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Abstract

The alteration in the location of the chromosomes within the nucleus upon action of internal or external stimuli has been
implicated in altering genome function. The effect of stimuli at a whole genome level is studied by using two-dimensional
fluorescence in situ hybridization (FISH) to delineate whole chromosome territories within a cell nucleus, followed by a
quantitative analysis of the spatial distribution of the chromosome. However, to the best of our knowledge, open access
software capable of quantifying spatial distribution of whole chromosomes within cell nucleus is not available. In the
current work, we present a software package that computes localization of whole chromosomes - Image Analysis of
Chromosomes for computing localization (IMACULAT). We partition the nucleus into concentric elliptical compartments of
equal area and the variance in the quantity of any chromosome in these shells is used to determine its localization in the
nucleus. The images are pre-processed to remove the smudges outside the cell boundary. Automation allows high
throughput analysis for deriving statistics. Proliferating normal human dermal fibroblasts were subjected to standard a two-
dimensional FISH to delineate territories for all human chromosomes. Approximately 100 images from each chromosome
were analyzed using IMACULAT. The analysis corroborated that these chromosome territories have non-random gene
density based organization within the interphase nuclei of human fibroblasts. The ImageMagick Perl API has been used for
pre-processing the images. The source code is made available at www.sanchak.com/imaculat.html.

Citation: Mehta I, Chakraborty S, Rao BJ (2013) IMACULAT — An Open Access Package for the Quantitative Analysis of Chromosome Localization in the
Nucleus. PLoS ONE 8(4): e61386. doi:10.1371/journal.pone.0061386

Editor: Ulrike Gertrud Munderloh, University of Minnesota, United States of America

Received November 12, 2012; Accepted March 7, 2013; Published April 8, 2013

Copyright: � 2013 Mehta et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was funded by the Tata Institute of Fundamental Research (Department of Atomic Energy). The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: sanchak@gmail.com

. These authors contributed equally to this work.

Introduction

DNA is folded and compacted in order to occupy the limited

space within the cell nucleus wherein the genome replicates,

transcribes and translates to form proteins [1]. Another important

revelation in the field of genomics came from the finding that the

genomes are positioned in a non-random manner in the cell

nucleus [2–5]. The organized genome and the machineries

required for its maintenance and function within the nucleus,

along with other nuclear components make up the nuclear

architecture [6–8]. The organization of the genome within the

nucleus and its interaction with nuclear components alter during

both development and in disease. This non-random chromosomal

positioning within the architectural framework of the nucleus is

thought to be a critical dimension of genome function [5,8–11].

Chromosome territories occupy a non-random and a radial

distribution within interphase nuclei [2–5,10,12,13]. Although

genomic entities are arranged in this patterned organization, they

are not rigid compartments but instead are dynamic structures

that can be repositioned with respect to other nuclear structures

and other genomic regions [14]. In addition, dynamic reposition-

ing of whole chromosome territories has also been observed during

differentiation [8,15–19] and when cells exit the proliferative cell

cycle to become quiescent or senescent [20,21].

Positions of chromosome territories can be delineated using in

situ hybridization (FISH) techniques employing whole chromo-

some probes [22–24]. Although, three-dimensional FISH assures

accurate localization measurements, this technique is time

consuming [23,25]. It is thus very difficult to use this technique

while looking at global alterations in spatial locations of large

number of chromosomes. An easier alternative to this is to perform

FISH on completely flattened nuclei (2D-FISH) [2,5]. The ease of

this technique and higher probe penetration of flattened nuclei

assists in performing large number of hybridizations at once. In

addition image capturing is easier in case of 2D-FISH, thus

allowing larger numbers of nuclei to be captured. However, one of

the major hurdles in performing 2D-FISH is the lack of open

access software that could be used to quantify the localization of

chromosomal territories.

Previously, a free open-source image analysis tool (IMAJIN

COLOC) was developed to do multiple Z plane images (Z stacks)

[26]. Another co-localization method has proven to be robust in

recognizing co-localizations in the presence of background noise

[27]. Several commercial packages for doing Z stack analysis are
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also available - Imaris (http://www.bitplane.com/go/products/

imaris) and the Zeiss LSM software (http://microscopy.zeiss.com/

microscopy/en_de/home.html). However, these are not suited for

2D-analysis. One such application from IPLab Spectrum software

(http://www.spectraservices.com/IPLAB.html) that has been used

for similar 2D-analyses [2,5,21], has now discontinued the

development of the product. Further, an open source package

provides a user with the opportunity to fine tune the package

according to their requirements.

