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Abstract: Liver disease is a global health burden with high morbidity and mortality worldwide. Liver
injuries can develop into severe end-stage diseases, such as cirrhosis or hepatocellular carcinoma,
without valid treatment. Therefore, identifying novel drugs may promote liver disease treatment.
Phytochemicals, including polysaccharides, flavonoids, alkaloids, and terpenes, are abundant in
foods and medicinal plants and have various bioactivities, such as antioxidation, immunoregulation,
and tumor killing. Recent studies have shown that many natural polysaccharides play protective
roles in liver disease models in vitro and in vivo, such as fatty liver disease, alcoholic liver disease,
drug-induced liver injury, and liver cancer. The mechanisms of liver disease are complex. Notably,
ferroptosis, a new type of cell death driven by iron and lipid peroxidation, is considered to be the key
mechanism in many hepatic pathologies. Therefore, polysaccharides and other types of phytochemi-
cals with activities in ferroptosis regulation provide novel therapeutic strategies for ferroptosis-related
liver diseases. This review summarizes our current understanding of the mechanisms of ferropto-
sis and liver injury and compelling preclinical evidence of natural bioactive polysaccharides and
phytochemicals in treating liver disease.
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1. Overview of Liver Diseases and Polysaccharides

Chronic liver disease (CLD) is an important public health problem in the world, which
is a major cause of morbidity and mortality worldwide. There are many types of CLDs,
mainly including alcoholic liver disease (ALD), nonalcoholic fatty liver disease (NAFLD),
viral hepatitis, cirrhosis, and hepatocellular carcinoma (HCC), etc. [1]. The causes of
CLDs are complex, including hepatic viruses, excessive alcohol consumption, metabolic
syndrome, and drug toxicity, which are the major risk factors resulting in chronic liver
injury [2]. CLD patients always have persistent inflammation, massive cell death (such
as apoptosis and ferroptosis), and abnormal hepatocyte regeneration in the liver, which
develop to end-stage liver pathologies, such as cirrhosis and HCC [3]. Due to the increase
in hospitalized CLD patients, the economic and social burden has significantly increased,
especially in developing countries [4].

Phytochemicals refer to active substances derived from plants, such as polysaccharides,
polyphenols, and alkaloids. Many studies have shown that many phytochemicals, such
as baicalin and curcumin, have remarkable anti-tumor efficacies with lower side effects
compared to other chemotherapeutic drugs [5]. Some phytochemicals have advantageous
effects on obesity, cardiovascular diseases, neurological diseases, and cancer by alleviating
oxidative stress due to their antioxidative activity [6]. Meanwhile, various natural antioxi-
dants protect against the hepatotoxicity induced by the chemotherapeutic drug cisplatin
via antioxidant, anti-inflammatory, and anti-apoptosis activities [7].

The natural sources of polysaccharides are abundant, including plants, fungus, and al-
gae. Polysaccharides have a variety of biological and pharmacological activities, especially
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in treating diseases, which have been summarized in several recent reviews. For example,
polysaccharides have been reported to play protective roles in metabolic syndrome, cardio-
vascular diseases, and neurodegenerative diseases due to their activities in glucose and
lipid metabolism regulation and antioxidant and anti-inflammation activities [8–12]. Other
studies revealed algal polysaccharides killing tumor cells via apoptosis while reducing the
adverse effect of chemotherapy [13]. Besides, non-starch polysaccharides may improve
health by regulating gut microbiota [14]. Moreover, polysaccharides deriving from tra-
ditional Chinese medicinal herbs have anti-hypertensive and cardioprotective activities
and they also could be used as drug delivery systems to improve therapeutical effects by
promoting bioavailability and reducing toxicity [15,16]. Two or three years ago, Yuan et al.
summarized the protective effects of polysaccharides in several types of liver injuries [11],
and Qu et al. reviewed the signaling pathways by which the plant polysaccharides regulate
apoptosis and inflammation [12]. These previous reviews provided insights into the use of
polysaccharides in treating liver diseases.

Due to the rapidly increasing number of bioactive phytochemicals, the functions and
mechanisms of polysaccharides with hepaprotective effects identified in the latest two years
have not been systematically summarized. In this review, we summarize the regulatory
functions and mechanisms of various polysaccharides in different liver diseases, including
NAFLD, ALD, fibrosis, drug-induced liver injury, and HCC, mainly involving research
from the last five years. Moreover, we also summarize the polysaccharides and other types
of phytochemicals with activities in regulating ferroptosis, which is the novel mechanism
in many types of liver diseases. The progress of studies on polysaccharides and ferroptosis-
related phytochemicals will provide novel therapeutic strategies in treating CLDs.

2. Polysaccharides in Different Liver Diseases
2.1. Nonalcoholic Fatty Liver Disease and Ethanol-induced Liver Disease

Superfluous fatty-acid-induced oxidative stress and inflammation during metabolism
are central to the pathogenesis of NAFLD [17]. NAFLD includes simple steatosis and
nonalcoholic steatohepatitis (NASH), which is the most common cause of liver dysfunction
and is associated with an increased risk of cardiovascular diseases [18,19]. NAFLD is the
most universal liver disease in obesity, metabolic syndrome, and diabetes [20]. Generally,
without valid treatment, all kinds of chronic hepatitis will finally progress into end-stage
liver diseases, such as cirrhosis or HCC [20]. NAFLD is the fastest increasing cause of HCC
in many parts of the world, including the USA and parts of Europe [21]. The underlying
mechanisms in the development and progression of NAFLD are complex, including insulin
resistance, hormones secreted from the adipose tissue, nutrients, and gut microbiota [22].

Alcohol has wide-ranging effects on the gut and liver, resulting in liver inflammation,
oxidative damage, fibrosis, and cirrhosis [23]. Alcohol is considered to be a risk factor
for liver cirrhosis and has a significant impact on the mortality of liver cirrhosis [24]. The
oxidative damage remains a crucial pathology involved in ethanol-induced liver disease
(ALD) [25]. Ethanol-induced liver disease is a negative outcome of excessive drinking of
ethanol, with increased reactive oxygen species (ROS) during ethanol metabolism in the
liver. ROS promote hepatocyte apoptosis by inducing mitochondrial alterations or necrosis
by initiating lipid peroxidation on cell membranes [26,27]. A lot of polysaccharides could
be used as therapeutics for ameliorating NAFLD or ALD by modulating macronutrient
metabolism and reducing cell apoptosis, inflammation, and oxidative stress (Table 1).

