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Abstract

Consumer spending on organic food products has grown rapidly. Some claim that organics

have ecological, equity, and health advantages over conventional food and therefore should

be subsidized. Here we explore the distributive impacts of an organic fruit subsidy that

reduces the retail price of organic fruit in the US by 10 percent. We estimate the impact of

the subsidy on organic fruit demand in a representative poor, middle income, and rich US

household using three analytical methods; including two econometric and one machine

learning. We do not find strong evidence of regressive redistribution due to our simulated

organic fruit subsidy; the poor household’s relative reaction to the subsidy is not much differ-

ent than the reaction at the other two households. However, the infra-marginal savings from

the subsidy tend to be larger in richer households.

Introduction

One could argue that organic food production is a Clean Technology (CT) that deserves subsi-

dization. CT produces a good with fewer environmental and human health impacts than a

similar good produced by a more mature but ‘dirtier’ technology [1]. However, the goods pro-

duced by a CT have higher average production costs than the very similar goods produced by

the ‘dirtier’ technology [1]. Despite incentivizing industry to incur higher-than-necessary pro-

duction costs, subsidization of CT can make society better off if its use incidentally generates

benefits that are greater than additional costs (e.g., [2]). Not only can subsidization of a CT

generate immediate social welfare if the total subsidy is less than the external benefit created by

use of the CT, but subsidization of the CT’s use accelerates the decline in the clean technology’s

average cost of production via learning-by-doing (e.g., [3–4]) and the creation of economies of

scale (e.g., [5]), promising even more welfare in the future.

Like other CT, organic agriculture produces goods similar to goods produced by ‘dirtier’

technology (conventional or “industrial” agriculture), but operates at a higher average cost

([6–9], S1 Supporting information) and, in many cases, generates greater uncertainty in pro-

ducer returns [7,10–13]. However, like the impact of adopting other CT, organic systems can

generate several incidental social, human health, and environmental benefits relative to pro-

duction and consumption with the conventional technology. For example, studies have found
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that landscapes with more organic farms also have more equitable and vibrant local economies

[14]. Organic farms in the US tend to be smaller and less capitalized, and therefore are a coun-

tervailing force against the overall trend of farm consolidation across the rural US. In 2014,

12,595 farms that covered 3,642,933 acres were certified organic, meaning an average farm size

of 289 acres. In contrast, there were 2,085,000 farms of all types in the US in 2014, with an aver-

age size of 438 acres [15]. Further, the limited use of pesticides in organic farming has been

found to significantly reduces illnesses and injuries among agricultural workers relative to con-

ventional farming practices [16].

Some of the other human health attributed to organic consumption and organic production

may or may not exist. For example, the organic process is perceived by many to produce food

that is more nutritious and less likely to expose consumers to higher levels of dangerous chem-

icals relative to conventionally produced analogs. Whether these claims are true or not is hotly

contested [17–26]. Regardless of the actual gains to private health from consuming organic

foods, the perception of such gains mean that organic food persists as a stated preference for

many households [16,27–28]. However, organic food price premiums mean these investments

in (perceived) private health are less available to the households with limited food budgets

[29]. Therefore, subsidizing the production or consumption of organic food would, theoreti-

cally, give poorer households greater capacity to access (perceived) health benefits.

Likewise, a positive environmental impact from organic production may be more perceived

than real. On the positive side of the environmental impact ledger, organic production tends

to have lower irrigation requirements, leads to less soil carbon loss [30], uses less energy [31–

32], and supports more biodiversity [33–34] than conventional production. On the negative

side of the environmental impact ledger, organic production’s reliance on manure for nitrogen

instead of synthetic fertilizers means lower yields [32] and lower plant uptake of nitrogen rela-

tive to conventional farming (synthetic fertilizers are designed to make their nitrogen available

when needed by the plant but manure is not; see [35]). Therefore, as demand for organics

increase, landscapes dominated by organic production experience 1) greater rates of land con-

version, and therefore, greater losses in the ecosystem services produced by less-intensively

used land, to compensate for lower organic yields and 2) greater eutrophication and acidifica-

tion potential relative to landscapes dominated by conventional production [32]. A recent

review of the organic production literature found that organic production’s indirect land use

impact is so severe that it turns a process that is less polluting than conventional farming on a

per unit of land basis into a more polluting process on a per unit of output basis [36]. There-

fore, while popular opinion holds that organic production is better for the environment than

conventional production [37–38], whether the adoption of organic farming generates net envi-

ronmental benefit is an open question.

The real and perceived external benefits created by organic food production and consump-

tion has led the European Union to subsidize organic food production. Dimitri and Oberholt-

zer [39] stress the economic efficiency gains that European policy-makers believe the policy

induces:

“European governments support organic agriculture through green payments. . .for convert-

ing to and continuing organic farming. The economic rationale for these subsidies is that

organic production provides benefits that accrue to society and that farmers lack incentives

to consider social benefits when making production decisions. In such cases, payments can

more closely align each farmer’s private costs and benefits with societal costs and benefits.”

While previous US farm bills have provided some one-time subsidies to US farmers switch-

ing from conventional to organic farming [11], this external support has been small relative to
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European support for organic production. Therefore, the American Public Health Association,

among others, has advocated adding an European-style green payment policy to the US farm

bill [40] to better align US farmer’s private costs and benefits with societal costs and (per-

ceived) benefits.

While the drive for an organic subsidy in the US seems to be largely motivated by economic

efficiency concerns, in this paper we consider how the subsidy’s consumer benefits would be

distributed across the US household income spectrum, about which there is little current evi-

dence. CT subsidization policies tend to regressively re-distribute consumer welfare [41–45].

Therefore, assessing whether organic production subsidization would regressively redistribute

US consumer welfare is highly relevant to organic food policy discussions, especially those that

concern subsidization.

Richer households could benefit more from organic food subsidization if poorer house-

holds have less access to organic produce [46], if poorer households have relatively weaker

demand for organic food [47], poorer households feel they cannot risk their limited food bud-

get on perishable goods despite a price reduction [48], poorer households are less aware of

shrinking organic price premiums caused by subsidization [29], or the subsidy is paid for by

taxes that disproportionally affect the poor.

Here we explore the distributive impacts of an organic food subsidy—whether it is a pro-

duction or consumption subsidy—that reduces the retail prices of organic fruit in the US by 10

percent from their 2011–2013 levels. First, we estimate the demand for organic fruit across US

households stratified by annual income. Second, we use these estimated models to predict the

impact of the subsidy on representative households’ 1) inframarginal gains from organic fruit

consumption and 2) the change in organic fruit consumption. If the relatively affluent experi-

ence greater inframarginal gains and react more strongly to the lower organic food prices

created by subsidization than less well-off households then the subsidy program would re-

distribute even more welfare to the affluent. We focus on organic fruit because 1) it was widely

available in all Americans markets in 2011–2013, our analytical timeframe, [49] and 2) organic

produce, especially fruit, is the most popular organic food type [50].

A priori we suspected a broad subsidy of US organic fruit would primarily re-distribute sur-

plus to wealthier US households. Previous research has found that urban households with

more educated, older and married heads of house with at least one child at home, and higher
incomes are more likely to buy organic produce, all else equal [27–28,51–56]. Therefore, if

broad organic fruit subsidization were to reinforce these trends then subsidy-related costs

could be incurred by many taxpayers to primarily improve the welfare of more educated and

wealthier US households. Alternative impacts include organic fruit subsidies generating an

equal bump in organic fruit consumption across US household types or, if the marginal utility

from organic food consumption declines quickly, generating a relatively larger bump in

organic fruit consumption for those with more modest means.

Materials and methods

Data

Our study is based on a sample of US household organic and conventional fruit purchases

from 2011 through 2013. The data comes from the Nielsen Corporation’s Consumer Panel

Data. Each year Nielsen recruits approximately 60,000 US households to record each purchase,

food-related or not, they make over the course of the year. Sampled household purchase

data, as well as the related household demographic information, can be projected to market,

regional, and national levels using projection factors assigned to each household [57–58].

