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Abstract

Inspired by the competition exclusion principle, this work aims at providing a computational

framework to explore the theoretical feasibility of viral co-infection as a possible strategy to

reduce the spread of a fatal strain in a population. We propose a stochastic-based model—

called Co-Wish—to understand how competition between two viruses over a shared niche

can affect the spread of each virus in infected tissue. To demonstrate the co-infection of two

viruses, we first simulate the characteristics of two virus growth processes separately.

Then, we examine their interactions until one can dominate the other. We use Co-Wish to

explore how the model varies as the parameters of each virus growth process change when

two viruses infect the host simultaneously. We will also investigate the effect of the delayed

initiation of each infection. Moreover, Co-Wish not only examines the co-infection at the cell

level but also includes the innate immune response during viral infection. The results high-

light that the waiting times in the five stages of the viral infection of a cell in the model—

namely attachment, penetration, eclipse, replication, and release—play an essential role in

the competition between the two viruses. While it could prove challenging to fully understand

the therapeutic potentials of viral co-infection, we discuss that our theoretical framework

hints at an intriguing research direction in applying co-infection dynamics in controlling any

viral outbreak’s speed.

Introduction

The “competitive exclusion principle” (CEP), also—perhaps erroneously—known as

“Gause’s law” [1], is the consequence of natural selection operating on non-interbreeding

populations that occupy the same ecological niche. As Darwin put it,“the competition will

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0247200 February 24, 2021 1 / 18

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Vafadar S, Shahdoust M, Kalirad A, Zakeri

P, Sadeghi M (2021) Competitive exclusion during

co-infection as a strategy to prevent the spread of a

virus: A computational perspective. PLoS ONE

16(2): e0247200. https://doi.org/10.1371/journal.

pone.0247200

Editor: Bashar Ibrahim, Gulf University for Science

& Technology (GUST), and University of Jena,

GERMANY

Received: July 18, 2020

Accepted: February 2, 2021

Published: February 24, 2021

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pone.0247200

Copyright: © 2021 Vafadar et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The program written

simulate the spread of the competition between

https://orcid.org/0000-0001-5900-8697
https://doi.org/10.1371/journal.pone.0247200
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0247200&domain=pdf&date_stamp=2021-02-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0247200&domain=pdf&date_stamp=2021-02-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0247200&domain=pdf&date_stamp=2021-02-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0247200&domain=pdf&date_stamp=2021-02-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0247200&domain=pdf&date_stamp=2021-02-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0247200&domain=pdf&date_stamp=2021-02-24
https://doi.org/10.1371/journal.pone.0247200
https://doi.org/10.1371/journal.pone.0247200
https://doi.org/10.1371/journal.pone.0247200
http://creativecommons.org/licenses/by/4.0/


generally be most severe [. . .] between the forms which are most like each other in all

respects” [2] (p.320). In the simplest reading, this principle implies that, in the competition

between two sympatric non-interbreeding populations over the same ecological niche, one

will displace the other.

The crux of this work is to couple the CEP with the life cycle of viruses. To model how two

types of viruses, B andM, co-infect a tissue, we have to make a few assumptions:

1. Different viruses can have eclipse phases of varying lengths. The period between the initial

infection and the first detectable viremia is known as the eclipse period—from the moment

a virus enters the cell until it starts assembling its progenies and subsequences burst out of

the cell. The duration of this period varies among different virus strains and affects the

kinetic of infection (e.g., the eclipse period of SHIV lasts around a day [3] while it lasts

between 7 to 8 hours in SARS-CoV [4]).

2. Different viruses have different burst sizes, i.e., different per-cell virion particles. This assump-

tion is reasonable, but even for SARS-CoV-2, the estimated burst size of 103 is simply based

on MHV-2 data (e.g., [5]). The variation in particle-to-PFU among animal viruses [6] can

be used to deduce the veracity of this assumption, but more direct data on SARS-CoV-2 is

needed.

3. The CEP applies when two virus strains compete to infect a cell. In a spatially heterogeneous

environment, different populations tend to partition the environment into non-overlapping

micro-environments; for one of the most famous experimental demonstrations of such a

situation see [7]. However, the displacement of one of the competitors by another is ines-

capable when the competitors cannot adapt or construct new niches in the environment in

a reasonable timescale. The notion of CEP is undisputed when it comes to animals and bac-

teria trying to occupy the same ecological niche, but its application to viral confection is not

as unequivocal as one would imagine.

