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Pemphigus foliaceus (PF) is an autoimmune blistering skin disease that occurs

sporadically across the globe and is endemic in Brazil. Keratinocyte adhesion loss

(acantholysis) is associated with high levels of anti-desmoglein 1 IgG autoantibodies, but

the role of cell death is poorly understood in PF. Current evidence disqualifies apoptosis

as the major cell death mechanism and no other process has yet been investigated. To

approach the role of variation in genes responsible for cell death pathways in pemphigus

susceptibility, we systematically investigated the frequencies of 1,167 polymorphisms

from genes encoding products of all 12 well-established cell death cascades (intrinsic

and extrinsic apoptosis, necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos,

entotic, NETotic, lysosome-dependent, autophagy-dependent, and immunogenic). By

multivariate logistic regression, we compared allelic and genotypic frequencies of 227

PF patients and 194 controls obtained by microarray hybridization. We found 10 variants

associated with PF (p < 0.005), belonging to six cell death pathways: apoptosis (TNF,

TRAF2, CD36, and PAK2), immunogenic cell death (EIF2AK3, CD47, and SIRPA),

necroptosis (TNF and TRAF2), necrosis (RAPGEF3), parthanatos (HK1), and pyroptosis

(PRKN). Five polymorphisms were associated with susceptibility: TNF rs1800630∗A (OR

= 1.9, p= 0.0003), CD36 rs4112274∗T (OR= 2.14, p = 0.0015), CD47 rs12695175∗G

(OR = 1.77, p = 0.0043), SIRPA rs6075340∗A/A (OR = 2.75, p = 0.0009), and

HK1 rs7072268∗T (OR = 1.48, p = 0.0045). Other five variants were associated with

protection: TRAF2 rs10781522∗G (OR = 0.64, p = 0.0014), PAK2 rs9325377∗A/A (OR

= 0.48, p = 0.0023), EIF2AK3 rs10167879∗T (OR = 0.48, p = 0.0007), RAPGEF3

rs10747521∗A/A (OR = 0.42, p = 0.0040), and PRKN rs9355950∗C (OR = 0.57, p

= 0.0004). Through functional annotation, we found that all associated alleles, with

the exception of PRKN rs9355950∗C, were previously associated with differential gene

expression levels in healthy individuals (mostly in skin and peripheral blood). Further

functional validation of these genetic associations may contribute to the understanding

of PF etiology and to the development of new drugs and therapeutic regimens for

the disease.
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INTRODUCTION

Pemphigus foliaceus (PF) is an autoimmune bullous disease
of the skin, characterized by the production of autoantibodies
that recognize the desmosome protein desmoglein 1 (DSG1)
(1, 2). The binding of antibodies to this cell adhesion molecule
is accompanied by acantholysis (keratinocyte detachment) and
lesions in the superficial granular layer of the epidermis. In
contrast, a different form of pemphigus called pemphigus
vulgaris (PV) is characterized by anti-desmoglein 3 antibodies,
which bind in deeper layers of the skin and cause blisters
in the skin and mucosa (3). PF occurs sporadically around
the world−0.75–5 cases/million per year (4). In Brazil, PF is
endemic and commonly known as fogo selvagem (“wild fire” in
Portuguese). The prevalence of PF in Limão Verde, located in
the Brazilian state of Mato Grosso do Sul, is of 3.04%, one of
the highest prevalences ever reported for autoimmune diseases
(5). PF pathogenesis is multifactorial, resulting from poorly
understood interactions between multiple environmental and
genetic factors (6, 7).