Polysaccharides extracted from pomelo fruitlet (YZW-A), Ophiopogon japonicus (MDG-1),
Enteromorpha prolifera, Schisandra chinensis caulis (SCP), Chicory (CP), Ganoderma lucidum
(GLP), Lycium barbarum (LBP), Coriolus versicolor mycelia (CVMP), Bletilla striata, Cordy-
ceps sinensis (CSP), mussel polysaccharide α-D-glucan (MP-A), and fucoidan–fucoxanthin
mix (FFM) could ameliorate hepatic lipid levels by modulating lipid metabolism [28–41].
Adiponectin reduces hepatic lipid accumulation via AMPK (AMP-activated protein kinase)
signaling, which activates lipid oxidation and inhibits fatty acid synthesis [42,43]. YZW-A,
MDG-1, CP, MP-A, and CSP could inhibit lipid accumulation in the liver by activating
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the AMPK pathway [28,35–37,40]. CP could significantly reduce hepatic lipid accumu-
lation via increasing the lipid-oxidation-related gene Pparab’s expression and reducing
lipid-synthesis-related gene (i.e., Fasn and Srebf1) expression in rats [30,39]. LBP and CVMP
could activate the AMPK signaling pathway to reduce steatosis in alcohol-induced fatty
liver [33,34].

Many polysaccharides could play hepatoprotective roles in NAFLD via moderating
glucose metabolism, such as Angelica sinensis polysaccharide (ASP), SCP, and FFM. The
PI3K/Akt pathway mediates glucose metabolism to decrease lipid accumulation in the
liver [44]. ASP reduced blood glucose levels and ameliorated insulin resistance by activating
the PI3K/Akt pathway in high-fat-diet-fed mice [45]. SCP alleviated insulin resistance by
regulating the metabolism of ascorbic acid and uronic acid as well as the transformation
pathway of pentose and glucuronic acid [29]. FFM has the potential to reduce insulin
resistance in patients with NAFLD in a clinical trial [32].

Acidic polysaccharides from carrot (CPS), polysaccharide from the residue of Panax
notoginseng (PNPS), and modified polysaccharides from Coprinus comatus (MPCC) could
regulate alcohol metabolism in the liver to reduce hepatic steatosis with the upregulation
of hepatic alcohol dehydrogenase and aldehyde dehydrogenase [46–48]. Dendrobium hu-
oshanense polysaccharide also protected liver function from alcoholic injury via correcting
the hepatic methionine disorder [49]. LBP, Dendrobium officinale polysaccharide (DOP),
Echinacea purpurea polysaccharide (EPP), CPS, polysaccharide from Pleurotus geesteranus
(PFP-1), Pinus koraiensis pine nut polysaccharide (PNP80b-2), PNPS, CVMP, MPCC, alkalic-
extractable polysaccharides from Coprinus comatus (APCC), garlic polysaccharide (GP),
Triticum aestivum sprout-derived polysaccharide (TASP), and polysaccharide from maca (Le-
pidium meyenii) (MP) were reported to ameliorate alcohol-induced hepatic oxidative stress
and inflammatory damage [33,34,46,48,50–59]. DOP, EPP, PFP-1, PNP80b-2, and TASP
could ameliorate alcohol-induced hepatic oxidative stress via promoting the transcription
of antioxidant genes mediated by nuclear factor E2-related factor 2 (Nrf2) [50–52,54,56].
Polysaccharides from Pleurotus geesteranus mycelium, LBP, DOP, and EPP could amelio-
rate alcohol-induced hepatic inflammatory damage by inhibiting nuclear factor kappa-
B (NF-κB) signaling pathways [50,56,60] or by reducing-thioredoxin interacting protein
(TXNIP)-induced NLRP3 inflammasome formation [55,56]. Besides, EPP, CPS, PFP-1,
MPCC, APCC, Pleurotus geesteranus mycelium polysaccharide, GP, TASP, and MP could
reverse ethanol-induced lipid disorder, i.e., decreasing serum triglycerides, total choles-
terol, and low-density lipoprotein cholesterol (LDL-C) and increasing serum high-density
lipoprotein cholesterol (HDL-C) [46,48,50,51,53–55,57–59].

2.2. Hepatic Fibrosis

Hepatic fibrosis is an outcome of wound healing in response to chronic liver injury.
Without timely and valid treatment, liver fibrosis might finally develop into end-stage
cirrhosis. The mechanisms of liver fibrosis are complex, consisting of inflammation, hepatic
stellate cell (HSC) activation, extracellular matrix (ECM) production, and the deposit
of collagen in liver [61,62]. Therefore, liver fibrosis can be reversed via ceasing chronic
liver damage, blocking inflammation, deactivating HSCs, and degrading ECM [63]. The
progression of hepatic fibrosis could be blocked by polysaccharides (Table 1) via these
anti-fibrosis pathways.

O. lanpingensis polysaccharides (OLP) and Dictyophora polysaccharides could sig-
nificantly decrease the accumulation of ECM and collagen by upregulating MMPs and
collagenase expression, which are essential for collagenolysis [64,65]. Quiescent HSCs play
important roles in the progression of liver fibrosis because active HSC can transdifferentiate
into myofibroblasts, which produce ECM [62]. ASP could alleviate liver fibrosis by activat-
ing the IL-22/STAT3 pathway in HSCs to inhibit the HSC–myofibroblast switch [66,67].

In chronic liver damage, the persistent activation of NF-κB signaling and inflammatory
cytokines always results in fibrosis [68]. OLP could alleviate liver fibrosis by decreasing



Nutrients 2022, 14, 2303 4 of 21

inflammatory cytokines and oxidative stress [64], and Pleurotus citrinipileatus polysaccharide
could inhibit the progression of liver fibrosis via targeting the NF-κB pathway [69].

Intestinal dysbiosis from alcohol or a high-fat diet might result in liver inflamma-
tion and fibrosis and eventually develop to liver cirrhosis [70]. Polysaccharides could
affect the development of liver fibrosis by improving gut health. LBP, Miltiorrhiza bunge
polysaccharides, walnut green husk polysaccharides (WGHP), and MDG-1 were reported to
alleviate hepatic steatosis via modulating gut microbiota in a high-fat-diet-induced NAFLD
model [35,71–73]. In a randomized controlled trial, LBP could alleviate the hepatic injury
and intestinal dysbiosis in NAFLD patients [74]. WGHP and MDG-1 could moderate the
intestinal microecology in mice to reduce liver lipid accumulation [35,72]. Moreover, EPP
could attenuate intestinal inflammation and improve barrier integrity to protect against
alcohol-induced liver damage [50]. Similarly, DOP also protected against CCl4-induced
liver fibrosis by improving the intestinal barrier [75].