In addition, different viruses can have different incubation times. For example, the median

incubation period—i.e., the period between the onset of infection and the appearance of symp-

toms—for SARS-CoV-2 is estimated to be 5.1 days [8] (although such estimates should be

taken with a grain of salt, e.g., [9]), whereas the incubation period for the common cold is

around 1–3 days, and it could even be as long a few months to few years (e.g., Rabies and

AIDS) [6]. Here, we do not consider any designation to simulate the different incubation

times of two imaginary viruses.

There are two major lines of investigations that can illuminate the applicability of the CEP

to viral infections in general. These include (i) the experimental evidence on the negative inter-

actions between viruses, and (ii) the computational models of co-infection. In relation to the

first line of research, a recent paper [10] employed a population-level approach, based on

44230 cases over 9 years, to track the epidemiological interactions between 11 strains of respi-

ratory viruses, including influenza A and B, rhinoviruses, and three human coronaviruses

(229E, NL63, HKU1). They inferred negative interaction between Rhinoviruses (A–C) and

Influenza A virus—at both population and host levels—and negative interaction between

Influenza A virus and Influenza B virus—at the population level. In addition, the three human

coronaviruses showed negative interactions with Rhinoviruses (A–C), human Respiroviruses 1

and 4 at the population level.

While the aforementioned approach is a rarity in studying an organism, models that

describe the co-infection of two viruses in a single host have gained growing attention over

the past few years (e.g. [11, 12]). Gonzalez et al. [11] have used a mouse model to show how

infection from rhinovirus strain 1B—before exposure to influenza A virus—reduces the

PLOS ONE Competitive exclusion during co-infection as a strategy to prevent the spread of a virus

PLOS ONE | https://doi.org/10.1371/journal.pone.0247200 February 24, 2021 2 / 18

viruses is available at https://github.com/

safarvafadar/virusinfection.

Funding: The authors received no specific funding

for this work.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0247200
https://github.com/safarvafadar/virusinfection
https://github.com/safarvafadar/virusinfection


severity of influenza in mice. They observed the same effect on the outcome of influenza

when initially exposed to the hepatitis virus strain-1. Also recently, a more sophisticated

experimental method using single-cell RNA localization has described how the entry of an

influenza A virus restricts the replication of a second viral genome in the same cell [13]. This

growing body of research highlights the prevalence of interaction between viruses in the

same host; though many aspects of co-infection dynamics have yet to be experimentally

elucidated.

The computational models of co-infection have primarily been concerned with the co-

infection of a cell by multiple copies of the same virus, where these copies compete over target

cells and resources (e.g., [14]). Here, we propose a stochastic-based model to explore the possi-

ble effects of co-infection by two species of virus. Although deterministic mathematical meth-

ods based on ordinary differential equations (ODE) are typical approaches to study the

dynamics of viral infection, they often ignore the stochastic nature of the viral growth process.

It has been shown that they can sometimes lead to inaccurate results because they mainly rely

on the average reactions of viral infections [15–19]). To simulate the stochastic multi-stage

nature of the viral growth process occurring in viral co-infection, Gillespie algorithm, also

known as the stochastic simulation algorithm, is usually considered as a trustworthy alterna-

tive. In particular, it supports simulating both discrete and stochastic behaviors of each stage

of viral growth. The algorithm explicitly simulates the behavior of each virus in each stage of

its growth process. Finally, it can provide a flexible framework to study the stochastic effects

induced during the evolution of the infection. One characteristic of our simulation model is

that several Gillespie algorithms run in infected cells simultaneously. This characteristic can

represent what we presume of viral infection in one tissue. Gillespie’s algorithms are indeed

independent of their features. To illustrate the co-infection of two viruses using Gillespie’s

algorithm [20], we look at the dynamics of co-infection by introducing a benign and a malig-

nant virus strains into a lattice of virtual cells. We investigate how the delay between the infec-

tion of the tissue by each strain, henceforth referred to as “co-infection delay” (D), affects the

competition between the two strains.

The proposed model—called Co-Wish—offers a more in-depth study of the interaction

between different virus strains competing in a shared or overlapping niche. The model could

eventually be used to design strategies to induce immunity in the population against a deadly

virus by introducing a competing but less-deadly strain into the population. The results sug-

gest that when one virus has a slight advantage—e.g., a virus with a shorter infection cycle—

over another, the one with the advantage will eventually dominate the other.