In the current work, we present software that computes

localization of whole chromosomes - Image Analysis of Chromo-

somes for computing localization (IMACULAT). We partition the

cell into concentric elliptical compartments of equal areas, and the

variance in the quantity of any chromosome is used to determine

its movement in the cell. The results are outputted to a text file,

and a corresponding gif image showing the elliptical shells is

generated for visual comparison with the original image.

Automation allows high throughput analysis for deriving statistics

that are used to validate a hypothesis regarding the position of any

chromosome. The ImageMagick Perl API libraries (http://www.

imagemagick.org/) have been used for pre-processing the images.

In order to validate the functionality of IMACULAT, we have

mapped the positions of all human chromosomes in normal

human dermal fibroblasts. The locations of these human

chromosomes corroborated earlier published studies [2,5,21].

Additionally, in concurrence with previous reports, we observed a

gene density based organization of chromosomes with gene-rich

chromosomes (19, 17, etc.) occupying the center of the nucleus

while gene-poor chromosomes (18, 2, etc.) localizing at the nuclear

periphery. Thus, this validation establishes IMACULAT as an

automated quantitative methodology that can be routinely used to

map positions of components within the nucleus.

Results and Discussion

Understanding the genome and its function is vital in the field of

biomedical research. The human genome sequencing project has

laid the foundation towards this goal whereby the sequence of 3

billion bases of human DNA was determined and approximately

30,000–40,000 protein coding genes in the human genome have

been identified [28,29]. However, it is important to remember that

genomes are not a single dimensional entity and elucidation of

DNA sequence was only the starting point of genomics research.

In reality, it is vital to extrapolate the DNA sequence information

from the human genome project onto genome function, which is

the major goal of the post-genomic era.

Chromosomes throughout most of the cell’s life span occupy a

distinct three-dimensional location within the interphase nuclei,

which are known as chromosome territories [5,21]. Since cells

spend most of their life span in interphase and also most biological

activities occur during this phase of the cell cycle, it is important to

understand the dynamics of the interphase genome [30]. Spatial

organization of chromosomes is thought to affect various

important biological processes such as transcription, replication

as well as cellular differentiation [8,15,31–35].

Proliferating normal human dermal fibroblasts (NHDFs) were

subjected to a standard two-dimensional fluorescence in situ

hybridization (FISH) to delineate territories for all human

chromosomes (22 autosomes, X and Y). A non-random distribu-

tion was observed for all human chromosomes in interphase

nuclei, and with each chromosome occupying a specific location

[2,5,21]. For instance, territories of chromosome 19 are enriched

at the center of the nuclei while those of chromosome 12 are

known to localize at the nuclear periphery [5,21]. On the other

hand, chromosome 8 has an intermediate position within

interphase nuclei [5,21]. These spatial distributions of chromo-

somes within the nuclei have been known to affect genome

functions [8,36–38].

Using IMACULAT, we positioned the territories of all human

chromosomes within interphase nuclei of normal proliferating

human dermal fibroblasts. Representative images and the output

of IMACULAT as histograms for each chromosome have been

displayed in Fig 1 and 2 respectively. Each nucleus was divided

into 5 concentric shells of equal area and the amount of probe

corresponding to the chromosome signal, in each shell was

quantified (See methods). We observed that % probe signal for

most gene-rich chromosomes, for example chromosomes 17 and

19 (Fig 2 panels Q and S, respectively) were enriched in the

interior-most shell (Shell 5) and subsequently lowered with

decreasing shell number. Thus, the positive slope on the histogram

corroborates the interior localization of these chromosome

territories (Fig 2 panels Q and S). Similarly, for gene-poor

chromosomes, such as chromosomes 13 and 18, the innermost

shell (Shell 5) showed the least % probe signal, which increased

with radial distance, the signal being the maximum in the

outermost shell (Shell 1) (Fig 2 panels M and R, respectively).

Hence, the negative slope indicated the already known peripheral

location of chromosomes 13 and 18 territories (Fig 2 panels Q and

S, respectively). Finally, bell shaped curves of chromosomes, such

as chromosome 8, was indicative of its intermediate location

within an interphase nucleus (Fig 2 panel H). IMACULAT output

for three chromosomes can be accessed at http://www.sanchak.

com/imaculat/sampleruns/.