2.3. Hepatocellular Carcinoma (HCC)

Liver cancer is one of the top 10 cancer types, with the mortality of 8.2%, and it ranks
fifth in terms of global cases and second in terms of deaths for males. Hepatitis viruses
(such as HBV and HCV), alcohol, metabolic syndrome, diabetes, obesity, NAFLD, tobacco,
aflatoxins, and other dietary factors have been consistently associated with the effected risk
of liver cancer. The prevalence of NAFLD/NASH is increasing and may soon overtake viral
factors as the major cause of HCC globally [76]. Several polysaccharides were reported to
have therapeutic effects on HCC (Table 1).

Polysaccharides could inhibit the progression of tumors by reducing immunosuppres-
sion. The liver has a complex immune microenvironment, and immunosuppressive cells
in the tumor tissue can promote HCC tolerance. Tumor-associated macrophages (TAMs),
which are one of the key components maintaining the immunosuppressive microenviron-
ment of HCC, can facilitate tumor growth [77]. Therefore, remodeling the microenviron-
ment of tumors could be a therapeutic strategy for anti-tumor immune responses [76].
Astragalus polysaccharides (APS) and polysaccharide from Pleurotus ostreatus could inhibit
HCC growth via immunoregulation with the enhanced secretion of immune-stimulating
cytokines (IL-2, TNF-α, IFN-γ, etc.) [78,79]. Ganoderma lucidum spore polysaccharide (GLSP)
promoted the polarization of primary macrophages into M1 type and cytokine expression
(such as TNF-α, IL-1β, IL-6, and TGF-β1) [80].

HCC is highly vascularized. Polysaccharides could inhibit the invasion of HCC cells
by reducing tumor angiogenesis. The initiation of angiogenesis is driven by the metabolic
demands of tumor cells, such as hypoxia or nutrients. Many factors stimulate this process,
including hypoxia-inducible factors (HIFs), mammalian target of rapamycin (mTOR), and
PI3K/AKT signaling [81]. Several polysaccharides could block HCC angiogenesis by
downregulating hypoxia-inducible factor 1α (HIF-1α) and vascular endothelial growth
factors (VEGFs). Moreover, asparagus and dandelion polysaccharides could inhibit MAPK
and PI3K signaling pathways to block tumor angiogenesis [82–84].

APS, GLSP, fucoidan, Pleurotus ostreatus polysaccharide, ginger polysaccharide, Aconi-
tum coreanum polysaccharide, pumpkin polysaccharide (PPPF), Rhizopus Nigrum polysac-
charide, and an acid-soluble polysaccharide from Grifola frondose could inhibit hepato-
cellular carcinoma growth by apoptosis [78–80,85–90]. The JAK/STAT, PI3K/AKT, and
RAS/ERKs pathways are enhanced in many HCC cells, conferring on them resistance to
apoptotic stimuli [91]. GLSP triggers HCC cell apoptosis via regulating the PI3K/AKT
pathway, with increased Bax/caspases and decreased Bcl-2 [80]. PPPF treatment induces
apoptosis in HepG2 cells by increasing the protein tyrosine phosphatase SHP-1 to inhibit
JAK2/STAT3 signaling [88].

Many polysaccharides could enhance the effect of chemotherapeutics or simultane-
ously reduce the negative effects or toxicities of these drugs. Mannan conjugation could
enhance the effect of adenovirus-mediated phosphatase and tensin homologue (PTEN)
gene therapy in a murine HCC model [92]. Polysaccharides from Lachnum sp. (LSP) com-
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bined with 5-fluorouracil or cyclophosphamide (CTX) and polysaccharides from Lentinus
edodes combined with oxaliplatin were reported to inhibit the migration and invasion of
HCC in a synergistic manner in vitro or in vivo [93–95]. Neutral polysaccharide from
Panax notoginseng combined with CTX and aconitine combined with crude monkshood
polysaccharide enhanced the tumor-killing effect by immunoregulation [96,97]. Moreover,
nanoparticles made by polysaccharides are also applied in chemotherapeutic drug delivery.
ASP, a plant polysaccharide with good biocompatibility, aqueous solubility, and intrinsic
liver-targeted capability has been developed into targeted drug delivery nanoparticles for
HCC therapy [98,99].

2.4. Drug-Induced Liver Injury (DILI)

Due to the first-pass effect of the liver in gastrointestinal nutrition metabolism, the liver
is more susceptible to drug toxicity during clinical treatment. The incidence of DILI was
estimated to be higher in Asia than that in Western countries [100]. Polysaccharides have
significant protective roles in drug-induced liver damage (Table 1). ASP, Schisandra chinensis
acidic polysaccharide, Phellinus linteus mycelia polysaccharide, PNP80b-2, fucoidan, and
Seabuckthorn berry polysaccharide could protect against acetaminophen (APAP)-induced
acute liver injury and cell death by suppressing oxidative stress [52,101–105]. Sagittaria
sagittifolia L. polysaccharide and Yulangsan polysaccharide exert protective effects against
isoniazid- or rifampicin-induced liver injury via Nrf2 activation and downstream antioxi-
dant gene transcription [106,107]. Meanwhile, the administration of GLP reversed Bacillus
Calmette Guérin-induced hepatic injury in vivo via inhibiting nitric oxide production and
inflammation [108].

Table 1. Polysaccharides in liver diseases.

Polysaccharide Source Types of Liver
Disease Treated

Cell/Animal
Models Effects and Mechanisms References

Acidic
polysaccharides

from carrot (CPS)
Carrot ALD Mice Reducing lipid droplets [46]

Aconitum coreanum
polysaccharide Aconitum coreanum HCC H22 cells/mice

Inducing apoptosis by
suppressing P13K/Akt and

activating p38
[86]

alkalic-extractable
polysaccharides
from Coprinus

comatus (APCC)

Coprinus comatus ALD Mice
Inhibiting inflammation and

ROS. Improving alcohol
metabolism.

[58]

Angelica sinensis
polysaccharide

(ASP)

The dry roots of
Angelica sinensis

NAFLD Mice
Inhibiting ROS. Increasing
PPARγ and SIRT1-AMPK

signaling.
[45]

Hepatic fibrosis Mice
Inhibiting inflammation.