Results

To model the viral infection of tissue, we applied Gillespie’s stochastic algorithm [20] to simu-

late the spread of infection over the lattice of virtual cells. In our model—Co-Wish—viral

infection is a five-stage process including attachment, penetration, eclipse, replication, and

release. We treat each step of infection as a probabilistic process (Fig 1).

The viral growth is simulated by considering the duration of each stage (waiting time) and

the probability of transition from one stage into the next (transition probability). The waiting

times follow either an exponential, Exp(λ), or a Weibull distribution,W(λ, ω). All transition

probabilities are generated from Beta distribution. The parameter values of the Beta distribu-

tion depend on the chosen distribution for the waiting time of the current stage. In the Meth-

ods section, we provide a detailed explanation of each of these steps in our model. In addition,

we simulate the effect of the immune system on the dynamics of viral infection and how the

interaction between virus strains affects their spread.
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The dynamics of single strain infection

Before investigating the dynamics of co-infection in our model, we assessed the effects of dif-

ferent parameters of our model when a single strain infects the tissue (Fig 2). We ran the

model in two different conditions. At first, the viral infection was simulated by setting the

parameters of the models as default values(all the parameters were set as one.). Then, we

changed the parameters due to shortening the waiting times.

The results indicate that the shorter waiting times for different stages of the virus growth

results in more viruses produced per infected cell and an increase in the number of infected

cells. The impact of decreasing the waiting time on the production of new virions is more per-

ceptible in the eclipse stage (Fig 2—Eclipse to Replication). Decreasing the waiting time at the

eclipse stage increases the number of virions. Furthermore, it seems that the duration of the

attachment stage directly affects the numbers of virions produced during the infection cycle

(Fig 2—Attachment to Penetration)—perhaps because of a faster transition into the penetra-

tion stage allows the virus to replicate more virions in the host cell.

To visualize the viral infection of tissue, Co-Wish simulates the tissue as a lattice in which

each node represents one cell. The dimension of the lattice is determined by the user. In our

simulations, the host cell division is not designed. In addition, there is no competition between

host cells in Co-Wish. Each infected cell can infect its neighboring cells. Co-Wish uses two

patterns for determining the susceptible cells; quincunx and square. In the first pattern, an

infected cell sits at the center of a quincunx and infects the four neighboring cells in the quin-

cunx (Fig 3—Cross Pattern). In the second pattern, the infected cell is in the middle of a square

that also includes the eight susceptible cells around it (Fig 3—Square Pattern). Co-Wish

assumes each infected cell is able to infect at most three layers of cells in its vicinity. The pro-

portions of the number of virions in each layer of infected cell vicinity are determined based

on a mathematical equation, described in the Methods section.

To select the pattern, we ran different simulations with both quincux and square patterns.

The results showed that the two patterns of distributions only affect the pace at which the

dynamics of infection unfold and not the observed patterns (Fig 4). Consequently, we used the

square pattern that concludes faster dynamics to generate the results.

Fig 1. The four stages of the viral infection of a cell in the model. The virus can move from stage i to stage j according to the transition probability Pij.

https://doi.org/10.1371/journal.pone.0247200.g001
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The influence of the immune system

In Co-Wish, the immune system response is characterized by the probability at which the

immune system can eliminate the toxic elements (γ), the delay between the infection and the

immune response, and the capacity of the immune system (I). Toxic elements include one or

Fig 2. Changing the waiting times for the different stages of the infection cycle influences the overall dynamic. In our models, by default generate

waiting times from Exponential distribution with one value for its parameter(Exp(λ = 1)), except for the eclipse duration which is generated from

Weibull distribution. The scale and shape parameters of the Weibull distribution, both have been set as one(scale = 1, shape = 1). The blue trajectories

show the behaviour of our model with the default parameters. To show how changing these parameters affects our model, in each of the four panels, we

changed the waiting time of one of the transition (orange trajectories). For the manipulated simulations, the waiting times for transition between

attachment, penetration, and replication were generated from Exp(λ = 3). The waiting time of the eclipse stage was generated from Weibull(1, 0.5). Each

trajectory is the average of 100 runs. The shaded areas contain the trajectories of all the 100 runs for the given parameters. The immune system was not

active in all the runs.

https://doi.org/10.1371/journal.pone.0247200.g002
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both of the following: infected cells; virions. In other words, Co-Wish can eliminate the

infected cells, the virions, as well as the combination of both. Here, the capacity refers to the

maximum number of each kind of toxic element that can be eliminated by the immune system.

