, nuclear factor (erythroid-derived 2)-like 2; ROS, reactive

oxygen species; and TCA, tricarboxylic acid cycle.

electrophilic modification of Kelch-like ECH-associated protein
1 (35). The DMF exerts its immuno-modulatory activity also via
the agonism of the hydroxycarboxylic acid receptor 2 (38). Such
important mechanisms, nonetheless, fail to fully account for the
in vitro and in vivo immunologic actions of DMF (39). Recent
evidence has suggested that modulation of innate and adaptive
immune processes is Nrf2 independent (40). Some of the neuro-
protective effects seen with this drug are secondary to its anti-
inflammatory and antioxidant actions and appear to rely on the
modulation of cellular metabolism. Accordingly, a short-term
DMF treatment of an oligodendrocyte cell line did not prevent
a hydrogen peroxide-mediated death, and a DMF treatment
in a model of toxic demyelination was not able to prevent
demyelination (41). Importantly, methylated esters of TCA
intermediates, such as DMF, are cell permeable and can modify
the activity of this pathway by increasing the level of metabolic
intermediates’ proximate to fumarate. In the TCA, succinate is
oxidized to fumarate and then hydrated to malate through the
activity of two enzymes, succinate dehydrogenase, and fumarase.
Administration of DMF in vitro causes a rise in the concentration
of succinate (42, 43). Prolonged treatment with DMF in a human
oligodendrocyte cell line elicited increases in both succinate and

fumarate (44). This event is associated with augmented lipid
synthesis, thus, preserving mature oligodendrocytes viability,
and protecting myelin through the modulation of cellular
lipid metabolism. These data were confirmed in vivo by
using global metabolomics profiling of blood plasma of
patients with relapsing-remittent multiple sclerosis treated for
6 weeks with DMF. Significant changes in TCA intermediates
fumarate and succinate, and in the secondary TCA metabolites
succinyl-carnitine and methyl succinyl-carnitine were observed,
arguing that the potential anti-inflammatory properties of these
metabolites are mediated by metabolic rewiring. Interestingly
these changes were not observed in the control population
(45). A metabolic switch toward aerobic glycolysis is mandatory
for immune cells activation. Impinging a metabolic rewiring
toward mitochondrial oxidative metabolism is considered a valid
strategy to counteract the inflammatory process in immune
diseases (46). The DMF was shown to covalently modify protein
cysteine residues in a process termed succinylation. In activated
myeloid and lymphoid cells, DMF was able to downregulate
aerobic glycolysis via the succinylation and inactivation of the
glycolytic enzyme glyceraldehyde 3-phosphate dehydrogenase,
thereby inhibiting the autoimmune response (47). Immune
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cell activation also depends on calcium signaling. Among the
proposed mechanisms for the immunoregulatory role of DMF,
the rise of intracellular calcium is also included. In particular,
DMF promotes an immediate extracellular calcium influx, long-
term increase of cytosolic calcium, and reduced intracellular
calcium storage. Upon DMF treatment, the glutathionylation
of a cysteine of sarco/endoplasmic reticulum Ca2+-ATPase
SERCA2b is critical to the modulation of intracellular calcium
concentration. The SERCA2b is downregulated but more active
due to glutathionylation of the redox-sensitive cysteine. A net
increase of cytosolic calcium due to a diminished calcium
storage is, therefore, obtained (48). Fumarate also functions as
an immuno-modulator by controlling chromatin modifications.
Fumarate can also rewire the epigenetic landscape of the
cells through inhibiting either histone or DNA demethylases.
Fumarate accumulation has been demonstrated in activated
immune cells, and this event inhibits KDM5 histone demethylase
activity, thus, promoting the transcription of promoters of TNF-
α and IL-6 cytokines (49). Upon DMF treatment, different
proteins in T cells are susceptible to covalent modifications of
cysteines. Protein kinase C θ modification avoids its association
with the co-stimulatory receptor CD28, preventing a T-cell
activation (50). Besides such immuno-modulatory actions, DMF
has an important antioxidant activity; the way by which it
reduces oxidative stress is very peculiar. Actually, it scavenges the
major intracellular non-enzymatic thiol antioxidant glutathione
(51–54), likely, via the immediate formation of glutathione-
DMF adducts (55), and this results in the stabilization and in
the raise of Nrf2. Nrf2 then translocates into the nucleus and
binds to antioxidant response elements in the promoter region
of several antioxidant genes, such as heme-oxygenase-1 and
NADPH-quinone-oxidoreductase-1. This, in turn, increases the
intracellular concentration of glutathione (35, 56), making the
cell more resistant to oxidative stress. However, DMF is able to
raise glutathione levels also when the rate-limiting enzyme of
glutathione synthesis, i.e., glutamate-cysteine ligase, is inhibited,
thanks to the Nrf2-mediated induction of glutathione reductase
that enhances the molecule recycling (57).