Decreasing ECM
accumulation

[66]

HCC Mice Drug delivery nanoparticles [98,99]

DILI Hepatocytes/rats Inhibiting ROS and
apoptosis [101]

Asparagus
polysaccharide Asparagus HCC SK-Hep1 and

Hep-3B cells

Suppressing MAPK/PI3K
and HIF-1α/VEGF
signaling pathway

[83,84]
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Table 1. Cont.

Polysaccharide Source Types of Liver
Disease Treated

Cell/Animal
Models Effects and Mechanisms References

Astragalus
polysaccharides

(APS)
Astragalus HCC Mice

Inducing apoptosis by
increasing Bax and

decreasing Bcl-2
[79]

Bletilla striata
polysaccharide Bletilla striata NAFLD Mice

Regulating fatty acids and
arachidonic acid

metabolism
[41]

Chicory
polysaccharide (CP) Chicory NAFLD Zebrafish and

rats

Inhibiting ROS and
lipogenesis. Promoting

lipolysis and AMPK.
[30,37,39]

Cordyceps sinensis
polysaccharide (CSP)

Cordyceps
Sinensis NAFLD Mice

Modulating lipid
metabolism and gut

microbiota
[28]

Coriolus versicolor
mycelia

polysaccharide
(CVMP)

Coriolus versicolor
mycelia ALD Mice

Inhibiting inflammation and
ROS. Regulating lipid

metabolism
[34]

Crude monkshood
polysaccharide Monkshood HCC Hepa1-6

cells/mice
Enhancing the immunocyte

to kill the tumor [97]

Dandelion
polysaccharide Dandelion HCC

HepG2,
Hepa1-6, H22

cells/mice

Suppressing the
HIF-1α/VEGF signaling

pathway
[82]

Dendrobium
huoshanense

polysaccharide
(DHP)

Dendrobium
huoshanense ALD Mice

Correcting the abnormal
hepatic methionine

metabolism pathway and
decreasing the hepatic

methylglyoxal level

[49]

Dendrobium officinale
polysaccharide

(DOP)

Dendrobium
officinale

ALD L02 cells/rats Inhibiting TLR4/NF-κB
signaling [56]

Hepatic fibrosis Rats Inhibiting the TLR4-NF-κB
pathway [75]

Dictyophora
polysaccharides Dictyophora Hepatic fibrosis Rats Decreasing ECM

accumulation [65]

Echinacea purpurea
polysaccharide (EPP) Echinacea purpurea ALD Mice Activation of the

Nrf2/HO-1 pathway [50]

Enteromorpha prolifera
polysaccharide

Enteromorp-ha
prolifera NAFLD Rats

Reducing serum lipid levels
by increasing H2S

production
[31]

Fucoidan Brown algae
HCC

MHCC97H,
Hep3B

cells/mice

Inducing apoptosis by
increasing lncRNA

LINC00261 expression
[87]

DILI HL7702
cells/mice

Inhibiting ROS by Nrf2
signaling [105]

Fucoidan–
fucoxanthin mix

(FFM)

Sargassum
hemiphyllum NAFLD HepaRG

cells/mice/patients

Inhibiting inflammation.
Modulating the

leptin–adiponectin axis
[32]
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Table 1. Cont.

Polysaccharide Source Types of Liver
Disease Treated

Cell/Animal
Models Effects and Mechanisms References

Ganoderma lucidum
polysaccharide

(GLP)
Ganoderma lucidum

NAFLD HepG2
cells/mice

Modulating bile acid
synthesis through the

FXR-SHP/FGF pathway
[38]

DILI Mice
Inhibiting nitric oxide

production and
inflammation

[108]

Ganoderma lucidum
spore polysaccharide

(GLSP)

The spores of
Ganoderma lucidum HCC Mice

Promoting the polarization
of primary macrophages to

the M1 type
[80]

Garlic
polysaccharide (GP) Garlic ALD Mice Regulating gut microbiota [59]

Ginger
polysaccharide Ginger HCC HepG2 cells Inducing apoptosis [89]

Grifola frondose
polysaccharide Grifola frondosa HCC H22 and HepG2

cells
Inducing the mitochondrial

apoptotic pathway [90]

Lycium barbarum
polysaccharide (LBP)

Lycii Fructus

NAFLD Rats/humans
Inhibiting inflammation and

regulating host gut
microbiota

[71,74]

ALD BRL-3A
cells/mice

Inhibiting TXNIP and
activating AMPK. Inhibiting

inflammation, ROS, and
apoptosis.

[33,55]

Miltiorrhiza bunge
polysaccharide Salvia miltiorrhiza NAFLD Mice

Modulating gut microbiota
and improving insulin

resistance
[73]

Modified
polysaccharides
from Coprinus

comatus (MPCC)

Coprinus comatus ALD Mice

Inhibiting inflammation and
ROS. Reducing serum lipid
levels. Promoting alcohol

metabolism.

[48]

Mussel
polysaccharide

α-D-glucan (MP-A)
Mytilus coruscus NAFLD Rats

Inhibiting inflammation.
Increasing short-chain fatty

acids. Inhibiting PPAR
signaling.

[36]

Neutral
polysaccharide from

Panax notoginseng
Panax notoginseng HCC Mice Enhancing the anti-tumor

effect of cyclophosphamide [96]

O. lanpingensis
polysaccharides

(OLP)

Ophiocordyceps
lanpingensis Hepatic fibrosis Mice Inhibiting inflammation,

ROS, and apoptosis [64]

Ophiopogon japonicus
polysaccharide

(MDG-1)
Ophiopogon NAFLD Mice

Inhibiting inflammation.
Modulating the gut–liver

axis and hepatic lipid
metabolism.

[35]

Phellinus linteus
mycelia

polysaccharide
(PL-N1)

Phellinus linteus
mycelia DILI Mice

Decreasing cytochrome
P450 2E1 expression and

hepatic release of cytokines
[103]
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Table 1. Cont.