The distributional impact of a green payment policy for organic fruit
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Using this dataset we generate the following data for each sampled household by month

(household-month) from 2011 through 2013: 1) the ounces of type × variety fruit i that house-

hold k bought in month m, given by oikm, where type is either organic or conventional and

variety refers to apple, orange, strawberry, etc.; 2) household k’s expenditure on type × variety

fruit i in month m, given by eikm; 3) the average price of type × variety fruit i that household k
faced in month m, given by pikm (in some cases we had to impute price; see S2 Supporting

information); 4) several vectors of household k’s characteristics in month m, given by Xkm and

Ckm; and 5) household k’s status as a low (130% or less of their federal poverty line (FPL)),

middle (130% to 500% of their FPL), or high (greater than 500% of their FPL) income house-

hold in month m (S3 Supporting information). The FPL varies by year and family size. For

example, in 2011 the FPL was $22,350 for a family of four and $26,170 for a family of five.

However, in 2013 the FPL was $23,550 for a family of four and $27,570 for a family of five. We

coded households at 130% of their FPL or lower as low income because they are eligible for the

Supplemental Nutrition Assistance Program (https://www.cbpp.org/research/a-quick-guide-

to-snap-eligibility-and-benefits). We coded households at 500% or greater of their FPL as high

income because many federal and nonprofit assistance programs (e.g., AIDS Drug Assistance

Program, the Leukemia and Lymphoma Society’s financial assistance programs) are not avail-

able to households in this category while it is for all other households.

The vector Xkm contains the household variables that previous research has flagged as

affecting propensity to buy and overall consumption of organic produce, including the house-

hold’s monthly real income (December, 2013 $), household size, whether or not the household

contains one or more children under 18, whether at least one head of household has a college

degree, whether the household is headed by a married couple, and the race of the head of

household. The vector Ckm indicates m’s season × year (e.g., winter 2011, spring 2011, etc.),

whether or not household k lives in a metro or non-metro county in month m, and which

Nielsen Scantrack market household k lives in during month m. For estimation purposes, we

also define ckm�Ckm where ckm only includes the season × year interaction dummy variables.

All values in Xkm and Ckm stay fixed within a calendar year. See Table 1 for a summary of some

of these data across sampled households.

We include the market and metro classification variables in ckm and Ckm to control for

coarse differences in organic fruit availability across the US landscape [59]. We do not have

the data to control for organic fruit availability at a fine scale. For example, grocery stores in

higher income areas have been shown to offer healthier items [47] and more organic options

[46] than those in poorer areas. Obviously, these fine-grain patterns of organic fruit availability

could affect demand for organic fruit. However, some researchers have downplayed the

importance of healthy food supply in a household’s neighborhood on determining demand

for produce. For example, Allcott et al. [47] found that the entrance of a supermarket with

healthy food options into a “food desert” does little to affect the food choices of neighborhood

Table 1. Summary of dataset by household income class and year. This table only includes data on fruit purchased with a Universal Product Code (UPC). Standard

errors are in parentheses. Dollar values are in December, 2013 dollars. Data are not projected.

Household Income Class Poor Middle Rich

Year 2011 2012 2013 2011 2012 2013 2011 2012 2013

Household-months (hhm) 80052 78072 62904 418260 405048 357240 246792 243336 228012

Mean organic expenditures / hhm 0.06 (0.003) 0.07 (0.004) 0.10 (0.005) 0.09 (0.002) 0.10 (0.002) 0.14 (0.002) 0.17 (0.003) 0.20 (0.003) 0.28 (0.004)

Mean conventional expenditures / hhm 2.74 (0.02) 2.85 (0.02) 3.61 (0.03) 4.03 (0.01) 4.16 (0.01) 4.83 (0.01) 5.52 (0.02) 5.71 (0.02) 6.46 (0.02)

Mean household size 2.44 (0.006) 2.44 (0.006) 2.49 (0.006) 2.39 (0.002) 2.41 (0.002) 2.43 (.002) 2.26 (0.002) 2.29 (0.002) 2.31 (0.002)

Fraction of urban hhm 0.747 0.761 0.774 0.813 0.814 0.830 0.901 0.897 0.912

https://doi.org/10.1371/journal.pone.0211199.t001
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residents. The implication is that households will travel where necessary to within a larger

market area to satisfy their preferences.

We only used fruit purchases, organic and conventional, recorded in the 2011–2013 Con-

sumer Panel datasets that involved the scanning of a Universal Product Code (UPC) at a store.

A fruit purchase was coded as organic if its UPC or item description indicated the item had

the US Department of Agriculture (USDA) organic label. Therefore, if the description of a pur-

chased product included a claim of organic but the item did not have the USDA organic label

it was coded as conventional. In some cases, fruit purchases made with a UPC were recorded

on a per item basis rather than a weight basis (e.g., two apples bought for $2 instead of 30

ounces bought for $2). Because our subsidy simulations manipulate organic fruit on a per

weight basis (e.g., dollars per ounce) we converted all item-based expenditures and prices to

ounces of expenditures and per ounce prices (see S1 Table for assumed fruit weights).

As of 2014, approximately 92 percent of organic food was sold via stores [60] and 40 percent

of all fresh produce bought at US stores is done so with a UPC [47]. Therefore, given that

UPC purchases represent a significant portion of all fruit purchases, our analysis of expected

changes in UPC-coded fruit purchases due to a subsidy can plausibly be extended to cover all

purchased fruit.

Finally, our dataset only includes 10 type × variety fruit combinations, including two ‘other’

categories. Specifically, i indexes organic varieties of apples, blueberries, oranges, strawberries,

and “all other fruit” and conventional varieties of apples, blueberries, oranges, and strawber-

ries, and “all other fruit” (S4 Supporting information). We focus on organic apples, blueber-

ries, oranges, and strawberries because, based on expenditures, they are 4 of the 6 most

popular organic fruit varieties in the US (S2 Table).

Trends in the organic and conventional fruit expenditure and price data

during 2011–2013

Using each household’s projection factors we found that total US household expenditures on

organic fruits with a PUC increased from $144.82 million in 2011 to $211.53 million in 2013

(December, 2013 $) or 46.1% (all statistics and trends discussed in this section only refer to

fruit, both organic and conventional, purchased with UPCs). Over the same time period, total

US household expenditures on conventional fruits increased by 6.9% (Table 2). Overall, poor

US households increased their expenditures on organic fruits between 2011 and 2013 by

68.7%, compared to the middle and high-income class’ 34.5% and 51.6% respective increases.

However, on a per household basis, the high-income bracket not only bought more organic

Table 2. Real US expenditures on fruit by household income class and year (December, 2013 $). This table only includes data on fruit purchased with a Universal

Product Code (UPC). Household projection factors are used to extrapolate panel totals to national totals. See S3 Supporting information for details on income

classification.

Household Income Class 2011 2012 2013

Organic Conventional Organic Conventional Organic Conventional

Total Expenditures (Millions of $) Low 9.97 571.76 12.38 636.23 16.82 692.64

Middle 57.16 2392.18 65.68 2621.65 76.88 2633.01

High 77.70 2504.07 89.93 2375.93 117.83 2519.55

All 144.82 5468.00 167.99 5633.82 211.53 5845.20

Expenditures / Household Low 0.65 37.06 0.77 39.67 0.98 40.32

Middle 1.16 48.59 1.27 50.70 1.53 52.40

High 2.08 66.99 2.66 70.16 3.38 72.26

All 1.42 53.59 1.65 55.45 2.07 57.14

https://doi.org/10.1371/journal.pone.0211199.t002
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fruit than typical low income and middle-class households, they also experienced the greatest

growth in organic fruit purchases between 2011 and 2013 (Table 2).

The 2011 to 2013 growth in US household-level organic fruit purchases occurred at both

the extensive and intensive margins. Growth on the extensive margin occurred across all three

income brackets (Table 3). Among all US households, the number of households that only

bought organic fruit in a given year and the number of households that bought some organic

fruit in a given year increased by 80.0% and 35.7%, respectively, between 2011 and 2013. Con-

versely, over this same time period, the number of US households that only purchased conven-

tional fruit fell 4.5%. The growth in “organic fruit-only” or “both varieties of fruit” households

between 2011 and 2013 was greatest in the middle- income bracket (Table 3). As to the inten-

sive margin, of the US households that were represented in the 2011 and the 2013 Consumer

Panels, their total expenditures on organic fruit was 47.1% higher in 2013 than in 2011.

The spatial concentration of organic fruit purchases made between 2011 and 2013 was

more intense than that of conventional fruit purchases. Using household projection factors, we

found that consumers in the six (eleven) of the 52 Nielsen Scantrack markets that spent the

most on organic fruit were responsible for a third (a half) of all organic fruit purchases (Fig 1).