Cell Death in Pemphigus: An Unsolved
Issue
Despite the pathogenic relevance of IgG autoantibodies in
the acantholytic process, the exact mechanisms that lead
keratinocytes to death remain unknown (8). Apoptosis has
been suggested to play an important role in some dermatoses
with positive Nikolsky’s sign (skin detachment after slight
rubbing) as in PV and PF (9–12), either prior (10, 13–15),
or after the loss of cell adhesion (8, 16–18). As early as
1998, Gniadecki et al. reported many apoptotic keratinocytes
in acantholytic tissue and in the cohesive epidermis just under
the blisters of sporadic PF and PV lesional skin biopsies, as
judged by positive TUNEL signs (terminal deoxynucleotidyl
transferase dUTP nick end labeling) (9). Rodrigues et al. (19)
also found TUNEL-positive keratinocytes in 12/13 biopsies of
perilesional skin of endemic PF lesions. Among them, 10/13
presented keratinocytes with intense expression of proapoptotic
inducible nitric oxide synthase (iNOS) and 3/13, with rather
discrete-moderate expression of proapoptotic FAS protein. Anti-
apoptotic Bcl-2 occurred in 4/13 biopsies only, being much
more abundant in the inflammatory infiltrate, which also had
discrete-moderate expression of interleukin 1, interferon gamma,
and tumor necrosis factor alpha (TNF-α) proinflammatory
cytokines (11/13) (19). After the passive transfer of sporadic
PF-antibodies in the experimental neonatal mouse model,
keratinocytes expressed the proapoptotic Bax factor, followed
by activation of caspases (CASP) 3 and 6, and down-regulation
of the anti-apoptotic Bcl-x(L) factor. In this model, apoptotic
inhibitors abrogated the acantholytic process (14). Nevertheless,
p38MAPK signaling occurred in this same model in two phases,
and the first peak of activation coincided with acantholysis,
prior to the second peak that induced activation of CASP-3
(18). Taking into account ultra-violet (UV) light exposure as a
known risk factor for endemic PF, it is interesting that caspases-3
and -7 cleave desmoglein-1 intracellularly and that knock-down

of desmoglein-1 protects cells from UV induced apoptosis in
irradiated keratinocytes (20).

On the other hand, only few apoptotic cells were detected
in skin biopsies of endemic PF patients, whereas p63 marked
many undifferentiated cells distributed over the whole epidermis,
both in injured and non-injured skin (21). Electron microscopy
did not reveal any morphological signs of apoptosis—retraction
of pseudopods, pyknosis, karyorrhexis, and plasma membrane
blebbing—in acantholytic tissue of PV and PF patients (8, 22).
There were, as well, no signs for activation of caspases (as
cleaved CASP3 and CASP8, fractin, or nuclear poly (ADP-ribose)
polymerase—PARP) in PV and PF biopsies, nor in PV or PF IgG–
incubated healthy breast reduction skin biopsies (8). A possibility
suggested by Schmidt and Waschke (16) is that caspase signaling
adds in desmosome destabilization, but that apoptosis itself is not
responsible nor needed for acantholysis to occur.

Thus, whereas some authors state that apoptosis causes
cell death in PF (9, 19, 23), others found no clear evidence
of such event (8, 17, 18, 22). The uncertainty about how
cell death takes place in PF, as well as the scarcity of
genetic association studies on this topic, prompted the current
investigation encompassing genes of all known cell death
routes. In fact, there are several pathways orchestrating cell
death, classified following morphological, biochemical, and
functional features. In 2018, the Nomenclature Committee
on Cell Death (NCCD) proposed 12 pathways orchestrating
cell death, supported by genetic, biochemical, and functional
results: intrinsic apoptosis, extrinsic apoptosis, mitochondrial
permeability transition (MPT)-driven necrosis, necroptosis,
ferroptosis, pyroptosis, parthanatos, entotic, NETotic, lysosome-
dependent, autophagy-dependent, and immunogenic pathways
(24). All of them are classified as regulated cell death (RCD)
routes. All routes depend on the molecular machinery (causing
the activation of one or more signal transduction pathways),
which can be pharmacologically and/or genetically modulated.
RCD begins with excessive cellular stress, caused by non-
coped perturbations of the intra- and extracellular environment
(24, 25). Given the poorly understood underlying mechanisms
leading to keratinocyte death in PF, we intended to identify
genetic variants associated with PF analyzing variants from genes
whose products are known to be directly involved in RCD routes.

MATERIALS AND METHODS

Population Sample
A total of 227 PF patients and 194 unrelated controls with
no diagnosis or familial history of autoimmune illnesses
were analyzed in this study. Patients received clinical and/or
immunohistological diagnosis. Patients and controls were
recruited from 1984 to 2015 in South/Southeastern/Central-
Western Brazilian hospitals: Hospital Adventista do Pênfigo
(Campo Grande, Mato Grosso do Sul), Lar da Caridade—
Hospital do Fogo Selvagem (Uberaba, Minas Gerais), Hospital
das Clínicas—University of São Paulo (Ribeirão Preto, São
Paulo), Hospital de Clínicas—Federal University of Paraná,
Hospital de Dermatologia Sanitária São Roque, and Hospital
Santa Casa de Misericórdia (Curitiba, Paraná). All individuals
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enrolled in this study were unrelated, predominantly of European
ancestry and living in rural endemic areas. No history of other
autoimmune diseases was reported for patients, as well as no
history of any autoimmune disease for the controls. The median
age was 40.9 years for patients (minimum 6, maximum 83)
and 44.8 years for controls (minimum 11, maximum 86). In
both groups, 52% were women. Peripheral blood was collected,
from which DNA was extracted by the phenol-chloroform-
isoamyl alcohol protocol (26). Patients and controls voluntarily
agreed to participate in the study and gave their informed
consent. This study was carried out according to the Declaration
of Helsinki, with the approval from the Brazilian National
Ethics Committee (CONEP) under the protocol number CAAE
02727412.4.0000.0096 and approval number 505.988.