The capacity value has to be less than the number of toxic elements that are potentially pro-

duced in the early steps of the simulation. γ is drawn from a uniform distribution, U(a;b), that

its parameters are within [0;1]. The immune system can eliminate toxic elements with a differ-

ent probability. This characteristic indicates that all toxic elements produced in each step of

the simulation do not have the same probability of elimination. For example, Co-Wish gener-

ates separate probability values for the killing of each virion. Here, we assume that a virion is

killed with probability p and survives with probability 1 − p.
After the infection, the immune system mounts a response with a short delay, thus a num-

ber of cells become infected before the immune system attempts to combat the infection. The

immune system as described here does not distinguish between the innate immune response

and the adaptive response, but in general terms, it resembles the innate response since it lacks

memory of previous encounters with any of the two strains in our simulations and responds to

both pathogens in equal measures.

In our simulations, we employed four broad types of immune response:

1. Weak with limited capacity (WL): γ* U(0, 0.4)

2. Weak with unlimited capacity (WU):γ* U(0, 0.4)

3. Strong with limited capacity (SL): γ* U(0.6, 1)

4. Strong with unlimited capacity (SU): γ* U(0.6, 1)

Fig 3. Viral infection spreading patterns. In our model, infection can either spread in cross (or quincunx) pattern or a square pattern. The red node

demonstrates the infected cell. R determines how many layers of neighbouring cells can be affected by the infected cell in the middle of each pattern.

https://doi.org/10.1371/journal.pone.0247200.g003
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Limited capacity indicates that the immune system will not be active in all the steps of the

simulation. It will be deactivated when the capacity hits the predetermined value for I . If the

capacity is unlimited, the immune system will be active by the end of simulation.

Different levels of immune system strength have been studied in a single virus model. Fig 5

represents the number of virions for four levels of the immune system. As expected, decrease

the killing rate and putting the restriction to the capacity of the immune system, decrease its

strength as well and the slopes of the graphs are steeper for the weaker immune systems.

Competition during co-infection

In this study, we assumed that the benign strain (virus B) has a shorter infection cycle than the

malignant strain (virus M). Therefore, we set the parameters of the model such that the virus B

Fig 4. The patterns of the spread of the infection only affects the pace at which the dynamic of our model unfolds. Each trajectory is the average of

100 runs. In all the runs, parameters of probability distributions to generate the waiting times were set as one. The shaded areas contain the trajectories

of all the 100 runs for the given parameters. The immune system was not active in all the runs.

https://doi.org/10.1371/journal.pone.0247200.g004
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spends less time in each of the four stages of viral growth—from attachment to replication—

compared with the virus M. In addition, we assumed that the burst size of virus B is less than

virus M, due to its shorter waiting time in the replication stage. The location of the second

virus in the lattice is chosen randomly, and it is independent of the first virus location. Those

cells that are not infected by the first virus can be a niche of the second virus.

To simulate the co-infection, we considered three scenarios:

1. Two viruses infect the host simultaneously.

2. The host is infected by B and later by M

Fig 5. The number of virions produced during the infection is affected by the strength of the immune system. We utilised four different modes of

immunity in our model: weak and limited capacity (WL), weak and unlimited capacity (WU), strong and limited capacity (SL), strong and unlimited

capacity (SU). Each trajectory is the average of 100 runs. In all the runs, parameters of probability distributions to generate the waiting times were set as

one. The shaded areas contain the trajectories of all the 100 runs for the given parameters.

https://doi.org/10.1371/journal.pone.0247200.g005
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3. The reverse of second scenario

Co-infection delay D refers to the time delay between the introduction of each viral strain

to the tissue. In the first scenario, the co-infection delay is zero. If the co-infection delay is set

as 30 steps, it means the second virus enters into the model thirty steps after the first virus.

During this time, the first virus starts to infect some cells. In Co-Wish, only one strain enters a

cell—thus, cells are not co-infected—but the pattern of the spread of each strain in a co-

infected fashion affects the spread of the strain by limiting the susceptible cells in the tissue.