Conversely, households in the top eight (fourteen) markets for conventional fruit purchases

made during the 2011 to 2013 period were responsible for a third (a half) of all conventional

fruit purchases.

The pattern of 2011–2013 organic fruit purchases across households ordered by income

within Scantrack markets was also often skewed. In Fig 2 and S1 Fig we display the cumulative

proportion of a market’s expenditures on organic fruit from 2011–2013 against cumulative

household income in each market. The figures also indicate the approximate break point

between the middle-class and rich income categories along a market’s household income spec-

trum. We conduct this Lorenz Curve analyses for 2-person households (the most frequent

household size type) (Fig 2) and for 3-person households (the most frequent household size

that typically includes a child) (S1 Fig). In both 2-person and 3-person households, dispropor-

tionate gains in organic expenditures within a market, if they took place at all, generally took

place somewhere in the middle or rich portion of the market’s income distribution. (In com-

parison, in almost every market, the poor and middle-class spend disproportionally more of

their income on conventional fruit relative to richer households; see S2 and S3 Figs) There are

some exceptions to this general rule. For example, poorer two-person households in Detroit

and Nashville and poorer three-person households in Boston, Los Angeles, and Seattle pur-

chased more than their fair share of organic fruit. Further, some markets had remarkably even

distributions of organic fruit consumption across their income spectrums. This trend was

especially evident in two-person households. Examples of markets with this trend include Bos-

ton, Columbus, Denver, Houston, Seattle, Orlando, and Phoenix.

Table 3. Number of US households that bought organic, conventional fruit, or both in a calendar year by household income class and year (Millions of HHs). This

table only includes data on fruit purchased with a Universal Product Code (UPC). Projection factors are used to extrapolate panel level results to national estimates. See S3

Supporting information for details on income classification.

2011 2012 2013

Household Income Class Organic Only Conventional Only Both Organic Only Conventional Only Both Organic Only Conventional Only Both

Low 0.02 14.34 1.06 0.00 14.84 1.19 0.04 15.48 1.65

Middle 0.06 44.39 4.78 0.10 45.84 5.76 0.15 43.35 6.75

High 0.06 31.52 5.79 0.06 27.51 6.30 0.08 27.39 7.40

All US 0.15 90.25 11.64 0.16 88.20 13.25 0.27 86.22 15.80

https://doi.org/10.1371/journal.pone.0211199.t003
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Finally, we present two summaries of 2011–2013 organic fruit prices. At the national level,

the annual average price series for each organic fruit is either monotonically increasing or does

not display a trend across the years 2011 to 2013 (S3 Table). The trend in regional organic

strawberry prices is uniform: in all regions the average annual organic strawberry price fell

between 2011 and 2012 but then increased between 2012 and 2013. The other three organic

fruits do not display such uniformity in regional price trends.

In Fig 3 we give the national-level 5th percentile, mean, and 95th percentile organic to con-

ventional fruit price ratios by month during the 2011 to 2013 period for apples, blueberries,

oranges, and strawberries. The apple, orange, and strawberry price ratio trends are in line with

Hallam’s [61] earlier finding that organic price premiums are 20 to 30% in OECD countries.

USDA-ERS [62] also analyzed prices for 18 fruits with 2005 data and found that the organic

premium was less than 30% for most items. In our data blueberry price ratios were the anom-

aly to these trends as its price premium exceeded 100% in the summer months. This figure

also highlights the strong seasonal trend in fruit prices; a cycle that is hidden when we averaged

fruit prices across months (S3 Table).

Estimating household demand for organic fruit by household income class

To simulate the distributional impacts of an organic fruit subsidy we first had to estimate

monthly household demand for organic fruit by household income class. We estimate these

demand functions with three different methods. Each method complements each other as

each method has unique statistical properties or assumes unique behavioral constraints. There-

fore, the range in expected household monthly organic fruit consumption for each income

Fig 1. Conventional (red or gray bars) and organic (blue or dark bars) fruit expenditures by Nielsen Scantrack

market, 2011 through 2013 (December, 2013 $). The y-axis is ordered in descending order by level of expenditures

on organic fruit. This figure only includes fruit purchased with a Universal Product Code (UPC). All household

expenditures in year t are inflated by households’ year t projection factor to arrive at market totals. A household’s year t
projection factor indicates how many other households in that market the household in question represents in year t.

https://doi.org/10.1371/journal.pone.0211199.g001
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class we derive is robust to various assumptions. Similar to Alcott et al. [47], we do not weight

households by their projection factors when we estimate models of monthly household organic

fruit consumption.

First estimation method: Separate equations. In our first estimation method we econo-

metrically parameterize monthly conditional demand (positive) and unconditional demand

(positive or zero), measured in ounces, for each fruit type × variety i and household income

class z combination separately (z indexes the three household income classes we model, low,

middle, and high). Therefore, in this first estimation method we do not assume that fruit con-

sumption choices are made jointly nor do we impose any behavioral restrictions on household

purchasing behavior.

The first estimation method’s unconditional expectation for ounces of fruit type × variety i
bought by household-month km 2 z is given by,

E½oikm� ¼ Pðeikm > 0ÞE½oikmjeikm > 0� þ Pðeikm ¼ 0Þ0 ð1Þ

where eikm> 0 means household-month km 2 z purchased a positive amount of i. The condi-

tional demand term E[oikm | eikm> 0], representing expected ounces of i purchased by house-

hold-month km 2 z given they buy a positive amount, is represented by the equation,

Xkmbi þ ckmsi þPkmyi þ gilikmðXkmdi þCkmmi þPkmoiÞ ð2Þ

where Pkm is the set of 10 organic and conventional fruit prices household k faced in month m,

λikm(Xkmδi + Ckmμi + Pkmωi) is a Heckman-style correction term, and all other Greek letters

represent model coefficients (the variables Xkm, Ckm and ckm variables are explained at the

Fig 2. Lorenz curves of organic fruit expenditures across two-person households by Nielsen Scantrack, 2011

through 2013 (December, 2013 $). The dark line in each plot is the actual cumulative household income-household

expenditure curve and the lighter line is the 45-degree line. The dashed vertical lines indicate the approximate break

point between the middle-class and rich income categories along a market’s annual household income spectrum on the

x-axis. Not included on the figure are the breakpoints between a market’s poor and middle-class households, which

occur somewhere between 0.6 and 4.5 percent of cumulative income. All household expenditures in year t are inflated by

households’ year t projection factor to arrive at market totals. This figure only includes fruit purchased with a Universal

Product Code (UPC).

https://doi.org/10.1371/journal.pone.0211199.g002
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beginning of the “Data” section). We include a Heckman-style correction in (2) because this

subset of purchasing households may be a selected sample. The Heckman-style correction con-

trols for the propensity of km 2 z to purchase a positive amount of i.
Assuming the errors in the regression model designed to parameterize (1) are normally dis-

tributed, then Eq (1) is estimated with,

E½oikm� ¼ Pðeikm > 0ÞE½oikmjeikm > 0� þ Pðeikm ¼ 0Þ0 ð3Þ

¼ FðXkmdi þ Ckmmi þ PkmoiÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Pðeikm>0Þ

Xkmbi þ ckmsi þPkmyi þ gi
�ðXkmdi þCkmmi þPkmoiÞ

FðXkmdi þCkmmi þPkmoiÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
likm

2

6
6
6
4

3

7
7
7
5

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
E½oikmjeikm>0�

ð4Þ

Fig 3. 5th percentile, mean, and 95th percentile organic to conventional price ratios each month during the 2011–2013 period for apples, blueberries, oranges,

and strawberries. Prices depicted in this graph are monthly national averages that are not weighted by sampled household projection factors. Hallam [61] found

organic price premiums of 20 to 30% in OECD countries in the early 2000s. USDA-ERS [62] also analyzed prices for 18 fruits with 2005 data and found that the

organic premium was less than 30% for most items. Blueberries were the anomaly; its price premium exceeded 100%.

https://doi.org/10.1371/journal.pone.0211199.g003
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We estimate (3)-(4) in two stages. First, we use a probit over all household-month km 2 z to

parameterize P(eikm> 0). Then we use ordinary least squares (OLS) over household-month

km 2 z where eikm> 0 to estimate E[oikm | eikm> 0].