Selection of Candidate Genes and
Genotyping
In agreement with NCCD, we selected genes encoding proteins
involved in essential aspects of at least one of the following
cell death cascade processes: intrinsic apoptosis, extrinsic
apoptosis, mitochondrial permeability transition (MPT)-driven
necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos,
entotic, NETotic, lysosome-dependent, autophagy-dependent,
and immunogenic pathways (24). We identified the genomic
positions of each gene, considering regulatory regions of
one thousand base pairs upstream and downstream from
the transcription start and end sites, respectively, of the
longest transcript, according to the GRCh37/hg19 human
genome version (available at: http://www.lgmh.ufpr.br/data/
Supplementary_material_1_Bumiller-Bini_2019.xlsx).

Genotyping was performed using microarray hybridization
(CoreExome-24 v1.1 Illumina R©) in 194 and 227 DNA samples
from controls and endemic PF patients, respectively. A total
of 3,798 SNPs were extracted from DNA microarray data,
filtered based on genotyping quality, and on population genetics
criteria: excluding those SNPs with minor allele frequencies
<1%, with genotypic distributions deviating from those expected
by Hardy-Weinberg equilibrium in controls (p < 0.05) and/or
with high linkage disequilibrium (r2 ≥ 0.8). After filtering, a
total of 1,167 SNPs remained for subsequent analyses (Figure 1,
set available at: http://www.lgmh.ufpr.br/data/Supplementary_
material_2_Bumiller-Bini_2019.xlsx).

Association Analysis
Association analysis was carried out by binary logistic regression,
using sex and two principal components (PCA) as co-variables.
The PCA eliminates spurious associations due to possible
population stratification. The significance level was set to p <

0.005 (27). The analyses were performed using PLINK software
version 1.1.9 (28). We applied Fisher’s exact test to perform the
stratified association analysis (29), in this case, with a significance
level set to p < 0.05.

In silico Analysis
Weperformed in silico analysis to explore the genetic associations
identified in this study. Linkage disequilibriumwithin the Iberian
population (major ancestral of the Euro-Brazilian population)
was evaluated with LDlink (30). The predicted regulatory

impact of the genetic variants was verified using ENSEMBL
(31), GTEx portal (32), UCSC (https://genome.ucsc.edu/cgi-
bin/hgGateway) (33), HaploReg (https://pubs.broadinstitute.org/
mammals/haploreg/haploreg.php) (34), Innatedb (https://www.
innatedb.com) (35), and Blood eQTL (expression quantitative
trait loci) browser (36), which assemble public datasets, and
published data. GTEx portal and the Blood eQTL browser
inform whether a SNP is an expression quantitative trait loci
(eQTL). Innatedb informs whether there is a physical interaction
between proteins.

RESULTS

Association Analysis
We found 10 SNPs associated with PF (p < 0.005) located in
10 different genes participating in six RCD routes: apoptosis
(CD36, PAK2, TNF, and TRAF2), immunogenic cell death
(CD47, EIF2AK3, and SIRPA), necroptosis (TNF and TRAF2),
necrosis (RAPGEF3), parthanatos (HK1), and pyroptosis
(PRKN) (Table 1). Altogether, the less frequent alleles of five
SNPs were associated with PF susceptibility, while the less
frequent alleles from the other five SNPs, with protection.
All associated variants were located within non-protein
coding regions.

Functional Annotation in silico Analysis
To explore the potential effects of all 10 genetic variants
associated with PF, we used functional annotation available
in reference public databases. As outlined below, most of
the associated variants are associated with gene expression in
different tissues (Table 2). Nevertheless, the association of these
variants (with disease and with gene expression) may also be
explained by strong linkage disequilibrium with other causal
variants (hitch-hiking effect).