To test the three scenarios of co-infections in our model—namely, (i) no delay between the

introduction of M and B strains, (ii) B is introduced first, and (iii) M is introduced first—we

simulated each scenario (using parameters in Table 1). The co-infection delay (D) in each sce-

nario, was set to 0, + 30, and −30 steps, respectively. In the absence of the immune response,

the benign strain is always dominant (Fig 6). The results suggest that the waiting times greatly

influence the dynamics of co-infection. While the B strain spends less time in the replication

stage and, consequently, produces a smaller burst compared to theM stain, its shorter infec-

tion cycle enables it to out-compete theM stain during co-infection.

Since the main idea of this work is to explore the theoretical feasibility of viral co-infection

of two malignant and benign strains to reduce the spread of malignant one, we simulated the

third scenario—B is introduced first—separately by changing the parameters of applied distri-

butions to generate the waiting times. We considered four conditions. In each condition, the

waiting times have been shortened by increasing the value of Exponential distribution parame-

ters and decreasing the shape parameters of Weibull distribution. In other words, we investi-

gated how changing the waiting times can influence the number of steps at which the B strain

out-competes the M strain (Fig 7). The results show that reducing the waiting times decreases

the time it takes for the B strain to out-compete the M strain (Fig 8).

Discussion

In this study, we look into the dynamics of viral co-infection using a CEP-inspired computa-

tional model. To explore the possible effects of co-infection by two virus species, we develop a

stochastic-based viral infection simulator—called Co-Wish—to model and display the compe-

tition between two strains. Co-Wish offers a flexible framework to study the stochastic effects

induced during the evolution of the infection. Co-Wish supports simulating both discrete and

stochastic behaviors of each stage of viral growth. It explicitly simulates the behavior of each

virus in each stage of its growth process. Co-Wish also incorporates the effect of the innate

immune system on the dynamics of viral infection.

Table 1. (�): c = 100; The parameter p has been calculated according to Eqs (1) and (2); to calculate P1, the time T has been set as 5. (��):P1 has been calculated accord-

ing to Eqs (4) and (5). The parameters β0 and β1 in Eq (4) have been set as zero and 1, respectively.

virus Viral Growth Stage Waiting Time Distribution Transition Probability Distribution

B Attachment-Penetration exp(λ);λ> 1 Beta(1,1)

Penetration-Eclipse exp(λ);λ> 1 Beta(1, 1)

Eclipse-Replication weibull(λ = 1, ω);ω< 1 Beta(cp, c(1 − p))�

Replication-Shedding exp(λ);λ> 1 P1��

M Attachment-Penetration exp(λ = 1) Beta(1, 1)

Penetration-Eclipse exp(λ = 1) Beta(1, 1)

Eclipse-Replication weibull(λ = 1, ω = 1) Beta(1, 1)

Replication-Shedding exp(λ = 1) P1��

https://doi.org/10.1371/journal.pone.0247200.t001
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Several studies consider the concept of CEP to illustrate the competition between viruses

[21–23]. In particular, Peter and colleagues in [24] recently presented a survey on SARS-CoV-

2 infection dynamics models, focusing mostly on ODE-based methods. Typical models of

virus dynamics are developed based on three ordinary differential equations concentrating on

the number of target cells, free virions, and infected cells [15]; i.e., most of these approaches

Fig 6. Benign strain is dominant in all three conditions of co-infection delay (D). Introduction of the benign strain (B) 30 steps before the

introduction of the malignant strain (D ¼ þ30), or simultaneously (D ¼ 0) greatly hampers the spread of B strain but introducing this strain 30 steps

after the introduction of M strain (D ¼ � 30) tighten the competition between the strains. Each trajectory is the average of 100 runs. The shaded areas

contain the trajectories of all the 100 runs for the given parameters. For virus M, all the parameters of probability distributions to generate thewaiting

times were set as one. For virus B, the waiting times had been generated from Exp(λ = 3)and Weibull(λ = 1, ω = 0.5). The immune system was not active

in all the runs.

https://doi.org/10.1371/journal.pone.0247200.g006
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proposed for mathematical modeling of host-pathogen interactions can be seen as an exten-

sion of the ODE-based model [25–27]. Although these extended models provide explainable

frameworks in which they improve our understanding of the dynamic of the viral infection

within the host, they somehow suffer the main issue about deterministic models, namely, rely-

ing on viruses’ average behaviors during the infection process [16, 17]. As a result, ODE-based

approaches often ignore the stochastic nature of the viral infection. Therefore, controlling the

heterogeneity of virus populations affecting competitive exclusion is not readily achievable in

the ODE-based methods. Accounting for the viral infections stochastic nature during the

Fig 7. Changing the parameters of probability distributions to generate waiting times affects the number of overtaking step of benign strain when

co-infection delay is (-30). The parameters include λ, the parameter of Exponential distribution and ω, the parameter of Weibull distribution.