Polysaccharide Source Types of Liver
Disease Treated

Cell/Animal
Models Effects and Mechanisms References

Pinus koraiensis pine
nut polysaccharide

(PNP80b)
Pine nut ALDDILI Mice Inhibiting inflammation and

ROS by Nrf2 signaling [52]

Pleurotus
citrinipileatus

polysaccharide

Pleurotus
citrinipileatus Hepatic fibrosis Mice Reducing the level of cytokine

TGF-β1 [69]

Polysaccharide from
Lachnum sp. (LSP) Lachnum sp. HCC

HepG2,
SMMC7721,
H22 and L02

cells/mice

Inducing apoptosis by
inhibiting the MEK and PI3K

pathways
[94,95]

Polysaccharide from
Lentinus Lentinus edodes HCC HepG2 and

H22 cells/mice

Inducing the mitochondrial
apoptotic pathway and

inhibiting NF-κB, Stat3, and
survivin signaling

[93]

Polysaccharide from
Maca (MP)

Maca (Lepidium
meyenii) ALD HepG2 cells/

mice
Reducing ROS and serum

lipid levels [57]

Polysaccharide from
Pleurotus geesteranus

mycelium

The mycelium of
Pleurotus

geesteranus
ALD Mice

Inhibiting inflammation and
ROS. Regulating alcohol

metabolism. Reducing serum
lipid levels.

[53,60]

Polysaccharide from
Pleurotus geesteranus

(PFP-1)

The fruiting body
of Pleurotus
geesteranus

ALD Mice
Activating Nrf2 signaling and
inhibiting the TLR4-mediated

NF-κB signal pathways
[54]

Polysaccharide from
Pleurotus ostreatus Pleurotus ostreatus HCC

HepG2 and
HCCLM3 cells/

mice

Inducing apoptosis.
Downregulation of

regenerative genes and
secretion of immunological

factors.

[78]

Polysaccharide from
the residue of Panax
notoginseng (PNPS)

the residue of
Panax notoginseng ALD Mice

Inhibiting inflammation and
ROS by Nrf2 signaling.

Reducing serum lipid levels.
[47]

Pomelo fruitlet
polysaccharide

(YZW-A)
Pomelo fruitlet NAFLD Mice Promoting hepatic AMPK and

Nrf2 signaling. [40]

Pumpkin
polysaccharide

(PPPF)
Pumpkin HCC HepG2 cells

Inducing apoptosis by
inhibiting the JAK2/STAT3

pathway
[88]

Rhizopus Nigrum
polysaccharide

Rhizopus
Nigrum HCC

HepG2 and
Huh7

cells/mice
Inducing apoptosis [85]

Sagittaria sagittifolia L.
polysaccharide

The root tubers of
S. sagittifolia DILI Mice Inhibiting ROS by Nrf2 [107]

Schisandra chinensis
caulis polysaccharide

(SCP)

Schisandra
chinensis Caulis

DILI Mice Inhibiting inflammation, ROS,
and apoptosis [102]

NAFLD Rats Inhibiting ROS. Regulating
glucose and lipid metabolism. [29]
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Table 1. Cont.

Polysaccharide Source Types of Liver
Disease Treated

Cell/Animal
Models Effects and Mechanisms References

Seabuckthorn berry
polysaccharide (SP)

The berries of
seabuckthorn

(Hippophae
rhamnoides L.)

DILI Mice
Inhibiting ROS and

apoptosis by
Nrf2/HO1/SOD signaling

[104]

Triticum aestivum
sprout-derived
polysaccharide

(TASP)

Triticum aestivum ALD Mice

Inhibiting inflammation,
ROS, and apoptosis by Nrf2
signaling. Reducing serum

lipid levels.

[51]

Walnut green husk
polysaccharides

(WGHP)
Walnut green husk NAFLD Rats Improving gut microbiota

and short-chain fatty acids [72]

Yulangsan
polysaccharide

The root of
Millettia pulchra DILI Mice Inhibiting ROS [106]

3. Cell Death in Liver Diseases

Cell death is a critical event for liver injury, often persisting over decades. Long-term
or massive dysregulated cell death may develop into severe clinical outcomes. For example,
massive hepatocellular death always results in liver failure, while hepatocyte immortaliza-
tion may cause HCC. Different types of cell death (such as apoptosis, necrosis, autophagy,
and ferroptosis) trigger specific pathological responses and promote the progression of
liver disease through distinct mechanisms [109]. The discovery of novel modes of cell death
has greatly improved our understanding of the development of liver disease.

3.1. Polysaccharides Regulating Apoptosis

Apoptosis is classic cell death, and hepatocyte apoptosis is often considered to be
the major mechanism of liver injury over decades. At the molecular level, apoptosis
is divided into two major branches, the intrinsic and extrinsic pathways. The extrinsic
apoptosis of hepatocytes can be initiated by inflammatory cytokines, which then trigger Fas-
dependent death-inducing signaling complex and downstream caspase-8/9 activation [110].
The caspase-9-induced pro-death protein BID–BAX axis is the major link between the
intrinsic and extrinsic pathways. In the intrinsic apoptotic pathway, the mitochondrial
outer membrane permeabilization by BAX and BAK results in the release of mitochondrial
pro-death effectors, such as the hemoprotein cytochrome c, which triggers the formation of
the apoptosome and caspase-3/7 activation [110,111]. Cytochrome c is normally bound
to cardiolipin, and therefore the oxidation of cardiolipin by ROS also triggers cytochrome
c release and downstream apoptotic signaling, including caspase activation and death
execution [112].

Many polysaccharides have been identified as apoptosis regulators (Table 1). Polysac-
charides with activities to suppress apoptosis can protect against NASH, ALD, and APAP-
induced acute liver injury. On the other hand, polysaccharides such as apoptosis agonists
can inhibit HCC development by promoting tumor cells apoptosis.