In accordance with functional annotation, TNF _rs1800630,
TRAF2_rs10781522, PAK2_rs9325377, EIF2AK3_rs10167879,
SIRPA_rs6075340, PRKN_rs9355950, and HK1_rs7072268
SNPs are located within predicted transcription factor binding
sites. On the other hand, the location of TNF_rs1800630,
TRAF2_rs10781522, PAK2_rs9325377, SIRPA_rs6075340,
CD47_rs12695175, CD36_rs4112274, HK1_rs7072268, and
PRKN_rs9355950 SNPs overlap with enhancers and/or
promoters that are important in several tissues, including
skin, T and B cells from blood (enriched in H3K27Ac) (33, 34).
Despite being located downstream of the last exon of LTA and
far from the transcription start site of TNF, TNF_rs1800630
is located in a DNase hypersensitive region bound by RNA
polymerase II subunit A, providing strong evidence for active
transcription of this region in B lymphocytes (33, 34).

Furthermore, the SIRPA protein interacts physically with
CD47, suggesting a possible gene interaction/synergistic effect
of the associated polymorphisms of both genes on disease
susceptibility (35). In fact, carriers of SIRPA_rs6075340∗A
and CD47_rs12695175∗G alleles were more frequent
among patients than controls (OR = 2.02 [95%CI =

1.08–3.81], p = 0.0202). TNF also interacts physically
with the TNF receptor TRAF2, as shown in a cervical
cancer cell line (35). Thus, an additive susceptibility
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FIGURE 1 | Representation of the distribution of all 1,167 SNPs used in this study according to their related cell death pathway(s). Traced lines were used to represent

additional shared SNPs (unions) between two pathways that were not otherwise graphically united. Genes from the intrinsic and extrinsic apoptosis pathways were

represented together. Unrepresented SNPs, shared among pathways: one between apoptosis, immunogenic, lysosome, and necrosis pathways; two between

apoptosis, immunogenic, lysosome, and pyroptosis pathways; two between necroptosis, necrosis, pyroptosis, NETotic, and immunogenic pathways; three between

pyroptosis and necroptosis; three between apoptosis, necroptosis, necrosis, and NETotic pathways; four between apoptosis, necrosis, and immunogenic pathways;

and four between apoptosis, entotic, and immunogenic pathways).

effect was evident in carriers of TNF_rs1800630∗A and
TRAF2_rs10781522∗A (OR = 4.78 [95%CI = 2.18–10.94], p <

0.0001) (Supplementary Tables 1, 2).

DISCUSSION

Although the underlyingmolecularmechanisms of RCDs overlap
considerably, our approach allowed us to suggest the possible

role of non-apoptotic RCDs and raise hypotheses to explain the
genetic associations that we observed.

TNF, TRAF2, and PAK2: Apoptosis and
Necroptosis
The genetic associations of TNF_rs1800630∗A (also known as
−863∗A, OR = 1.9, p = 0.0003) and TRAF2_rs10781522∗G
(OR = 0.64, p = 0.0014) with PF point to a specific role
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TABLE 1 | Cell death-related gene variants associated with PF.