Condition 1: λ = 2, ω = 1/2; condition 2: λ = 3, ω = 1/3; condition 3: λ = 4, ω = 1/4; condition 4: λ = 5, ω = 1/5. Boxes show the median and first and

third quartiles and the notches represent the %95 confidence interval around the median. The immune system was not active in all the runs.

https://doi.org/10.1371/journal.pone.0247200.g007
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simulation process, in contrast, is one of Co-Wish’s most essential features, enabling our

model to demonstrate the competition between virus strains more realistically.

Using Co-Wish, we first simulate the characteristics of two virus growth processes sepa-

rately. Then, we investigate their interactions until one can dominate the other. To model the

co-infection of two viruses using Co-Wish, we consider three scenarios including (i) two

viruses infecting the host at the same time,(ii) delayed initiation of the malignant-virus infec-

tion, and (iii) delayed initiation of the benign-virus infection. While an earlier stage of infec-

tion initiation for one of the viruses can be considered a competitive advantage, it plays a

Fig 8. Different waiting times expedites benign strain (B) to outcompete malignant strain (M) when co-infection delay is (-30).

To generate different waiting times for virus B growth process, λ–the parameter of exponential distributions–and ω–the shape

parameter of the Weibull distributions–have been changed. Condition 1: λ = 2, ω = 1/2; condition 2: λ = 3, ω = 1/3; condition 3: λ = 4,

ω = 1/4; condition 4: λ = 5, ω = 1/5. For virus M, all the parameters of probability distributions to generate the waiting times were set

as one. The immune system was not active in all the runs.

https://doi.org/10.1371/journal.pone.0247200.g008
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minor role as compared to the waiting times in the five stages of the viral infection of a cell in

the proposed model—namely attachment, penetration, eclipse, replication, and release. In

summary, we observed that these waiting times in the five stages of the viral infection—regard-

less of varying the starting times for the viruses—crucially affect the competition between two

viruses over a shared host. In other words, if the starting time for the benign virus with a

higher viral growth rate is not delayed too long, it can eventually block the infection caused by

the malignant virus. In particular, our results showed that the waiting times at the eclipse stage

significantly affected the number of virions in the competition between the two viruses. We

also observed a similar trend when we incorporated an innate immune response during viral

co-infection.

The dynamics of viral co-infection remain one of the lesser-explored areas of virology and

epidemiology. The model presented in this paper illustrates how the competition between viral

strains over a shared niche can hinder the propagation of one, an unsurprising result given the

competitive exclusion principle. While the model is inescapably a simplified reconstruction of

what might happen in nature, a few lines of experimental studies discussed below provide

some credence to the hope that the dynamic of co-infection can be employed to control the

spread of lethal strain by introducing a more benign strain, but many obstacles must be over-

come before this hope can become a viable epidemiological strategy.

Previous studies have investigated the association between co-infection with the GB virus C

and survival among individuals with HIV infection [28, 29]. For example, George and col-

leagues reported a significantly higher survival rate among HIV-positive patients co-infected

with the GB virus C virus than among HIV-positive individuals without GB virus C co-infec-

tion [28]. This result—a beneficial effect of co-infection with the GB virus C virus on HIV-

related survival—suggested the GB virus C infection as a potential treatment for HIV-infected

patients [28]. Our CEP-based model also suggests that one viral strain might be able to out-

compete and eliminate a rival strain in the same ecological niche during a co-infection sce-

nario. Suggestively, our theoretical framework hints at an intriguing research direction in the

dynamics of co-infection, viz. the possibility of controlling the spread of any viral infection in

the population by supplanting the lethal virus with a much less fatal one. For example,

researchers could employ our theoretical model to explore and evaluate the CEP-inspired

hypothesis in tackling a viral respiratory pandemic, such as COVID-19, through co-infection

with some forms of common respiratory viruses that are less harmful. However, in the case of

COVID-19, it could prove challenging to find such a harmless virus that would keep SARS-

Cov-2 below the exposure level. Also, there is no guarantee that—even if our proposed CEP-

based hypothesis works—SARS-Cov-2 does not come up as the winner of such competition.