3.2. Polysaccharides and Other Phytochemicals Regulating Ferroptosis

Ferroptosis is a new type of cell death that was identified in 2012 [113]. Ferroptosis was
observed in RAS-mutated tumor cells treated with the lethal compound erastin or RSL3.
RAS mutations always result in apoptosis resistance, indicating ferroptosis is morphologi-
cally, biochemically, and genetically distinct from other forms of cell death. In the discovery
of ferroptosis, either lipid peroxidation scavengers (i.e., ferrostatin-1) or iron chelators (i.e.,
deferoxamine) could specifically inhibit ferroptosis agonist (erastin or RSL3)-induced cell
death, and therefore ferroptosis was characterized as a lipid-peroxidation-induced and
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iron-dependent cell death [113–115]. Ferroptosis serves as a major pathological mecha-
nism in a wide range of organs, including the liver, heart, brain, and kidney [115–117]. In
the past decade, the regulatory mechanisms of ferroptosis have been revealed (Figure 1)
but not fully elucidated. Iron homeostasis is tightly maintained in the body, including
iron absorption, storage, and utilization. Dysregulated iron metabolism is the key trigger
of ferroptosis. In previous studies, an iron overload resulting from a high-iron diet or
hereditary hemochromatosis was shown to cause hepatic ferroptosis, and an iron-deficient
diet challenge or ferrostatin-1 treatment could rescue iron-overload-induced ferroptosis
and liver damage [118,119]. Moreover, in normal cells, excessive iron is stored in ferritin,
and the deletion of ferritin H in cardiomyocytes could increase the liable iron pool and
result in ferroptotic heart injury [120]. Lipid peroxidation, the oxygenation of polyunsat-
urated phosphatidylethanolamines (PEs) in the cytoplasm membrane or mitochondrial
membrane, is considered to be the executor of ferroptosis by decreasing the membrane
integrity [117,121]. Lipid peroxidation is mediated by PE-binding protein 1 (PEBP1), a
scaffolding protein that binds with both PEs and lipoxygenases and allows them to gen-
erate lipid peroxides [115]. The antioxidant glutathione (GSH)–glutathione peroxidases
(GPXs) axis is a major mechanism for cleaning lipid peroxidation. The cystine/glutamate
antiporter xc− is essential for cellular GSH, and its subunit SLC7A11 mediates cystine
uptake, which is then reduced into cysteine for GSH synthesis [115]. The genetic deletion
or mutation of SLC7A11 inhibited GSH synthesis and resulted in increased tissue lipid
peroxidation and ferroptotic injury [118], while overexpressing SLC7A11 could increase
the GSH content and rescue ferritin H knockout-induced ferroptotic heart damage [120].
GPX4, an enzyme that catalyzes GSH reacting with lipid peroxidation, plays critical roles in
blocking ferroptosis. Therefore, inducing ferroptosis by the pharmacological inhibition of
SLC7A11 and GPX4 provides novel strategies for tumor chemotherapy [113,122–124]. Nrf2
is the key transcription factor of many antioxidant genes involved in ferroptosis, including
SLC7A11 and GPXs. Besides GSH, other antioxidants, including NADPH and reduced
thioredoxin (Trx), can also inhibit ferroptosis by reducing lipid peroxidation [125–127].
Recently, the FDA-approved anti-rheumatoid arthritis drug auranofin was identified as
a a novel ferroptosis agonist by pan-inhibiting thioredoxin reductases (TXNRDs), which
could refresh reduced Trx after reacting with lipid peroxidation. Therefore, auranofin and
ferroptosis inhibitor (i.e., ferrostatin-1) combined treatment was suggested to be a safer
strategy in the clinic to avoid ferroptotic toxicity from high-dose auranofin [127]. Moreover,
polyunsaturated fatty acids (PUFAs) are essential for ferroptosis due to their sensitivity to
lipid peroxidation [128,129]. ACSL4, an enzyme that catalyzes arachidonic acids synthesiz-
ing into PUFAs, could drive ferroptosis via oxidized phospholipids accumulating in the
cell membrane [130–133].

Several polysaccharides have been identified as ferroptosis regulators to date, con-
sisting of ferroptosis agonists and inhibitors (Table 2). Red ginseng polysaccharide and
LBP exhibited anti-tumor efficacy by triggering ferroptosis [134–136]. Fucoidans, APS, and
polysaccharide of atractylodes macrocephala Koidz could alleviate tissue injuries by inhibiting
ferroptosis [137–139].

The liver is one of the most important organs for iron storage. The hepatic iron and
ROS burden are greater in the diseased liver than in the normal liver, suggesting that fer-
roptosis may be associated with chronic liver diseases [116]. Currently, ferroptosis has been
identified as the key mechanism in NASH, ALD, ischemia/reperfusion, and iron overload
(hemochromatosis)-related liver injury [118,140–143]. However, polysaccharides have not
been reported to regulate ferroptosis in liver diseases, while many phytochemicals of other
types, such as terpene, alkaloid, and flavonoid, can alleviate the pathogenesis of liver
diseases via regulating ferroptosis (Table 2). For one thing, phytochemicals could induce
ferroptosis to suppress the progression of liver fibrosis and HCC. For instance, magnesium
isoglycyrrhizinate, derivatives of artemisinin (such as artemether, artesunate, and dihydro-
artemisinin (DHA)), wild bitter melon extracts, chrysophanol, and zalkaloid berberine
could block the development of liver fibrosis by triggering HSC ferroptosis [144–152]. Be-
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sides, several studies revealed that DHA could trigger ferroptosis to block HCC growth by
promoting PEBP1/15LO formation or an unfolded protein response [153,154]. Moreover,
DHA and artesunate could enhance the anti-tumor efficacy of sorafenib on HCC by induc-
ing ferroptosis [155,156]. In addition, alkaloid solasonine promotes the ferroptosis of HCC
cells via inhibiting GPX4 and GSH synthetase [157]. Meanwhile, heteronemin, a natural
marine product isolated from Hippospongia sp., was reported to trigger HCC cell ferroptosis
and apoptosis by increasing intracellular ROS and inhibiting MAPK signaling [158].

Nutrients 2022, 14, x FOR PEER REVIEW 10 of 21 
 

 

essential for ferroptosis due to their sensitivity to lipid peroxidation [128,129]. ACSL4, an 
enzyme that catalyzes arachidonic acids synthesizing into PUFAs, could drive ferroptosis 
via oxidized phospholipids accumulating in the cell membrane [130–133].  

 

 
Figure 1. Regulatory pathways of ferroptosis. Iron metabolism is tightly regulated in transport and 
storage. Cellular iron overload can trigger ferroptosis. Cellular iron uptake is mediated by TfR1, 
which imports transferrin-binding iron, and by DMT1 and SLC39A14, which import non-transfer-
rin-binding iron. Ferroportin1 (Fpn1) is the only known iron exporter to date. Heme can be de-
graded by HO-1 to release free iron. Cellular excess iron is stored in ferritin, while ferritin can be 
degraded by NCOA4-mediated ferritinophagy in an iron-deficiency condition. System xc−, a heter-
odimer composed of SLC7A11 and SLC3A2, is a cystine/glutamate antiporter that mediates the ef-
flux of glutamate and the influx of cystine at a 1:1 ratio. After entering the cell, cystine is reduced to 
cysteine and then synthesized into GSH. GPX4 scavenges lipid ROS via GSH. Lipid ROS derives 
from PUFAs-PE oxidation by lipoxygenases. The scaffolding protein PEBP1 can bind PE on the cell 
membrane and then recruit the lipoxygenase 15LO to generate lipid ROS. ACSL4 can increase lipid 
ROS by producing PUFAs-PE. Moreover, TCA cycle disorder or iron overload in mitochondria can 
also increase ROS, which results in ferroptosis. The CoQ/FSP1 and Trx/TXNRD axes inhibit ferrop-
tosis in a GSH-independent manner. The Keap1/NRF2, p53, and YAP/TAZ signaling are necessary 
for the transcription of ferroptosis regulators, such as SLC7A11 and ACSL4. Erastin, RSL3, and 
auranofin are ferroptosis agonists by targeting SLC7A11, GPX4, and TXNRD, respectively. Ferrop-
tosis inhibitors include iron chelators and lipid ROS scavengers (ferrostatin-1, liproxstatin-1, vita-
min E, etc.). 