Gene SNP MAF (%) Model CONTR CASE OR 95%CI p

Contr Case

APOPTOSIS AND NECROPTOSIS

TNF rs1800630 15.7 26.2 add 61/327 117/329 1.90 [1.34–2.70] 0.0003

6p21.33 C>a rec 7/187 14/209 1.79 [0.70–4.54] 0.2214

Promoter dom 54/140 103/120 2.24 [1.49–3.38] 0.0001

TRAF2 rs10781522 49.2 38 add 191/197 171/279 0.64 [0.48–0.84] 0.0014

9q34.3 g>A rec 47/147 34/191 0.58 [0.35–0.95] 0.0305

Intron 9 dom 144/50 137/88 0.52 [0.34–0.79] 0.0024

APOPTOSIS

PAK2 rs9325377 49.5 42 add 196/192 190/162 0.72 [0.54–0.94] 0.0173

3q29 a>G rec 55/139 36/190 0.47 [0.29–0.77] 0.0023

Intron 1 dom 141/53 154/72 0.81 [0.53–1.25] 0.3449

CD36 rs4112274 7.51 15.27 add 29/357 69/383 2.14 [1.33–3.44] 0.0015

7q21.11 C>t rec 1/192 5/221 3.92 [0.45–34.2] 0.2169

Intron 3 dom 28/165 64/162 2.23 [1.34–3.68] 0.0018

IMMUNOGENIC

EIF2AK3 rs10167879 17.6 9.9 add 67/313 43/393 0.48 [0.31–0.73] 0.0007

2p11.2 C>t rec 5/185 4/214 0.62 [0.16–2.40] 0.4940

Intron 14 dom 62/128 39/179 0.41 [0.26–0.66] 0.0002

SIRPA rs6075340 33.5 42.1 add 130/258 191/263 1.50 [1.13–2.00] 0.0055

20p13 a>G rec 17/177 47/180 2.75 [1.51–4.98] 0.0009

Intron 2 dom 113/81 144/83 1.35 [0.90–2.02] 0.1449

CD47 rs12695175 11.4 17.9 add 44/342 81/371 1.77 [1.20–2.63] 0.0043

3q13.12 T>g rec 4/189 10/216 2.23 [0.68–7.30] 0.1850

Intron 6 dom 40/153 71/155 1.95 [1.23–3.07] 0.0041

NECROSIS

RAPGEF3 rs10747521 40.1 36.7 add 155/231 165/285 0.81 [0.61–1.1] 0.1676

12q13.11 a>G rec 36/157 23/202 0.42 [0.23–0.76] 0.0040

Intron 1 dom 155/231 165/285 1.03 [0.20–0.69] 0.8837

PARTHANATOS

HK1 rs7072268 43.0 53.1 add 167/221 241/213 1.48 [1.13–1.94] 0.0045

10q22.1 t>C rec 37/157 70/157 1.57 [1.02–2.42] 0.0412

Intron 5 dom 130/64 171/56 1.87 [1.18–2.95] 0.0076

PYROPTOSIS

PRKN rs9355950 34.3 22.9 add 133/255 104/350 0.57 [0.42–0.78] 0.0004

6q26 T>c rec 25/169 11/216 0.35 [0.16–0.73] 0.00502

Intron 4 dom 108/86 93/134 0.55 [0.37–0.81] 0.0024

Logistic regression association tests were done with allele frequencies (“add”), frequency of homozygotes for the minor allele (“rec”- recessive model), and summed frequencies of

heterozygotes and homozygotes for the minor allele (“dom”—dominant model). The minor alleles in our sample are given in lowercase; they are the reference for the associations. In

bold, significant associations (p < 0.005). SNP, single nucleotide polymorphism; MAF, minor allele frequency; CONTR, controls; CASE, cases; Model, association tests; OR, odds ratio;

CI, confidence interval; TNF, tumor necrosis factor alpha; TRAF2, TNF receptor associated factor 2; PAK2, p21 (RAC1) activated kinase 2; CD36, CD36 molecule; EIF2AK3, eukaryotic

translation initiation factor 2 alpha kinase 3 (also known as PERK); SIRPA, signal regulatory protein alpha; CD47, CD47 molecule; RAPGEF3, Rap guanine nucleotide exchange factor 3

(also known as EPAC); HK1, hexokinase 1; PRKN, parkin RBR E3 ubiquitin protein ligase (also known as PARK2).

of the death receptor pathway in the disease. As the major
proinflammatory cytokine mediating apoptosis and necroptosis,
TNF binds TNF type I receptor (TNFRI), activating NF-kB
through TRADD (TNFR-associated death domain), and TRAF2
recruitment. This sequence of events culminates in cell survival
and inflammation (37, 38). In the absence of TRAF2, TNF
binding to TNFRI builds “death-inducing signaling complexes”
that can activate either necroptosis or caspase-dependent cell

death. In the latter case, this leads to the activation of CASP8
and of the apoptotic cascade (37, 39). On the other hand,
TRAF2 was recently reported to positively regulate caspase-2
activation, which initiates apoptosis and is a negative regulator of
necroptosis (40, 41). For necroptosis to ensue, caspase inactivity
or absence must prevail [thus, in the absence of TRAF2 (38)]
(42). Interestingly, although TNF_rs1800630∗A carriers present
reduced TNF expression, TRAF2_rs10781522∗G is associated
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TABLE 2 | Cell death-related gene variants associated with PF.

Variant Allele associated

with PF

eQTL effect (25, 29) Tissues

TNF_

rs1800630

A risk low expression: TNF (p = 3.71e−21) and LTA (p = 2.88e−24) (36).

high expression: DDX39B (p = 2.6e−4), CSNK2B (p = 3.14e−11),

HCP5 (p = 2.5e−3) and MICB (p = 2.0e−15) (36).

Peripheral blood.

TRAF2_

rs10781522

G prot low expression: C8G (p = 2.6e−5), AGPAT2 (p = 9.1e−4), and

CLIC3 (p = 4.79e−17) (32, 36).

high expression: TRAF2 (p = 2.73e−4), PHPT1 (p = 1.2e−6)

Skin, peripheral blood, muscle.

PAK2_

rs9325377

A prot low expression: PAK2 (p = 1.2e−6) (32).

high expression: PIGX (p = 9.7e−7 ). PIGX maps just upstream of

PAK2, on the same strand of chromosome region 3q29 (32).