The predicted unconditional monthly ounces of i consumed by the representative km2z,
given by ôu1

iz ðXkm; ckm;Ckm;PkmÞ, is found by evaluating estimated,

FðXkmd̂ i þ Ckmm̂i þ Pkmô iÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
P̂ðeikm>0Þ

Xkmb̂ i þ ckmŝ i þ Pkmŷ i þ ĝ i
�ðXkmd̂ i þ Ckmm̂i þ Pkmô iÞ

FðXkmd̂ i þ Ckmm̂i þ Pkmô iÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
l̂ ikm

2

6
6
6
6
4

3

7
7
7
7
5

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Ê ½oikmjeikm>0�

ð5Þ

at mean Xkm, ckm, Ckm, and Pkm across all household-months km 2 z (S4 Table). The ‘1’ in ôu1
iz

indicates the first estimation method. The predicted conditional monthly ounces of i con-

sumed by the representative km2z where eikm> 0, given by ôc1iz ðXkm; ckm;Ckm;Pkm; l̂ ikmÞ, is

found by evaluating estimated Ê½oikmjeikm > 0� at mean Xkm, ckm, Ckm, and Pkm for household-

months km 2 z where eikm> 0 (S5 Table). To see the estimated forms of ôc1iz and ôu1
iz , including

estimated δi, μi, ωi, βi, σi and ϕi, refer to the instructions for running the relevant Stata.do files

in S5 Supporting information.

Second estimation method: Linquad. In the first econometric approach we assumed that

expenditures on fruit type × variety i was exogenous to other fruit purchases and household

budget. However, this many not be the case. Instead, consumers may allocate a portion of

their income over a joint purchase of several fruit types and varieties. If this latter narrative bet-

ter represents actual consumer behavior then we should estimate fruit purchases with a

demand system where all fruit expenditures are determined jointly. In this case we adopted the

LinQuad demand system [63–68]. This system models demand with a well-defined expendi-

ture function and imposes several consumer theory restrictions, including homogeneity in

prices and Slutsky substitution matrix symmetry. We selected LinQuad over other demand

system estimation methods because LinQuad does not require the modeler to have household

expenditure shares across all categories of consumables [69–70].

Under this method the unconditional and conditional expectations for ounces of i bought

by household-month km 2 z is given, respectively, by,

E½oikm� ¼ FðXkmd̂ i þCkmm̂i þPkmôiÞf ðXkmbi; ckmσi;Pkmθi; skmÞþ

gi�ðXkmd̂ i þCkmm̂i þPkmô iÞ
ð6Þ

and

E½oikmjeikm > 0� ¼ f ðXkmbi; ckmσi;Pkmθi; skmÞ þ gil̂ ikm ð7Þ

where l̂ ikm, �ðXkmd̂ i þ Ckmm̂ i þ PkmôiÞ, and FðXkmd̂ i þ Ckmm̂i þ Pkmô iÞ are the same as the

estimated functions found in (5). However, the function f(Xkmβi, ckmσi, Pkmθi, skm) in Eqs (6)

and (7) [71] is not found in the first estimation method. This function explains a households’

monthly consumption of ounces of i as a function of a household’s characteristics, fruit prices

faces, and the household’s budget constraint,

oikm ¼ ai þ Xkmbi þ ckmsi þ Pkmyiþ

c½skm � Pkma � XkmbP
0

km � ckmsP
0

km � 0:5PkmyP
0

km�
ð8Þ

where skm refers to household k’s income in month m (skm is a component of Xkm but is
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highlighted with its own symbol due to its importance), and the bracket of Eq (8) is km’s bud-

get constraint. The constraint in (8) limits expenditure on i by km 2 z to be less than or equal

to its monthly income skm. Following the LinQuad method, we use a seemingly unrelated

regression (SUR) approach to estimate f(Xkmβi, ckmσi, Pkmθi)’s parameters β, σ, α, θ, and ψ
across all i jointly (less organic-other and conventional-other) using all household-months

km 2 z with imposed symmetry in the price coefficients and homogeneity in prices and

income (we allow for correlation in the regression errors across equations). Notice the other

difference between the LinQuad method and the separate equation method described above:

with the LinQuad method E[oikm | eikm> 0] is estimated with all km 2 z, not just those where

eikm> 0.

The predicted unconditional monthly ounces of i consumed by a representative km2z,
given by ôu2

iz ðXkm; ckm;Ckm;Pkm; skmÞ, is found by evaluating the estimated (6) at mean Xkm, ckm,

Ckm, and Pkm across all household-months km 2 z (S4 Table). The ‘2’ in ôu2
iz indicates the sec-

ond estimation method. The predicted conditional monthly ounces of i consumed by a repre-

sentative km2z, given by ôc2iz ðXkm; ckm;PkmÞ, is found by evaluating the estimated (8) at mean

Xkm, ckm, Ckm, and Pkm for km 2 z where eikm> 0 (S5 Table). To see the estimated forms of ôu2
iz

and ôc2iz , including estimated β, σ, α, θ, and ψ, refer to the instructions for running the relevant

Stata.do files in S5 Supporting information.

Third estimation method: LASSO. For the third demand estimation method we use the

ML technique known as LASSO (least absolute shrinkage and selection operator). Unlike the

econometric techniques, LASSO is not based on a data generating theory. Instead the “data”

determines the final set of predictors (the universe of possible explanatory variables is the only

place for economic intuition in these methods).

Economists have rarely used ML techniques like LASSO because they generate ‘agnostic’

predictive models rather than models of inference that allow for the testing of economic the-

ory. For example, economists assume prices explain demand for a product and therefore

include prices in the product’s demand models. In contrast, the LASSO technique may find

that some (or even all) prices are not particularly predictive of observed demand and therefore

drop these prices from the final predictive heuristic in order to minimize mean squared pre-

diction error (the objective of LASSO estimation). However, recall the point of this research is

to predict as accurately as possible how an organic food subsidy would play out across house-

hold income brackets in the US. Therefore, using a predictive algorithm that might ignore

basic economic intuition is consistent with our research motives (see [72–73] for other

examples of counterfactual analysis with ML techniques). Further, if the two econometric esti-

mation methods described above mis-specify the data generating process or behavioral con-

straints across consumers of organic fruit then the LASSO demand estimates could be the

most accurate depiction of household demand for organic fruit.

Like the first estimation method, we use LASSO to separately predict unconditional and

conditional demand for each fruit type × variety i in income group z. Also like the first esti-

mation method, we estimate the LASSO-conditional demand function only using observa-

tions where eikm> 0 (the second estimation method is a system where both conditional and

unconditional demand is estimated over all observations). However, unlike the first two esti-

mation methods, we did not predict representative household monthly demand for i at the

mean regressor values with our LASSO model. Instead, with the LASSO method we predicted

representative unconditional (conditional) household-month demand for i by predicting

quantity demanded for each km2z (each km2z where eikm> 0) and then taking the mean of

the vector of predicted quantities (the mean of the predictions rather than the prediction

over means).
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In the first step of LASSO estimation we find the model coefficients that best explain

whether or not a household-month km2z purchased i. This is done by maximizing the log like-

lihood function of the linear logistic model,

maxπi
1

Nz
½
XNz

km¼1
fIðeikm ¼ 0ÞlogrðWkmÞ þ Iðeikm > 0Þlogð1 � rðWkmÞÞg � mi

Xv

j¼1
jpijj� ð9Þ

where Nz is the set of all km2z, I(eikm = 0) indicates a km2z observation where i was not pur-

chased, I(eikm> 0) indicates a km2z observation where i was purchased, Wkm ¼ ½X
0

kmC
0

kmPkm�

is a vector of v standardized candidate predictors for the binary consumption of i,
r Wkmð Þ ¼ 1

1þexp ð� WkmpiÞ
is the probability that i is not purchased by km2z, the shrinkage pen-

alty
Pv

j ¼ 1
jpijj is the sum of independent variable coefficients for purchases of i by km2z, and

μi is the tuning parameter that adjusts the severity of the shrinkage penalty. The shrinkage pen-

alty in Eq (9) is a kinked function of πi. Therefore, the LASSO tends to set some model coeffi-

cients to zero.