Nevertheless, there are four harmless human Coronaviruses—namely HCoV-NL63, HCoV-

229E, HCoV-HKU1, and HCoV-OC43—that lead to a range of respiratory diseases with mild

symptoms—cause approximately 15% of common colds [30]. Recent studies [31, 32] also have

revealed that hospitalized COVID-19 patients who developed severe symptoms of COVID-19,

such as high fever and pneumonia, were rarely co-infected with other common respiratory

viruses, particularly the common colds. From the immune system’s point of view, this might

be related to the result of a new study [33] that discusses that COVID-19 patients previously

infected with other forms of the human beta-coronaviruses could also develop some types of

immunity to SARS-CoV-2. Yet, further experimental investigations are needed to understand

the therapeutic potentials of viral co-infection thoroughly. In particular, there is an urgent

need to establish clinical trials assessing the role of simultaneous respiratory viral infection in

the variability of disease virulence among COVID-19 patients.

It is also worth mentioning that the notion that the dynamics of viral co-infection in respi-

ratory diseases can be dominated by competition was previously highlighted by Burattini and
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colleagues [21] and Pinky and Dobrovolny [19]. The former resorts to CEP as a premise to

investigate the conditions under which two or more strains can coexist within a host, while in

the latter, Pinky and Dobrovolny explored the possible competition between influenza A virus

and a handful of respiratory viruses [19]. Although their premise is the aforementioned studies

start from a postulation similar to our work, their approach—in modeling the co-infection

dynamics using ODEs—is quite different from the one applied in this work. In particular, we

modeled the infection at the cell level. Also, our model—as opposed to the one proposed by

Burattini and colleagues and Pinky and Dobrovolny—includes the immune response Neither

of these main differences is expected to profoundly change the qualitative behavior of two viral

strains competing over an ecological niche. Nevertheless, we believe that the added complexity

of the model is a step in the right direction. Thus, the present study can be considered the logi-

cal extension of previous works on this topic.

There are several important limitations to the idea behind our approach. Crucially, it would

be deeply preposterous to suggest a model of viral co-infection as a basis for prescribing reme-

dies for public health issues, such as the COVID-19 pandemic. Anyone with a cursory knowl-

edge of biology, specifically epidemiology and ecology, understands the limitations of even the

best and most detailed models in predicting the interaction between living entities. Rather,

introducing the notion of Gause’s law—a quintessentially ecological concept—to the dynamics

of co-infection is one of the first steps to explore the therapeutic ramifications of the CEP as

applied to viral co-infection. The journey from this simple theoretical curiosity to a usable

remedy against viral epidemics undoubtedly will have to be paved by a thick layer of theoreti-

cal and experimental studies. Given that many characteristics of viral life cycles remain elusive

(e.g., the burst size of different viral strains), applying Gause’s law to combat viral epidemics

will likely remain a fanciful notion for many years to come.

Methods

Co-Wish—the proposed model—is a stochastic-based model to simulate the stages of viral

infection. To model the viral infection, we consider each stage of infection as a probabilistic

process. Each stage is simulated by applying Gillespie’s stochastic algorithm [20].

Viral growth process

To simulate the viral growth process, Co-Wish considers the duration of each state (waiting

time) and the probability of transition from one state to the next one (transition probability)

The waiting times follow either an exponential, Exp(λ), or a Weibull distribution,W(λ, ω).