Skin, spleen.

CD36_

rs4112274

T risk low expression: CD36 (p = 2.37e−29) (36). Peripheral blood.

EIF2AK3_

rs10167879

T prot low expression: AC062029.1 (p = 3.0e−4) (32)

high expression: EIF2AK3 (p = 3.5e−4), ANKRD36BP2 (p = 1.6e−6)

(32).

Skin, whole blood.

SIRPA_

rs6075340

A risk low expression: SIRPA (p = 4.1e−7) (32).

high expression: SIRPB1 (p = 6.6e−98) (32).

Esophagus, skin.

CD47_

rs12695175

G risk low expression: CD47 (p = 3.37e−4) (36).

high expression: MYH15 (p = 1.3e−8) (32).

Peripheral blood, skin.

RAPGEF3_

rs10747521

A prot low expression: RAPGEF3 (p = 2.0 e−8) (32).

high expression: PCED1B-AS1 (32).

Lung, heart.

HK1_

rs7072268

T risk high expression: HK1 (p = 2.3 e−6) (32). Tibial nerve.

PRKN_ rs9355950 is not an eQTL.

eQTL, expression quantitative trait loci; LTA, lymphotoxin alpha; DDX39B, dead box polypeptide 39 B; CSNK2B, casein kinase II beta; HCP5, HLA complex P5; MICB, major

histocompatibility complex class I-chain related gene B; PHPT1, phosphohistidine phosphatase 1; C8G, complement C8 gamma chain; AGPAT2, 1-acylglycerol-3-phosphate O-

acyltransferase 2; CLIC3, chloride intracellular channel 3; PIGX, phosphatidylinositol glycan anchor biosynthesis class X; ANKRD36BP2, ankyrin repeat domain 36B pseudogene 2;

SIRPB1, signal regulatory protein beta 1; MYH15, myosin heavy chain 15.

with higher TRAF2 gene expression in peripheral blood (36).
In contrast with TNF, the allele from TRAF2 was associated
with PF protection. Since both molecules are known to interact
physically (35), certain allelic combinations of these genes present
an additive effect toward susceptibility to the disease.

Moreover, many associations of TNF_rs1800630∗A with
diseases have been reported. Those of enhanced susceptibility
to cancer seem to indicate that reduced TNF levels increase the
chance of inappropriate cell proliferation, due to insufficient
signaling for apoptosis/necroptosis [e.g., hepatocellular
carcinoma (43), non-Hodgkin lymphoma (44, 45), gastric
cancer (46), and colon cancer (47)]. On the other hand, the
same allele was associated with progression to and severity of
infections, as for severe malaria, including cerebral malaria
(48, 49), HPV-associated oral squamous carcinoma (50),
HBV chronification (51), as well as with chronic disorders,
which may rely on insufficient immunological response to
different kinds of aggressors [steroid-induced osteonecrosis
of the femoral head (52), progression of acute pancreatitis to
systemic inflammation and multi-organ dysfunction syndrome
(53), chronic periodontitis (54), and cardiovascular heart
disease (55)].

The TNF_rs1800630∗A was associated with predisposition
to autoimmune disorders affecting the skin and mucosal
tissue, as vitiligo (56), systemic lupus erythematosus (SLE)
(57), and Crohn’s disease (58). As in these autoimmune skin
disorders, the rs1800630∗A was associated with susceptibility

to endemic PF, in the Brazilian population (OR = 1.9, p =

0.0003). Interestingly, TNF microsatellite polymorphisms were
associated with susceptibility to PF in Tunisia, where the
disease is also endemic (59). The rs1800630∗A causes decreased
TNF transcription and lower serum TNF levels (51, 60–62).
Furthermore, carriers of rs1800629∗A (also known as −308∗A)
presented higher susceptibility to pemphigus (both PV and PF)
(63). This allele is associated with TNF expression levels in whole
blood, similar as observed for rs1800630∗A. Thus, although both
occur in different haplotypes (rs1800630_rs1800629∗CA and AG,
with CG representing more than 70% of the allelic combinations
in the Iberian population), both present the same effect on
reducing gene expression and increasing PF susceptibility.

In addition, the TRAF2 PF protective allele is associated
with altered expression of at least five genes implicated in cell
survival or death (PHPT1, PTGDS, LCNL1, C8G, CLIC3). It is
also associated with the expression of one gene related to size and
inflammatory itching reaction, after mosquito bites (AGPAT2)
(64–70). The AGPAT2 association is particularly interesting,
given the epidemiological association of endemic PFwithmassive
and continued exposure to mosquito bites (71, 72).