The primes on Xkm and Ckm in the Eq (9)’s vector Wkm indicate that these household-

month variable vectors are different than the Xkm and Ckm variable vectors used with estima-

tion methods 1 and 2 in two ways. First, the Xkm and Ckm vectors used in estimation methods

1 and 2 are comprised of a set of author-selected household-month and market variables

found in the Consumer Panel dataset. In contrast, X0km and C
0

km include all of the household-

month variables available from the Consumer Panel dataset. Second, the household-month

variables in Xkm and Ckm are simplified representations of the more complex raw data found

in the Consumer Panel dataset. In X0km and C
0

km we use the more complex raw data. For exam-

ple, in the Consumer Panel dataset a household-month is placed into one of nine categories

regarding the number and mix of children in the household. In Xkm this variable was

reduced to a binary variable that indicated whether household k had one or more children in

month m or not. In X0km all nine children categories are potential predictors. Further, in the

Ckm vector used in estimation methods 1 and 2 the rural-urban continuum code (RUCC)

categories are reduced to a dummy representation [59]. In C
0

km all seven RUCC categories

are used.

The second step in predicting monthly household demand for fruit type × variety i in

income group z with the LASSO model involves minimizing the log-likelihood function,

minϑi
1

Tiz

XTiz

km¼1
ðoikm � wikmϑiÞ

2
þ mi

Xq

j¼1
jWijj

� �

ð10Þ

where Tiz is the set of set of km2z where eikm> 0, wikm ¼ ½X
0

kmC
0

kmPkm; rikm� is a matrix of q
standardized candidate predictors for the consumption of i, vector ϑi contains linear model

coefficients for i, and μi is the tuning parameter, as described above.

Note that wikm includes km2z’s probability of purchasing i in a given month. Because

model (10) is agnostic regarding the distributional shape of a model’s errors, we cannot use the

inverse mills ratio to correct for self-selection bias when estimating and predicting demand for

fruit i as we did with the econometric methods (the inverse mills ratio assumes normally dis-

tributed errors). Instead we use ρikm itself as a propensity score in the LASSO conditional

demand function to control for self-selection (the coefficient on this variable is separately iden-

tified in the linear second stage model because the first stage is estimated using the non-linear

logistic function).
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To estimate (9)-(10) for i we first solved (9) over all km2z. Then we calculated

r̂ikm ¼
1

1þexp ð� Wkm p̂ iÞ
for each km2z. Next, we solved Eq (10) for i, i.e., generated ϑ̂ iz , using

the data wikm ¼ ½X
0

kmC
0

kmPkm; r̂ikm� from the set of km2z where eikm> 0. The LASSO-

predicted unconditional monthly household demand for i was found by generating

ôu3
ikm ¼ r̂ikmðwikmŴizÞ across each km2z and then taking the average of ôu3

ikm. The LASSO pre-

dicted conditional demand was found by generating ôc3ikm ¼ wikmŴ iz across all the set of

km2z where eikm> 0 and then taking the average of ôc3ikm.

The standard errors for estimates of πij and θij are bootstrapped by replicating the joint

solution to Eqs (9) and (10) 100 times. In each replicate, the sample is randomly drawn with

replacement, so while the sample size is the same each time, the households represented in the

dataset are different in each replication. See S6 Table for the means over a select number of

variables found in wikm. To see the estimated forms of ôu3
iz and ôc3iz , including estimated r̂ikm

and Ŵiz, refer to the instructions for running the relevant R scripts in S5 Supporting

information.

Simulating the total impact of organic food subsidization on representative house-

holds. First, as described above, we predicted monthly unconditional and conditional house-

hold quantity demanded for a representative household in each income class. Second, we

reduced the organic fruit prices a representative household in income class z faced by 10%

(given by ~Pz). In the econometric-based methods this meant reducing the z’s mean prices by

10%. With the LASSO this meant reducing all z households’ observed prices by 10%. Third, we

predicted the amount of money the household would save with the subsidy if it continued to

purchase organic fruit at predicted pre-subsidy levels (infra-marginal gain due to the subsidy).

Let the unconditional and conditional infra-marginal gains due to the subsidy at representative

household z using estimation method j be given by ôujizð:jPzÞðPiz � ~PzÞ and ôcjizð:jPzÞðPiz � ~PzÞ,

respectively. Fourth, we predicted the representative household’s change in monthly uncondi-

tional and conditional quantity demanded. Let the change in unconditional and conditional

quantity demanded of i at representative household z using estimation method j be given by

Dôujiz ¼ ôujizð:j~PzÞ � ô
uj
izð:jPzÞ and Dôcjiz ¼ ôcjizð:j~PzÞ � ôcjizð:jPzÞ, respectively. The representative

household’s change in purchasing behavior and infra-marginal gain together indicate the total

impact of the subsidy on the household.

Finally, we estimated each z’s unconditional and conditional purchase and expenditure

elasticities across each i and each estimation method j. A purchase elasticity for organic fruit i
measures the percentage change in ounces of i bought per month for each 1% increase in the

prices of all organic fruit. An expenditure elasticity for organic fruit i measures the percentage

change in dollars spent per month on i for each 1% increase in the prices of all organic fruit.

Therefore, in this case, a negative (positive) elasticity means predicted purchases or expendi-

tures increased (decreased) with the organic fruit price subsidy. See Tables 4 and 5 for all pre-

dicted values of ôujizð:jPzÞðPiz � ~PzÞ; ô
cj
izð:jPzÞðPiz � ~PzÞ; Dô

uj
iz ; Dô

cj
iz, and unconditional and

conditional purchase and expenditure elasticities.

Please note that we do not specify the subsidy that would lead to a 10% reduction in the

retail prices of all organic fruit. The source of the subsidy is outside the scope of our study. For

example, prices that consumers face can be reduced by a point of purchase subsidy or a pro-

duction subsidy that generates lower production costs. In the end, whatever form it would

take, we assume that this subsidy reduces the prices of all organic fruit by 10% from 2011–2013

levels.
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Results and discussion

Impact of independent variables on the propensity to consume and amount

of consumption

Below we do not discuss the impact of independent variables on the propensity of a household

to consume organic fruit or the estimated impacts of small changes in independent variable

values on organic fruit consumption. Instead the interested reader can generate all marginal

effects by running the computer code and datasets provided in the SI. However, prior to dis-

cussing the subsidy’s expected impact on households’ inframarginal savings and consumption

and expenditure behavior, we briefly note the impact independent variables had on the pro-

pensity of a household to consume organic fruit and the amount of organic fruit consumed in

the estimated LASSO model. The number of times LASSO bootstrap replicates generate non-

zero LASSO coefficients offers some information on the importance of the various indepen-

dent variables in explaining organic fruit consumption behavior (S7 and S8 Tables).

Fruit prices, household income, number of children in the household, household race indi-

cators, and the rural-urban continuum classification categories consistently generated non-

zero LASSO coefficients across replicates in most organic fruit selection models. At the

Table 4. Predicted conditional reaction to an organic fruit price subsidy across household types. Under the subsidy plan all organic fruit prices are 90% of observed

2011–2013 prices. Reactions are calculated for a representative lower, middle, and upper income class household. All dollar values are measured in Dec. 2013 $.

Monthly savings ($) on original

purchase w/ subsidy

Change in oz. purchased per

month

Monthly purchase elasticity Monthly expenditure elasticity

Household Income

Class

Low Middle High Low Middle High Low Middle High Low Middle High

Est. method Apples

Separate equations 0.70

(0.05)

0.71

(0.07)

0.75

(0.03)

12.68

(4.57)

21.49

(5.52)

10.46

(2.51)

-1.75

(0.54)

-2.94

(0.78)

-1.36

(0.28)

-0.58

(0.49)

-1.65

(0.70)

-0.22

(0.25)

LinQuad 0.82

(0.22)

1.19

(0.20)

0.86

(0.05)

18.42

(12.80)

26.92

(14.6)

6.44

(4.37)

-2.12

(1.64)

-2.14

(0.85)

-0.71

(0.46)

-0.91

(1.48)

-0.93

(0.76)

0.36

(0.42)

LASSO 0.80

(0.05)

0.66

(0.02)

0.71

(0.01)

0.00 (4.49) 25.00

(4.61)

10.26

(2.84)

0.00

(0.52)

-2.94

(0.48)

-1.25

(0.32)

1.00

(0.59)

-2.49

(0.67)

-0.34

(0.37)

Blueberries

Separate equations 0.85

(0.06)