Using IMACULAT, we have corroborated an already existing

correlation between gene-density and non-randomness of chro-

mosomal location within an interphase nucleus. For example, the

gene-dense chromosome 19 is known to localize at the nuclear

interior while nuclear periphery is enriched with gene-poor

chromosomes such as chromosome 18 [5,21]. Studies have

indicated a relationship between chromosome location and

genome function, whereby transcription is enriched at the nuclear

center as compared to the periphery [15,31–35]. In corroboration

with this, euchromatin is enriched at the nuclear interior while

most heterochromatin is localized at a peripheral location within

the nucleus [8,39–42]. Spatial distribution within the nucleus is

also known to affect other genome functions such as DNA repair

[43–47] and replication [48–51]. While a 3D approach to the

positioning of chromosomes is increasingly gaining precedence it

has been noted that the`2D approach is still the most commonly

used and will likely remain the most relevant for a considerably

long time’ [52]. In the current work, IMACULAT recapitulated

that all human chromosome territories occupy a non-random

location within the interphase nuclei of human fibroblasts, and

thus provides an invaluable computational tool to quantify such

spatial distributions.

Materials and Methods

The input to IMACULAT is a rectangular image of an elliptical

nucleus which is separated into the background, the cytoplasm and

the labeled chromosome(s), each of which has a parameterized

color (white, blue and red respectively in the examples presented

here) (Fig. 3a). The ImageMagick package parses this image into a

grid of pixels (each pixel is represented by the triplet RGB values)

of height`H’ and width̀ W’ (W = 401, H = 385 for Fig. 3).

Quantitative Analysis of Chromosome Localization
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3.1 Identifying the contour of the nucleus
The first step is to identify the contour of the nucleus. The

underlying idea is to scan from the right (or left) from the point x = 1

(x = W for scanning from the left), till we encounter the first nuclear

pixel (blue) or chromosome (red), for every height y = 1 to y = H. The

contour is thus defined by two columns of height̀ H’ - LCountour and

Figure 1. Positions of all chromosomes in normal proliferating human dermal fibroblasts: Images displaying the spatial arrangement of
each of the human chromosome territories (in red) in interphase nuclei (stained in blue) of fibroblasts. The numbers on the top of each nucleus
indicates the chromosome to which a specific probe was hybridized to, as revealed by FISH. Scale bar = 10 mM.
doi:10.1371/journal.pone.0061386.g001

Quantitative Analysis of Chromosome Localization
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RCountour - such that either LCountour[i] = RCountour[i] = 0

(there is no part of the nucleus in this horizontal line), or

LCountour[i], = RCountour[i]. The contour is colored yellow in

Fig. 3b.

3.2 Determining the major and minor axes
One cannot make any assumption of the orientation of the

nucleus. First, we determine the bounding box coordinates of the

nucleus from the contour–topx,y, bottomx,y, rightx,y, leftx,y. The

mid point of the nucleus (MPT) is computed as:

MPTx = (rightx+leftx)/2; MPTy = (topy+bottomy)/2;

The intersection of the major axis to the perimeter is computed

as the point (from all the contour points), which has the maximum

distance from MPT. Let us denote it as MAJPT1. The line

connecting MAJPT1 and MPT is extended till it hits the opposite

side of the perimeter, and defines the other end of the major axis

(MAJPT2). Since the nucleus is rarely a perfect ellipse, we

recalculate the midpoint MPT as:

MPTx = (MAJPT1x+MAJPT2x)/2;

MPTy = (MAJPT1y+MAJPT2y)

The minor axis is computed by extending a line perpendicular

from MPT, such that it makes two intersections with the perimeter

Figure 2. Histograms plotted from output of IMACULAT displaying positions of all human chromosomes in normal proliferating
human dermal fibroblasts: Normal human dermal fibroblasts were subjected to standard 2D-FISH assay. At least 100 digital images were analyzed
per chromosome by IMACULAT. The graphs display the % probe intensity of each human chromo-some in each of the shells (y-axis), and the shell
number on the x-axis. The standard error bars representing the standard errors of mean (SEM) were plotted for each shell for each graph.
doi:10.1371/journal.pone.0061386.g002

Quantitative Analysis of Chromosome Localization
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(MINPT1 and MINPT2). The major and minor axes are shown in

Fig. 3b in green and blue respectively.

3.3 Partitioning the nucleus into concentric shells
Let us denote the length of the major and the minor axis as̀ 2A’

and `2B’ respectively. The area of the ellipse is defined as -

AREA = p*A*B. We now proceed to divide the nucleus into N

concentric ellipses (five in this case, Fig. 3c). The innermost ellipse

should have an area of AREA*1/N, the next ellipse should have

area of AREA*2/N and so on. This results in the innermost shell

(colored yellow in Fig. 3c) having an area of AREA*1/N, the next

shell (colored green in Fig. 3c) with an area of (AREA*2/N–

AREA*1/N = AREA*1 = 1/N) and so on. The last shell (colored

aqua in Fig. 3c) has by the preceding logic an area of AREA*1/N),

although this shell has an irregular shape. Such a bottom-up

approach in identifying the shell obviates erosion analysis to

smoothen the nuclear periphery. In fact, our analysis is truer in the

sense that erosion analysis makes modifications to increase

depressed regions and suppress protrusions, although on an

average they are expected to offset each other. Another constraint

is that for each of the concentric ellipses, the ratio between the

major and minor axis (A = B) is to be maintained.