Several polysaccharides have been identified as ferroptosis regulators to date, con-
sisting of ferroptosis agonists and inhibitors (Table 2). Red ginseng polysaccharide and 
LBP exhibited anti-tumor efficacy by triggering ferroptosis [134–136]. Fucoidans, APS, 

Figure 1. Regulatory pathways of ferroptosis. Iron metabolism is tightly regulated in transport and
storage. Cellular iron overload can trigger ferroptosis. Cellular iron uptake is mediated by TfR1,
which imports transferrin-binding iron, and by DMT1 and SLC39A14, which import non-transferrin-
binding iron. Ferroportin1 (Fpn1) is the only known iron exporter to date. Heme can be degraded
by HO-1 to release free iron. Cellular excess iron is stored in ferritin, while ferritin can be degraded
by NCOA4-mediated ferritinophagy in an iron-deficiency condition. System xc−, a heterodimer
composed of SLC7A11 and SLC3A2, is a cystine/glutamate antiporter that mediates the efflux of
glutamate and the influx of cystine at a 1:1 ratio. After entering the cell, cystine is reduced to cysteine
and then synthesized into GSH. GPX4 scavenges lipid ROS via GSH. Lipid ROS derives from PUFAs-
PE oxidation by lipoxygenases. The scaffolding protein PEBP1 can bind PE on the cell membrane
and then recruit the lipoxygenase 15LO to generate lipid ROS. ACSL4 can increase lipid ROS by
producing PUFAs-PE. Moreover, TCA cycle disorder or iron overload in mitochondria can also
increase ROS, which results in ferroptosis. The CoQ/FSP1 and Trx/TXNRD axes inhibit ferroptosis
in a GSH-independent manner. The Keap1/NRF2, p53, and YAP/TAZ signaling are necessary for the
transcription of ferroptosis regulators, such as SLC7A11 and ACSL4. Erastin, RSL3, and auranofin are
ferroptosis agonists by targeting SLC7A11, GPX4, and TXNRD, respectively. Ferroptosis inhibitors
include iron chelators and lipid ROS scavengers (ferrostatin-1, liproxstatin-1, vitamin E, etc.).
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For another thing, some phytochemicals also inhibit hepatic ferroptosis to protect
against NASH, drug-induced liver injury, and acute liver failure (Table 2). For example,
some investigations discovered that some natural products, such as ginkgolide B and de-
hydroabietic acid, could alleviate NASH pathology by activating Nrf2 signaling to inhibit
ferroptosis [159,160]. Clausenamide could prevent drug-induced hepatocyte ferroptosis
via the activation of the Keap1-Nrf2 pathway [161]. Glycyrrhizin significantly reduced the
degree of ferroptosis in acute liver failure by enhancing glutathione synthesis [162]. Holly
(Ilex latifolia Thunb.) polyphenol extracts are able to relieve hepatic ferroptosis by inhibiting
iron transport and enhancing GPX4 expression [163]. Moreover, baicalein supplementation
ameliorates CCl4-induced acute liver injury in mice by inhibiting ferroptosis and inflam-
mation, which involves the activation of Nrf2 and the inhibition of lipoxygenases and the
NF-kB pathway [164].

Table 2. Phytochemicals in ferroptotic diseases.

Agonist/Inhibitor Phytochemicals Types of Phyto-
chemicals

Types of
Diseases
Treated

Cell/Animal
Models Mechanisms References

Agonist Artemether Terpene Liver fibrosis LX2 cells/mice Activiting p53 signaling.
Accumulating IRP2 [148,151]

Agonist Artesunate Terpene Liver fibrosis Mice Promoting ferritinophagy [145]

HCC
Huh7, SNU-449,
SNU-182 HCC

cells

Promoting ferritin
degradation and
decreasing GSH

[156]

Agonist Chrysophanol Quinone Liver fibrosis Mice Promoting ER stress [146]

Agonist Dihydroartemisinin
(DHA)

Terpene Liver fibrosis Rats, mice Promoting ferritinophagy [150,152]

HCC
Hep3B, HepG2,

and Huh7
cells/mice

Promoting ER stress and
PEBP1/15-LO formation [153–155]

Agonist Heteronemin Terpene HCC HA22T, HA59T
cells Increasing ROS [158]

Agonist
Lycium barbarum
polysaccharide

(LBP)
Polysaccharide Breast cancer

MCF-7 and
MDA-MB-231

cells

Triggering ferroptosis by
downregulating SLC7A11
and GPX4

[134]

Agonist Magnesium
isoglycyrrhizinate Terpene Liver fibrosis Rats Increasing HO-1

expression [147]

Agonist Red ginseng
polysaccharide Polysaccharide Lung and

breast cancer

A549 and
MDA-MB-231

cells

Triggering ferroptosis by
inhibiting GPX4 [136]

Agonist Solasonine Alkaloid HCC HepG2, HepRG
cells

Inhibiting GPX4 and GSH
synthetase [157]

Agonist Wild bitter melon
extract Liver fibrosis Mice Inhibiting GPX4 and

SLC7A11 [144]

Agonist Alkaloid
berberine Alkaloid Liver fibrosis Mice

Blocking the
autophagy–lysosome
pathway and increasing
ROS

[149]

Inhibitor
Astragalus

polysaccharide
(APS)

Polysaccharide Colitis
Caco-2 cells/DSS-

challenged
mice

Decreasing lipid ROS [137]

Inhibitor Baicalein Flavonoid Acute liver
injury

HepG2
cells/mice

Inhibiting the NF-κB
pathway and ALOX12 [164]

Inhibitor Clausenamide Pyrrolidone DILI
Hepa RG and

HepG2
cells/mice

Activating the
Keap1-Nrf2 pathway [161]



Nutrients 2022, 14, 2303 13 of 21

Table 2. Cont.