Another PF susceptibility allele, CD36_rs4112274∗T, is
associated with decreased CD36 gene expression in blood. This
receptor is a mediator of both endoplasmic reticulum stress
and the generation of reactive oxygen species in the intrinsic
apoptosis pathway (73). Its predicted down-regulation in most
PF patients is an additional argument favoring a less prominent
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role (if any) for apoptosis in the disease. Its expression in
keratinocytes correlates with early wound healing (74). Thus,
lower expression is also predicted to increase the extent of PF
epidermal lesions.

The PAK2 rs9325377∗A/A was associated with PF protection
(OR = 0.48, p = 0.0023). The PAK2 product is activated through
proteolytic cleavage, by caspase-mediated apoptosis. Cleavage of
PAK2 regulates morphological changes in apoptotic cells and
always correlates with apoptotic cell death (75). The variant
PAK2_rs9325377∗A occurs in strong linkage disequilibrium with
the PAK2_rs6583176∗A in the Iberian population (D’ = 0.93),
and both alleles were associated with increased susceptibility
to gastric cancer (76). Thus, it is conceivable that they
are associated with apoptosis failure, through yet unknown
mechanisms. The association of the PAK2_rs9325377∗A with
higher PIGX expression further reinforces this possibility, since
PIGX knockdown may inhibit breast cancer cell growth (77).

Taken together, decreased TNF gene expression (suggested by
TNF_rs1800630∗A association) increases PF susceptibility,
whereas higher TRAF2 gene expression (suggested by
TRAF2_rs10781522∗G association) seems to protect against
the disease, as well as PAK2_rs9325377∗A/A. Moreover,
TRAF2_rs10781522∗G is associated with lower expression
of C8G in the skin, expected to decrease the production of
a complement component protecting keratinocytes against
apoptosis and necroptosis (32). Higher TNF and TRAF2 levels
are thus predicted to be protective against the disease, both
preferentially leading to cell survival and inflammation. The fact
that we did not find a clear association between any of these gene
polymorphisms and apoptosis or necroptosis is in agreement
with previous findings using electron microscopy (8, 22).

EIF2AK3, CD47, and SIRPA: Immunogenic
Cell Death
We identified genetic associations of EIF2AK3_rs10167879∗T
with PF protection, and of SIRPA_rs6075340∗A/A and
CD47_rs12695175∗G with susceptibility to PF. These genes
encode products that participate in the immunogenic activation
by CALR (calreticulin) (78), highlighting CALR as a molecule
likely associated with damage-associated molecular patterns
(DAMP) that may follow or precede the immunogenic pathway
in PF. This cascade can be activated by a relatively limited
set of stimuli, that may also include environmental factors
associated with PF susceptibility, as UVB (79), thiol and other
calcium-sequestering components (80), and components of fly
saliva (71, 72) (Figure 2).

Besides its association with PF protection,
EIF2AK3_rs10167879∗T is also associated with higher EIF2AK3
and lower EIF2AK3-DT (its antisense lncRNA) expression
(32). This is the first documented association between this
allele and any disease. The association is supported by the
fact that deregulation of EIF2AK3 (also known as PERK)
has been reported as one of the earliest pathogenic events
in PV independently of IgG. Also, EIF2AK3 is activated in
keratinocytes exposed to PV serum, as demonstrated by an
increase in its phosphorylated levels and in phosphorylation

of its target, eIF2α. Decreased EIF2AK3 expression, mediated
by small interfering RNA, reduced the effects of PV serum
on cell cycle and keratinocyte viability, two PV hallmarks
(82). In agreement with this, Cipolla et al. (83) formerly
proposed that PF IgG and/or non-IgG extracellular factors
may lead to endoplasmic reticulum (ER) stress, resulting in
C/EBP-homologous protein (CHOP) induction via EIF2AK3
(PERK), and activation of transcription factor 6 (ATF6). The
association with EIF2AK3_rs10167879∗T is puzzling, since it
would imply that high EIF2AK3 levels are protecting against PF.
Nevertheless, it may be explained in the light of its pleiotropy
and a possible effect on differential transcription of its two
poorly characterized isoforms (31). The SIRPA_rs6075340∗A
and CD47_rs12695175∗G alleles are associated with lower
expression of their respective genes (36), in addition to their
synergistic association with PF susceptibility. The interaction
between CD47 and SIRPA is capable of antagonizing the activity
of surface-exposed CALR, responsible for emitting “eat me”
signals for phagocytosis (81). The lower expression of those two
physically interacting molecules is expected to lead to excessive
internalization of cell debris and antigen presentation, increasing
PF autoantibody production (Figure 2). This hypothesis agrees
with our prior results on complement receptor polymorphisms,
which would protect against PF development by modulating
scavenging efficiency of acantholytic cell debris (7). A further
argument in favor of the importance of the immunogenic
cell death pathway in PF is the up-regulated expression of
immunogenic deadly granzyme GZMA and GZMB genes in T
lymphocytes of untreated patients with generalized lesions (84).