Weibull distribution is a widely used distribution to generate time-to-failure data. If variable t
is defined as time-to-failure, the Weibull distribution describes the hazard rates as being pro-

portional to a power of time. It is worth pointing out that in survival analysis, the event of

interest is typically referred to as a ‘Failure.’ The hazard rate is the potentiality that an event

will occur within an immeasurably short time interval (between time t and t + Δt, as Δt goes to

0), given that the event has not yet occurred—i.e., the instantaneous risk that an event will hap-

pen to a particular patient at a certain time, given that the patient at risk has survived up to

that time. In the Weibull distribution, the hazard function is h(t) = λωtω−1, where λ> 0 and

ω> 0. The parameter ω—called a shape parameter— determines the shape of the hazard func-

tion. If ω> 1, then the hazard increases as time increases. If ω = 1, then the Weibull distribu-

tion collapses to an Exponential distribution in which the hazard function is constant (h(t) =

λ). If ω< 1, then the hazard rate decreases over time [34]. Applying the Weibull distribution

allows us to control the hazard rate of transition to the next stage by determining different val-

ues for the shape parameter ω.
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All transition probabilities are generated from the Beta distribution. The parameter values

of the Beta distribution depend on the chosen distribution for the waiting time of the current

stage. If the waiting times of one stage are generated from an Exponential distribution, the cor-

responding transition probabilities will be generated from Beta(1, 1). If waiting times are

drawn from a Weibull distribution—inspired by the survival analysis concepts—the transition

probabilities will be generated based on the probability of remaining in the current stage [34]).

The survival function for the Weibull distribution determines probability of remaining in a

given stage [34], i.e., the transition into the next stage is our event of interest and the time T is

defined as the maximum time it takes for a virus to transmit into the next stage. Then, we use

the survival function (S(T)) for Weibull distribution to determine the probability of transition

from the current stage to the next one P:

SðTÞ ¼ expð� lToÞ; P ¼ 1 � SðTÞ : ð1Þ

We consider P as the expected value of the Beta distribution (E(t)) and determine the

parameters of Beta distribution according to the value of P:

EðtÞ ¼
a

aþ b
¼ P ð2Þ

To estimate the parameters, we keep the sum of the parameters constant, i.e., α + β = C.

Consequently, the parameters of the beta distribution will be

a ¼ CP; b ¼ Cð1 � PÞ : ð3Þ

In addition, to avoid getting zero values for the parameters, when P is either zero or one, a

positive small value (�) is added to the above estimation.

To determine the probability of transition from the replication stage to the release stage, we

assume that the probability is a function of the number of viruses produced during the replica-

tion stage. In other words, We consider the transition of replication stage to the release stage

as a binary event. We assume a linear relationship between the number of produced viruses in

the cell(x) and the log-odds of transition from the replication stage to the shedding stage:

log b
prs

1 � prs
¼ b0 þ b1x ; ð4Þ

where prs is transition probability from replication stage into the shedding stage. Therefore,

prs ¼
bb0þb1x

1þ bb0þb1x
: ð5Þ

We suppose increasing the number of produced virions in the replication stage, increases

the log-odds of transitioning to the release stage. Therefore, the positive value should be deter-

mined for parameter β1. A positive value for β1 means that increasing x by one increase the

log-odds by β1. The number of viruses produced in a cell depends on the waiting time of the

replication stage, i.e., longer waiting times results in the production of more viruses. During

the replication stage, the virions are replicated according to stochastic lags. These lags between

replication of each virus is determined stochastically. The replication process continues until

these lags add up to the total waiting time of the replication stage.
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The spread of viral infection

After determining the patterns of infection, we approach to define the proportion of number

of virions attached to each susceptible cell in three layers in its vicinity (Vi;i = 1, 2, 3):

Vi ¼
kiV
ni

; ð6Þ

where V is the number of virions released from an infected cell and ni is the number of suscep-

tible cells in each layer of cells surrounding the infected cell, according to either cross or square

pattern. In the square pattern, n1, n2, and n3 are 8,16, and 24, respectively. ki is a weight desig-

nating what shares of produced virions belong to each layer of vicinity. For example, if the

total number of released virions from one cell is 1000 and k1 = 0.4, k2 = 0.3, and k3 = 0.3, 400,

300, and 300 virions will be belonged to each layer, respectively. In each layer, the virions are

diffused uniformly among cells.

Infection calculation: Number of virions and infected cells

The number of infected cells and free virions is calculated in each step of the simulation. The

time length of each step is predefined before starting the simulation. Hence, the time length of

the steps is constant. In our study, the time length of the simulation steps is about 1000 milli-

seconds. Co-Wish runs a number of Gillespie algorithms simultaneously. In other words,

many cells can be infected at the same time.The time lengths of the algorithms with different

settings are not alike. Each step is terminated when the sum of the time length of different runs

of Gillespie algorithm is equal to the determined time length of the step.
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