Agonist/Inhibitor Phytochemicals Types of Phyto-
chemicals

Types of
Diseases
Treated

Cell/Animal
Models Mechanisms References

Inhibitor Dehydroabietic
acid Terpene NAFLD

HEK293T and
HL7702

cells/mice

Activating the Nrf2-ARE
pathway [159]

Inhibitor Fucoidans Polysaccharide Retinal disease ARPE-19 and
OMM-1 cells

Inhibiting ferroptosis by
increasing GPX4 [138]

Inhibitor Ginkgolide B Terpene NAFLD HepG2 cells/
mice Activating Nrf2 signaling [160]

Inhibitor Glycyrrhizin Terpene Acute liver
injury L02 cells/mice

Promoting the
Nrf2/HO-1/HMGB1
pathway

[162]

Inhibitor
Holly (Ilex latifolia

Thunb.)
polyphenols

Polyphenol Acute liver
injury Piglet Decreasing lipid ROS [163]

Inhibitor
Polysaccharide of

atractylodes
macrocephala Koidz

Polysaccharide Spleen injury in
infections Goslings

Inhibiting ferroptosis by
restoring the expression
and distribution of GPX4

[139]

4. Conclusions and Future Directions

Liver disease is a global health burden that has complex mechanisms and needs
effective therapeutics in the early stage of liver injury. Given a growing number of polysac-
charides with bioactivities (such as antioxidant, immunoregulation, and tumor killing activ-
ities) have been identified, the polysaccharide may provide a promising therapeutic strategy
for liver diseases. Recently, various natural polysaccharides have been reported to possess
protective roles in several liver diseases resulting from fatty liver, alcohol, drug toxicity,
or HCC. Moreover, angelica polysaccharides can be developed into a hypoxia-responsive
nano-drug delivery system that facilitated HCC chemotherapy. However, studies about
polysaccharides on virus hepatitis have been reported less than other liver diseases, sug-
gesting polysaccharides with anti-virus bioactivity need to be identified. Currently, the
majority of data are collected from in vitro and animal experiments. Therefore, further
studies in humans are needed in order to evaluate the efficacy of these polysaccharides in
the clinic.

Cell death, including apoptosis or ferroptosis, is a double-edged sword for health.
Therefore, phytochemicals, such as cell death agonists or inhibitors, may play different roles
in treating liver diseases. For example, some phytochemicals that inhibit cell death could
alleviate ALD, DILI, or chemotherapeutic toxicity in the liver, while lethal phytochemicals
may serve as chemotherapeutics in HCC. Ferroptosis is a new type of cell death with
features of iron and lipid ROS accumulation that is different from other types of cell death.
The discovery of ferroptosis has greatly improved the understanding and therapeutic
strategies of liver disease. Several compounds and phytochemicals could alleviate liver
injury by targeting ferroptosis, while inhibitors of other cell death (such as apoptosis) could
not. Moreover, phytochemicals with ferroptosis-inducing activities might be effective and
promising drugs for HCC because ferroptosis agonists can evade the drug resistance of
classic chemotherapeutics (e.g., cisplatin, which kills tumors by apoptosis). Therefore,
elucidating the mechanisms of ferroptosis and identifying more ferroptosis-regulatory
phytochemicals may provide novel therapeutic strategies for liver diseases in the future.

Author Contributions: Y.R., S.L., Z.S., Q.L., Y.Z. and H.W. reviewed the literature and drafted the
manuscript; Y.R. and H.W. revised the manuscript; H.W. obtained funding and supervised the paper.
All authors have read and agreed to the published version of the manuscript.

Funding: This study was supported by research grants from the National Natural Science Foundation
of China (32171171, 31701035, and 81903314), the Key Scientific and Technological Project of Henan



Nutrients 2022, 14, 2303 14 of 21

Province, China (212102310237), and the Natural Science Foundation of Henan Province, China
(212300410274).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

ALD alcoholic liver disease
AMPK AMP-activated protein kinase
APAP acetaminophen
APCC alkalic-extractable polysaccharides from Coprinus comatus
APS Astragalus polysaccharides
ASP Angelica sinensis polysaccharide
CLD chronic liver disease
CP chicory polysaccharide
CPS carrot polysaccharide
CSP Cordyceps sinensis polysaccharide
CTX cyclophosphamide
CVMP polysaccharide from Coriolus versicolor mycelia
DHA dihydroartemisinin
DILI drug-induced liver injury
DOP Dendrobium officinale polysaccharide
ECM extracellular matrix
EPP Echinacea purpurea polysaccharide
FFM fucoidan and fucoxanthin mix
GLP Ganoderma lucidum polysaccharide
GLSP Ganoderma lucidum spore polysaccharide
GP garlic polysaccharide
GPX glutathione-glutathione peroxidases
GSH glutathione
HCC hepatocellular carcinoma
HDL-C high-density lipoprotein cholesterol
HIF hypoxia-inducible factor
HIF-1a hypoxia-inducible factor 1a
HSC hepatic stellate cells
LBP Lycium barbarum polysaccharide
LDL-C low-density lipoprotein cholesterol
LSP polysaccharide from Lachnum sp.
MDG-1 Ophiopogon japonicus polysaccharide
MP maca (Lepidium meyenii) polysaccharide
MP-A mussel polysaccharide α-D-glucan
MPCC modified polysaccharides from Coprinus comatus
mTOR mammalian target of rapamycin
NAFLD nonalcoholic fatty liver disease
NASH nonalcoholic steatohepatitis
NF-κB nuclear factor kappa-B
Nrf2 nuclear factor E2-related factor 2
OLP O. lanpingensis polysaccharides
PE phosphatidylethanolamine
PEBP1 PE-binding protein 1
PFP-1 Pleurotus geesteranus polysaccharide
PNP80b-2 Pinus koraiensis pine nut polysaccharide
PNPS polysaccharide from the residue of Panax notoginseng
PPPF polysaccharide from pumpkin fruit
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PUFAs polyunsaturated fatty acids
ROS reactive oxygen species
SCP Schisandra chinensis caulis polysaccharide
TAMs tumor-associated macrophages
TASP Triticum aestivum sprout-derived polysaccharide
Trx thioredoxin
TXNIP thioredoxin-interacting protein
TXNRD thioredoxin reductase
VEGFs vascular endothelial growth factors
WGHP walnut green husk polysaccharides
YZW-A polysaccharide extract from pomelo fruitlet
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