PRKN, HK1, and RAPGEF3: Pyroptosis,
Parthanatos and Necrosis
PRKN_rs9355950∗C was associated with PF protection (OR
= 0.57, p = 0.0004). This gene encodes the mitophagy-
regulating Parkin protein, which prevents cell death by
causing ubiquitination of mitochondrial proteins presented
by damaged mitochondria. Pyroptosis amplifies mitochondrial
damage through caspase 1-driven cleavage and inactivation of
PRKN (85). Since the associated effects of this variant on gene
expression are unknown, the importance of pyroptosis on PF
susceptibility remains elusive.

HK1_rs7072268∗A was associated with increased
susceptibility to PF (OR = 1.48, p = 0.0045) and also
with higher gene expression levels in nervous tissue (32).
Furthermore, this variant is associated with glycated hemoglobin
levels (86). It is conceivable that it may be actually associated
with enhanced poly(ADP-ribosyl)ation of hexokinase 1,
occurring through the activation of PARP [poly(ADP-ribose)
polymerase], with consequent glycolysis inhibition and induction
of parthanatos-induced cell death (87).

Finally, the RAPGEF3_rs10747521∗A/A genotype of the
necrosis pathway, associated with protection against the disease
(OR = 0.42, p = 0.004), is also associated with lower
RAPGEF3 gene expression, as well as of its neighboring gene,
SLC18A1. This protein has a role in inhibiting the p38MAPK
pathway (88), activated in PF (83). Higher PCED1B-AS1 lncRNA
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FIGURE 2 | Proposed role of the immunogenic cell death in pemphigus foliaceus. 1: Keratinocytes exposed to exogenous PF risk factors, such as mosquito saliva

(71, 72), ultraviolet irradiation (79), and thiol molecules (80), present several stress-derived peptides through HLA class I molecules. These peptides are recognized by

cytotoxic T CD8+ cells and natural killer (NK) cells, which launch the immunogenic pathway. 2: This pathway induces damage-associated molecular patterns,

including membrane exposure of CALR (81). CALR is transported from the endoplasmic reticulum to the outer cell membrane (81), a process mediated by EIF2AK3

(24). Calreticulin then interacts with SIRPA on the surface of dendritic cells, giving it a signal known as “eat me,” responsible for stimulating phagocytosis (81). Relaying

the opposite signal is CD47, an outer surface membrane protein that also interacts with SIRPA and antagonizes the activity of CALR, inhibiting phagocytosis (81). We

hypothesize that in PF the “eat me” signals prevail over the “don’t eat me” signals, increasing the phagocytosis of keratinocyte debris by dendritic cells. 3: Dendritic

cells then present keratinocyte peptides, as those derived from desmoglein 1, to T helper cells. 4: T lymphocytes stimulate auto-antibody production by B

lymphocytes. 5: The immunogenic cell death process initiated by exogenous stimuli also activates an adaptive immune response, which includes recruitment, and

activation of both cytotoxic T lymphocytes and natural killer cells.

expression is also associated with the same variant, predicted to
enhance monocyte apoptosis and reduce autophagy (89). The
reasons subjacent to this association await the results of future
functional studies.

CONCLUSION

For the first time, SNPs located within genes involved in all
known cell death cascades were systematically investigated in a
single disease. The genetic association profile with TNF, TRAF2,
CD36, and PAK2 variants favors cell survival and inflammation,
instead of apoptosis/necroptosis, to explain resistance against
the disease. On the other hand, susceptibility is conferred
by variants of CD47 and SIRPA of the immunogenic cell
death pathway, proposed to lead to excessive internalization of
cell debris, and antigen presentation, which may increase PF
autoantibody production. The importance of other pathways
as pyroptosis, parthanatos, and necrosis, represented by one
association each in our setting, cannot be disclosed and shall be

further investigated. Functional validation of these associations,
especially of genes encoding common isoforms, as EIF2AK3,
will provide a better understanding of PF pathogenesis and
contribute to the development of new drugs and to therapeutic
improvement for the disease.
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