0.77

(0.02)

0.81

(0.01)

-0.07

(0.96)

0.27 (0.40) 0.38

(0.23)

0.04

(0.53)

-0.16

(0.23)

-0.22

(0.13)

1.03

(0.47)

0.86

(0.21)

0.80

(0.12)

LinQuad 1.09

(0.17)

0.97

(0.05)

1.04

(0.43)

0.45 (0.62) 0.15 (0.18) 0.80

(0.16)

-0.20

(0.28)

-0.08

(0.10)

-0.38

(0.08)

0.82

(0.25)

0.93

(0.09)

0.65

(0.07)

LASSO 0.71

(0.08)

0.62

(0.02)

0.64

(0.01)

1.50 (1.45) 1.06 (0.41) 0.83

(0.32)

-0.82

(1.00)

-0.60

(0.23)

-0.48

(0.18)

-0.19

(1.88)

0.12

(0.26)

0.24

(0.21)

Oranges

Separate equations 0.59

(0.05)

0.58

(0.02)

0.60

(0.03)

-1.93

(4.05)

-0.97

(1.21)

-0.01

(1.77)

0.26

(0.55)

0.14

(0.17)

0.00

(0.24)

1.24

(0.50)

1.12

(0.15)

1.00

(0.22)

LinQuad 0.60

(0.15)

0.62

(0.06)

0.63

(0.06)

3.37 (8.69) -2.62

(2.83)

-3.60

(2.43)

-0.47

(1.23)

0.36

(0.37)

0.49

(0.32)

0.58

(1.10)

1.32

(0.33)

1.44

(0.29)

LASSO 0.60

(0.05)

0.57

(0.02)

0.55

(0.02)

-0.47

(4.16)

-0.43

(1.53)

0.00

(1.75)

0.06

(0.54)

0.06

(0.22)

0.00

(0.25)

1.06

(0.49)

1.05

(0.20)

1.00

(0.23)

Strawberries

Separate equations 0.60

(0.03)

0.60

(0.01)

0.65

(0.01)

0.81 (0.79) 0.26 (0.27) 0.83

(0.27)

-0.32

(0.31)

-0.10

(0.10)

-0.31

(0.10)

0.71

(0.28)

0.91

(0.09)

0.72

(0.09)

LinQuad 0.76

(0.14)

0.75

(0.04)

0.78

(0.03)

0.54 (1.20) -1.89

(0.43)

-0.03

(0.27)

-0.19

(0.42)

0.67

(0.14)

0.01

(0.09)

0.83

(0.38)

1.61

(0.13)

1.01

(0.08)

LASSO 0.59

(0.03)

0.61

(0.01)

0.63

(0.01)

0.00 (0.96) 0.46 (0.28) 0.48

(0.26)

0.00

(0.37)

-0.17

(0.11)

-0.18

(0.10)

1.00

(0.35)

0.84

(0.10)

0.83

(0.09)

https://doi.org/10.1371/journal.pone.0211199.t004
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quantity stage of consumption, LASSO replicates consistently generated non-zero price vari-

able, income variable, and race variable coefficients over middle and rich household demand

models. In contrast, prices and household-level variables did not consistently predict fruit

quantity consumed in poor households. Overall, the LASSO replicates indicate that the vari-

ables typically used to predict or explain household consumption of organic food are least rele-

vant among the poorest US households. This suggests that either 1) the poor had difficulty

accessing organic fruit from 2011–2013 and therefore prices and household characteristics are

irrelevant to their choices, 2) the decision to purchase organic fruit among poorer households

is a function of omitted variables, or 3) some combination of both of these issues.

Impact of subsidy on conditional purchases and expenditures

For households that already purchase some amount of organic fruit i in a given month (i.e.,

conditional demand), an organic fruit subsidy would compel them to, on average, consume

more organic apples, blueberries, and strawberries each month than they had previously, all

else equal (see the monthly purchase columns in Table 4). Between these three fruits, condi-

tional organic apple consumption would increase the most (in a relative sense) (Table 4, S4

Fig). Conversely, the conditional consumption of organic oranges would, on average, fall or

Table 5. Predicted unconditional reaction to an organic fruit price subsidy across US three household types. Under the subsidy plan all organic fruit prices are 90% of

observed 2011–2013 prices. Reactions are calculated for a representative lower, middle, and upper income class household. All dollar values are measured in Dec. 2013 $.

Monthly savings ($) on original

purchase w/ subsidy

Change in oz. purchased per month Monthly purchase elasticity Monthly expenditure

elasticity

Household

Income Class

Low Middle High Low Middle High Low Middle High Low Middle High

Est. method Apples

Separate

equations

0.001

(0.0006)

0.001

(0.0011)

0.002

(0.0004)

0.0036

(0.0098)

0.0053

(0.0135)

-0.0052

(0.0069)

-0.36

(0.89)

-0.40

(0.91)

0.27

(0.37)

0.67

(0.81)

0.64

(0.82)

1.24

(0.33)

LinQuad 0.001

(0.0003)

0.001

(0.0002)

0.002

(0.0001)

0.110

(0.0140)

0.015

(0.0120)

-0.010

(0.0070)

-1.02

(1.49)

-0.97

(0.67)

0.45

(0.36)

0.08

(1.34)

0.13

(0.61)

1.40

(0.32)

LASSO 0.002

(0.0002)

0.003

(0.0001)

0.004

(0.0001)

0.000

(0.19)

0.230

(0.05)

0.130 (0.04) 0.00

(0.52)

-2.68

(0.39)

-1.26

(0.33)

1.00

(0.55)

-2.11

(0.52)

-0.28

(0.35)

Blueberries

Separate

equations

0.001

(0.0005)

0.001

(0.0002)

0.003

(0.0004)

0.0006

(0.0017)

0.0017

(0.001)

-0.0006

(0.0014)

-0.29

(0.87)

-0.71

(0.39)

0.10

(0.27)

0.74

(0.78)

0.36

(0.35)

1.09

(0.24)

LinQuad 0.001

(0.0002)

0.001

(0.0001)

0.003

(0.0002)

0.010

(0.0010)

0.010

(0.0006)

0.004

(0.0009)

-0.42

(0.56)

-2.59

(0.26)

-0.60

(0.14)

0.62

(0.51)

-1.33

(0.23)

0.46

(0.13)

LASSO 0.002

(0.0002)

0.002

(0.0001)

0.005

(0.0002)

0.03 (0.05) 0.007

(0.003)

0.010

(0.005)

-0.93

(0.83)

-0.55

(0.22)

-0.45

(0.18)

-0.27

(1.01)

0.22

(0.24)

0.32

(0.20)

Oranges

Separate

equations

0.001

(0.0007)

0.001

(0.0002)

0.002

(0.0004)

0.0053

(0.0176)

0.001

(0.0042)

0.0154

(0.0107)

-0.39

(1.26)

-0.11

(0.48)

-0.82

(0.52)

0.65

(1.14)

0.90

(0.43)

0.27

(0.47)

LinQuad 0.001

(0.0004)

0.001

(0.0001)

0.002

(0.0002)

0.014

(0.0210)

0.0002

(0.0050)

-0.001

(0.0070)

-1.09

(1.83)

-0.02

(0.56)

0.03

(0.42)

0.02

(1.65)

0.98 (0.5) 1.03

(0.38)

LASSO 0.001

(0.0001)

0.001

(0.00004)

0.001

(0.00005)

-0.030

(0.59)

-0.0008

(0.009)

0.000

(0.010)

0.17

(0.51)

0.03

(0.22)

0.00

(0.28)

1.15

(0.47)

1.02

(0.20)

1.00

(0.23)

Strawberries

Separate

equations

0.002

(0.0007)

0.003

(0.0004)

0.007

(0.0009)

0.015

(0.0078)

0.031

(0.0052)

0.048

(0.0088)

-1.84

(0.77)

-2.81

(0.31)

-1.83

(0.26)

-0.65

(0.69)

-1.53

(0.28)

-0.64

(0.23)

LinQuad 0.002

(0.0010)

0.002

(0.0002)

0.007

(0.0004)

0.020

(0.0100)

0.045

(0.0050)

0.050

(0.0100)

-3.59

(2.32)

-5.11

(0.73)

-2.10

(0.43)

-2.23

(2.10)

-3.60

(0.66)

-0.89

(0.39)

LASSO 0.003

(0.0002)

0.004

(0.0001)

0.008

(0.0002)

0.000

(0.04)

0.010

(0.007)

0.010

(0.008)

0.00

(0.35)

-0.21

(0.11)

-0.16

(0.09)

1.00

(0.33)

0.81

(0.10)

0.85

(0.09)

https://doi.org/10.1371/journal.pone.0211199.t005
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stay flat, all else equal. Of the four fruits we focus on, organic apples are the only fruit type that

habitual buyers of organics, regardless of income class, would, on average, spend more on after

the subsidy than before (i.e., only organic apple conditional expenditure elasticities tend to be

negative; Table 4, S5 Fig).