Table 1 shows the number of pixels within each shell, and the

distribution of cytoplasm, chromosome and unidentified colors.

The colors are identified within a range of values for RGB. For

example,`pure’ red has the value [1, 0, 0], but a value of [0.9, 0.1,

0.1] is also considered as being red. It can be seen that the

unidentified colors are negligible.

3.4 Removing smudges outside the nucleus
Occasionally, we encounter images in which there are smudges

outside the nucleus boundary (Fig. 4a). These colored portions

pose a problem to the algorithm, which determines the contour,

and the major/minor axes of the nucleus (Fig. 4b), and

consequently the nucleus partitioning (Fig. 4c). We introduce a

pre-processing step to remove these smudges, which results in a

representation of the nucleus that corrects the erroneous

calculations (Figs. 4 d, e and f). The underlying concept in

identifying a color outside the nucleus is to determine the

circumference of a specified radius (five pixels in the current

examples), and ensure that the circumference has the background

color (white in this case). There are two possible cases that will

escape this identification algorithm. The first is when the smudge is

very close to the nucleus (within the specified radius), and thus

should not introduce any significant error if left undetected. The

second case occurs when the smudge is larger than the specified

radius. Such images are rare, and are removed by visual

inspection.

Figure 3. Steps in quantifying chromosome localization: (a) The original image obtained from two-dimensional fluorescence in situ
hybridization (FISH). The background, cytoplasm and chromosome are colored white, blue and red respectively. (b) The contour is colored yellow,
while the major and minor axes are in green and blue respectively. (c) The nucleus is partitioned into five concentric shells of equal area, and the
percentages of chromosome in each shell are computed using the number of red pixels (Table 1).
doi:10.1371/journal.pone.0061386.g003

Table 1. Partitioning of the nucleus into concentric ellipses: The areas are computed by the number of pixels as shown in Fig. 2c.

Shell Number Color Blue Red Others All % Blue % Red % Others

1 Yellow 12207 10 0 12217 99.9 0.1 0

2 Green 10936 1192 0 12128 90.2 9.8 0

3 Magenta 11015 1221 0 12236 90 10 0

4 Blue 11483 716 5 12204 94.1 5.9 0

5 Aqua 11406 653 34 12093 94.3 5 0.3

The cytoplasm and labeled chromosome are colored blue and red respectively. Any color not recognized as either of these two colors is specified as`Others’. Shells are
numbered from the periphery inwards.
doi:10.1371/journal.pone.0061386.t001

Quantitative Analysis of Chromosome Localization
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3.5 Installation, running the program and analyzing the
results

The IMACULAT package is written in Perl on Ubuntu. Hard-

ware requirements are modest - all results presented here are from

a simple workstation (8GB ram) and runtimes per image were a

few Minutes, at the most. The source code and manual are made

available at www.sanchak.com/imaculat.html. The installation

requires the following supplementary packages - ImageMagick

(available at http://www.imagemagick.org/) and the Perl api

package (Image::Magick), which can be obtained from www.cpan.

org.

In order to simplify running the program, we have created a

wrapper C-shell script that takes two parameters - a file containing

the name of the image files to be processed, and the name of the

results directory. The output is an Excel (.xls) sheet, which details

the % of the probe present in each shell. Other outputs show the

identified colors in the images as intermediate files. We have

provided three sample directories, which contain the original

images and the IMACULAT results, at www.sanchak.com/

imaculat/sampleruns.tgz. They are also present in a directory

structure for easy browsing at www.sanchak.com/imaculat/

sampleruns/.

3.6 In vitro methods
Proliferating normal human dermal fibroblasts (NHDFs)

[Lonza] were maintained in 15% FBS-DMEM. Spatial locations

of chromosomes were delineated using standard two-dimensional

fluorescence in situ hybridization protocol [2]. Briefly, cells were

trypsinized, treated with hypotonic solution and fixed with

methanol:acetic acid (3:1). Further, cells were taken through an

ethanol row followed by denaturation using 70% (v/v) formamide

at 70 uC and hybridization with whole chromosome probes

[Applied Spectral Imaging]. The slides were then washed and

mounted in Vectashield mounting media containing DAPI

[Vectashield]. At least 100 images were captured per chromosome

using Zeiss Axiovert 200 microscope (Axiovision software). Spatial

positions of chromosome territories in these images were obtained

by running them through IMACULAT. Histograms displaying

these results and standard error bars representing the +/2

standard error of mean (SEM) were plotted.
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