THE ROLE OF GLUTATHIONE AND DMF IN
PSORIASIS

Several studies have demonstrated that glutathione binding to
DNA is able to regulate Nf-κB proinflammatory activity. In
particular, the Nf-κB complex and the upstream proteins, as
TRAF6, are negatively regulated by glutathione (58). Genetic
polymorphisms affecting GST produce a decrease in intracellular
concentration of glutathione, with consequent raising of skin
inflammation, as seen in atopic and allergic dermatitis, psoriasis,
lichen planus, urticaria, and vitiligo (59–62).

Glutathione plasmic levels and GP activity in patients with
psoriasis were significantly lower than in general population (63).
Consequently, GST activity reduction leads to the accumulation
of ROS in inflamed lesions, as it was reported in psoriatic plaques,
where ROS levels are 3-fold higher than in non-lesioned skin
(64). The DMF action in this context is not yet completely clear.

It irreversibly binds the glutathione in a 1:1 ratio, decreasing
its production and favoring its excretion through urine as
glutathione-DMF adducts (65). In this way, fumarate compounds
influence cellular redox state, affecting intracellular signaling
pathways (66).

Glutathione intracellular depletion in human antigen-
presenting cells causes IL-10 production, with immuno-
modulatory action, instead of the pro-inflammatory cytokines
IL-12 and IL-23, responsible for Th1/Th17 immune system
response switch in psoriasis. In this context, DMF promotes Th2
cell differentiation, with immunoregulatory functions (67).

In summary, the rationale of employing DMF in
psoriasis consists in reducing cellular inflammation both
by decreasing glutathione intracellular levels and by
inducing a switch in immune response toward an anti-
inflammatory/immunoregulatory setting (68, 69). European
guidelines recommend FAEs in induction and long-term therapy
of moderate-to-severe plaque psoriasis (70). With more than
220,000 patients per year treated with FAEs, Germany has been
one of the first nations in Europe to adopt this systemic therapy
for psoriasis (71), but also other countries, like Italy, are aligned
with European guidelines (7). The recommendation in the
treatment with DMF is to begin with a low dose followed by
gradual increases. This flexible approach is tailored on the need
of each patient, and the most used regimen is between 240mg
and 480mg of DMF per day. Several randomized clinical trials
have demonstrated efficacy and safety of FAEs in psoriasis. At
week 16 of the phase III, randomized, BRIDGE study, PASI
75 was reached by more than one third of patients enrolled
(8), while in the large retrospective FUTURE study it was
demonstrated a mean reduction of 79% in PASI from baseline
(72). Combination of topical treatments, biological agents, or
phototherapy to FAEs in the induction phase showed to reach
a faster response (73–75). The FAEs are also characterized by a
mild spectrum of side effects, including gastrointestinal disorders
and flushing during the treatment, which are not responsible
for therapy discontinuation. Among the others, the most
important is lymphopenia, which is, generally, of a mild entity
and experienced during induction or when it is necessary to
increase the dose regimen. It is necessary in such cases to adjust
the dosage at the higher tolerance. Treatment discontinuation is
required only in rare cases to minimize opportunistic infections’
risk (76).

THE ROLE OF SMALL MOLECULES IN THE
METABOLIC SYNDROME

Patients with psoriasis are characterized by a higher prevalence
of cardiovascular disease and metabolic syndrome (77). In
particular, visceral fat has a critical role in the development
of cardiovascular disease in patients with psoriasis, including
coronary arteries disease, heart infarction, stroke, and related
mortality. Moreover, the inflammatory background of the
patients with psoriasis both increases and accelerates the
atherosclerosis (77). Small molecules, as the phosphodiesterase-4
inhibitor apremilast, approved for the treatment of adults with
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moderate-to-severe plaque psoriasis and/or psoriatic arthritis,
have demonstrated a broad anti-inflammatory activity, which
may influence metabolism (17, 78). It has been demonstrated
that liver steatosis is reduced by limiting the fat deposition
and increasing lipolysis (17). The patients with diabetes reached
better results in terms of psoriasis response when treated with
apremilast. Moreover, it was observed as a better control of
serum glucose levels, a significant reduction of insulin resistance
and cholesterol levels, and the restoration of endothelial
function, which are all factors strongly associated with propensity
to cardiovascular diseases. Finally, apremilast also decreases
the systemic inflammatory status of patients with psoriasis,
decreasing TNF-α, IFN-γ, IL-12, and IL-23 production (17).
As an apremilast, DMF also exhibits strong anti-inflammatory
and immunomodulatory effects and was tested in a laboratory
to evaluate its role in ameliorating basal inflammation and
metabolic disturbances (79). Compared to control rats, those
treated with FAEs showed lower levels of C-reactive protein,
IL-6, and TNF-α. Moreover, it was demonstrating less fat
accumulation, with lower visceral fat weight in liver and muscles.
These results suggest the potential crucial role of DMF, as an
apremilast, in the treatment of patients with psoriasis with
concurrent metabolic comorbidities, which are probably the
largest part.
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