The conditional inframarginal gains from the subsidy are similar across household and

fruit types (Table 4). Regardless of estimation technique or fruit type, the lower income class

household often saves just as much or more on the inframargin due to the subsidy as the mid-

dle or upper-class household. These results indicate that among households that already pur-

chase some amount of organic fruit i in a given month, pre-subsidy purchase patterns of i were

not correlated with household income.

Further, there is no clear pattern in the subsidy’s impact on conditional purchases across

income classes (see the purchase elasticities in Table 4 and S4 Fig). Across all three estimation

techniques, the middle-income class household would, in a relative sense, increase their condi-

tional consumption of organic apples as much or more than the other two household types, all

else equal. Further, relative conditional purchases of blueberries would generally (but not uni-

versally) increase the most, on average, at the high-income class household. Conversely, we

found that the representative lower income household would, on average, be as responsive if

not more responsive to the subsidy than the representative high-income class household in

terms of conditional organic orange and strawberry purchases (Table 4, S4 and S5 Figs). In

conclusion, relative reaction to the subsidy is not consistently different across income types in

households that already buy organic fruit (conditional demand).

Therefore, given similar pre-subsidy consumption patterns and no clear differences in pur-

chase elasticities across household types that already buy organic fruit, the organic fruit subsidy

would not be re-distributive at the consumption stage among the cohort of American house-

holds that already buy organic fruit. Of course, this assumes that no household class is particu-

larly responsible for funding of the subsidy. If, for example, the subsidy was largely funded by

the richer habitual buyers of organic fruit then the subsidy would re-distribute some welfare

from richer to poorer households.

Impact of the subsidy on unconditional purchases and expenditures

Considering all households, not just those that already buy organic fruit i in a given month

(i.e., unconditional demand), an organic fruit subsidy would compel them, on average, to con-

sume more organic blueberries and strawberries each month than they had previously, all else

equal (Table 5, S4 Fig). In fact, several predictions of the relative change in unconditional

quantity demanded of organic strawberries are the largest relative changes we observe across

all subsidy counterfactuals. Further, across all unconditional organic fruit-estimation method

reactions we model, only the econometrically-derived predictions of change in organic straw-

berry quantity demanded indicates that typical US households, regardless of income class,

would unconditionally spend more on organic fruit after the subsidy than before (see the

unconditional monthly expenditure elasticity graphs in S4 Fig). Almost all other unconditional

expenditure elasticity predictions indicate that a 10% drop in organic fruit prices would mean

that a representative US household would (unconditionally) spend less on of organic fruit i
than before despite buying more of i in reaction to the subsidy. This pattern holds across all

three income types (recall these results only hold for organic fruit purchased via a UPC).

Except for organic apples, unconditional purchase elasticities are larger, in absolute terms,

than their conditional analogs. Further, again except for organic apples, unconditional expen-

diture elasticities are closer to zero (or in some cases, more negative) than their conditional

analogs. This indicates that the subsidy would have a relatively larger impact on the purchasing
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patterns of typical US households than the subset of US households that already buy organic

fruit (conditional demand). In other words, our analysis suggests that the subsidy would

change the organic fruit buying behavior of the casual consumer more, in a relative sense, than

it would the habitual consumer of organic fruit.

We found that a 10% subsidy would affect unconditional inframarginal savings across

income classes differently. Specifically, upper income households typically would save more

on their pre-subsidy organic fruit purchases given the subsidy than their lower and middle-

income peers. This outcome simply reflects that when considering all households, not just

habitual buyers of organic fruit, a typical rich household already buys more organic fruit than

the typical household from the other two classes (Table 2). While one rich household’s infra-

marginal gains due to the subsidy are very small relative to its representative peers—less than

one cent per month across all fruits—if we sum this difference across all US households the

aggregate differential across income class is significant. For example, using the data on the

number of US households in each income class from Table 3 and the inframarginal gain pre-

dictions for strawberries from Table 5 we found that rich American households would gain

approximately $2.65 million more in inframarginal savings per year than lower income Ameri-

can households. This is just considering strawberries.

Unlike conditional response to the subsidy, unconditional demand for organic fruit is such

that a 10% organic fruit price subsidy would, on average, generate relatively different reactions

across income class. Our analysis suggests that the subsidy would generally cause monthly

organic fruit consumption at the representative poor or middle-income class household to

increase relatively more than at the rich household, all else equal (Table 5, S4 and S5 Figs).

This is unequivocally the case for organic apples, blueberries, and strawberries where, across

all estimation methods, the lower or middle income representative households always has a

larger (more negative) expenditure elasticity for these three fruits than the rich representative

household.

In conclusion, considering all households, not just those that already buy organic fruit,

their overall reaction to the subsidy is differentiated by income class. First, given that they

already tend to buy more organic fruit than other household types, the bulk of unconditional

inframarginal savings would accrue to upper income class households. However, rich house-

holds would not react as strongly to the subsidy as the other two household types; across

almost all fruit and demand estimation technique combinations we found the largest (more

negative) unconditional monthly purchase elasticity at the representative poor and/or middle-

income class household. Whether the subsidy re-distributes unconditional surplus would ulti-

mately depend on the tax incidence of the funds used to support the subsidy. A broadly applied

tax or one that mostly relied on contributions from wealthier households would mean a re-dis-

tribution of surplus to poorer and middle-class households.

Comparing estimation methods

A comparison of subsidy impacts across the three estimation techniques reveals three discern-

able patterns. First, the conditional inframarginal savings generated with the LinQuad system

is always a bit higher than the conditional inframarginal savings generated with the Heckman-

like and LASSO single equations, typically by about 10% to 25%. In other words, conditional

organic fruit demand at pre-subsidy prices is always a bit higher according to the system-esti-

mated demand equations than we predict with the other two methods. Second, the LASSO

equations almost always find larger unconditional inframarginal savings than the other two

methods (the exception to this trend is unconditional organic orange demand), but the differ-

ence is typically less than a penny for each fruit category, on average. Third, the LASSO-
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generated elasticity predictions almost always have standard errors that are as small or are

smaller than the standard errors on elasticity predictions generated by the other two methods.

However, we do not find that purchase and expenditure elasticities generated with one method

are systematically smaller or larger than the purchase and expenditure elasticities generated

with the other two methods.

As we mentioned above, empirical economists have rarely used ML techniques like LASSO

because they generate ‘agnostic’ predictive models rather than models of inference. However,

because our aim was to predict household reaction to a subsidy we were less interested in infer-

ence and therefore open to models primarily used for prediction. We were concerned that the

LASSO-generated demand equations would include many fruit price variable coefficients

equal to 0. If this had happened we would either have to conclude that fruit prices largely do

not play a role in organic fruit consumption (highly doubtful) or that the LASSO method was

not appropriate given our research aims. However, for the most part, however, LASSO-esti-

mated demand equation did include non-zero price coefficients, particularly in the apple, blue-

berry, and strawberry selection stages (Eq (9)). Own organic and conventional prices as

opposed to other fruit prices were particularly likely to have non-zero price coefficients (S7

and S8 Tables). In the few LASSO-estimated demand equations where prices were not found

to be very predictive of purchasing behavior—this was the case for several low-income house-

hold demand equations and for several organic orange demand equations regardless of income

class—we, not surprisingly, found LASSO-estimated purchase elasticities of zero or near zero

and expenditure elasticities of one or near one.

Conclusions

We predicted the impact of an organic fruit subsidy on patterns of organic fruit consumption

and expenditures across US households of different income classes. We were particularly inter-

ested to determine if the subsidy would, on average, favor households from a certain income

class. If we estimated significantly larger inframarginal savings and a particularly elastic

response to the subsidy in one class it would suggest that the subsidization would re-distribute

some social welfare to that class, especially if the revenue for the subsidy came from the general

taxpayer.

In contrast to other CT subsidization, which has been found to be strongly regressive at the

consumption stage, such as roof-top solar in Australia [42] or electric cars in the US [45,74],

we find evidence that organic fruit subsidization in the US would, if anything, change the rela-

tive consumptive behavior of poor and middle-class households more than that of richer

households. Of course, because richer households in the US tend to buy more organic fruit

than poorer households already, the inframarginal savings from the subsidy would tend to be

larger in richer households. However, this inframarginal savings advantage enjoyed by richer

households in general disappears among the smaller subset of households that habitually buy

organic fruit (conditional demand): conditional inframarginal savings generated by fruit subsi-

dies are relatively equal across all three income classes and fruit types.

While we find that most households would buy a bit more organic fruit with a price sub-

sidy, whether the subsidy would generate net welfare across households is an open question.

Ideally, we would evaluate a representative household’s welfare gains from the subsidy using

an explicit household utility function. However, the Heckman-like and LASSO single equation

estimation methods do not specify a utility function and estimating welfare changes with the

LinQuad system proved problematic due to the large number of zero demanders. Of course,

consumer surplus is not the only benefit the subsidy would create. The subsidy could also gen-

erate some positive farm worker and consumer health, environmental, and rural equity
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externalities via the promotion of a CT. For example, if organic food is healthier and more

nutritious to eat than conventional fruit or other foods, then a subsidy would also promote bet-

ter health among the wider US population. On the negative side, raising revenue for the sub-

sidy would generate dead weight loss in the US economy that would need to be set against the

potential welfare gain of any positive externalities. It is our hope that future research addresses

questions over the net welfare impact of organic food subsidization.

Our approach to estimating the impact of organic fruit subsidization across different house-

hold income classes is limited in several ways. First, data on price paid, weight or number of

fruit items bought, or the organic / conventional status of the fruit for purchases not completed

with a UPC can be missing or unreliable. Therefore, we did not include non-UPC fruit pur-

chases in our dataset. Not only does this mean that our dataset misses all fruit purchases made

at grocery stores that did not involve the use of a UPC, but fruit purchases made at delis, farm-

ers’ markets, road-side stalls, restaurants, etc., are also largely missing from our dataset. (This

latter issue is less concerning given, as we mentioned above, 92 percent of organic food is pur-

chased through grocery stores and natural food stores [75].) It is not clear how different our

simulated policy impacts would be if we included fruit purchased without a UPC in our fruit

dataset. For example, while approximately 40% of all fresh produce is bought with a UPC [47],

if 20% of organic fruit is bought with a UPC but 50% of conventional fruit is bought with a

UPC then our simulated results could be biased.

Second, we estimated average monthly fruit purchases each household faced by using

observed prices from the household’s home market. When no prices were observed relevant

prices were imputed (S2 Supporting information). This process introduces additional unmea-

sured error into our estimates. However, given that the LASSO model usually assigned non-

zero coefficients to the price variables and most price elasticities had expected signs it appears

that this additional error did not eliminate the role that prices should and did have in explain-

ing consumer behavior over organic fruit. We must note, however, that LASSO estimates over

data with measurement error are prone to attenuation bias (estimates are closer to 0 than they

really are [76]).

Third, when estimating organic fruit consumption we do not weight households by their

projection factors. Therefore, it is not clear how well the estimated demand functions and

policy simulations capture the universe of US households rather than just the set of sampled

households. If we assume the estimated demand functions are representative of the universe

of US households we can measure the error in not using the projection factors by comparing

simulated estimated representative household demand for fruit I with and without projec-

tion factors. When we average predicted monthly consumption of i across all km2z with and

without projection factor weights the predictions are generally within five to ten percent of

one another (S9 and S10 Tables). The only exceptions to this pattern are found in some of

the unconditional demand estimates across poor households. This finding adds weight to

our earlier conclusion that our models do less well in describing demand for organic fruit

among the poorer US households. Otherwise, assuming the estimated demand functions are

representative of the universe of US households, our policy simulations are a reasonable

guide to the impact of fruit subsidization across the US, not just across the sampled

households.

Finally, we assume that monthly price fluctuations in fruit over the 2011–2013 are deter-

mined by exogenous supply fluctuations. To the extent that prices are endogenous, our coeffi-

cients will be biased. One might consider using an IV method to instrument for prices, but we

lack data on variables that could serve as clean instruments: those that affect only supply and

are unaffected by demand residuals.
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Supporting information

S1 Fig. Lorenz curves of organic fruit expenditures across three-person households by

Nielsen Scantrack, 2011 through 2013 (December, 2013 $). The dark line in each plot is the

actual cumulative household income-household expenditure curve and the lighter line is the

45-degree line. The dashed vertical lines indicate the approximate break point between the

middle-class and rich income categories along a market’s annual household income spectrum

on the x-axis. Not included on the figure are the breakpoints between the poor and middle-

class households in a market, which occur somewhere between 1.1 and 6.2 percent of cumula-

tive income. All household expenditures in year y are inflated by households’ year y projection

factor to arrive at market totals. This figure only includes fruit purchased with a Universal

Product Code (UPC).

(TIF)

S2 Fig. Lorenz curves of conventional fruit expenditures across two-person households

Nielsen Scantrack markets, 2011 through 2013 (December, 2013 $). The dark line in each

plot is the actual cumulative household income-household expenditure curve and the lighter

line is the 45-degree line. All household expenditures in year t are inflated by households’ year

t projection factor to arrive at market totals. This figure only includes fruit purchased with a

Universal Product Code (UPC). In almost every market the poor and middle-class spend more

than their share on fruit compared to richer households. It is likely that some of this uneven

expenditure patterns across income spectrums are explained by the well-to-do’s tendency to

buy more food at restaurants, delis, and farmers’ markets and less on groceries from traditional

retail outlets relative to other household types (The JPMorgan Chase Institute 2016). In other

words, households from the upper percentiles had less opportunity to buy fruit from stores,

typically the place where fruit is sold via UPCs.

(TIF)

S3 Fig. Lorenz curves of conventional fruit expenditures across three-person households

Nielsen Scantrack markets, 2011 through 2013 (December, 2013 $). The dark line in each

plot is the actual cumulative household income-household expenditure curve and the lighter

line is the 45-degree line. All household expenditures in year y are inflated by households’ year

y projection factor to arrive at market totals. This figure only includes fruit purchased with a

Universal Product Code (UPC). In almost every market the poor and middle-class spend more

than their share on fruit compared to richer households. It is likely that some of this uneven

expenditure patterns across income spectrums are explained by the well-to-do’s tendency to

buy more food at restaurants, delis, and farmers’ markets and less on groceries from traditional

retail outlets relative to other household types (The JPMorgan Chase Institute 2016). In other

words, households from the upper percentiles had less opportunity to buy fruit from stores,

typically the place where fruit is sold via UPCs.

(TIF)

S4 Fig. Predicted unconditional and conditional monthly purchase elasticities given a 10%

organic fruit price subsidy. Under the subsidy plan all organic fruit prices are 90% of

observed 2011–2013 means. Reactions are calculated for a representative lower, middle, and

upper income class household. In each plotted-tuple of three points the middle point is the

predicted response, the top point is the predicted response plus one standard error, and the

bottom point is the predicted response minus one standard error. This figure gives a visual

representation of the monthly purchase elasticity predictions from Tables 4 and 5.

(AI)
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S5 Fig. Predicted unconditional and conditional monthly expenditure elasticities given a

10% organic fruit price subsidy. Under the subsidy plan all organic fruit prices are 90% of

observed 2011–2013 means. Reactions are calculated for a representative lower, middle, and

upper income class household. In each plotted-tuple of three points the middle point is the

predicted response, the top point is the predicted response plus one standard error, and the

bottom point is the predicted response minus one standard error. This figure gives a visual

representation of the monthly expenditure elasticity predictions from Tables 4 and 5.

(AI)

S1 Table. Ounces per fruit item.

(DOCX)

S2 Table. Real organic expenditures by fruit variety across US households by year (Decem-

ber, 2013 $). Projection factors are used to extrapolate survey level results to national esti-

mates. ‘Other’ expenditure is the sum of expenditures on blackberries, grapes, grapefruit,

lemons, raspberries, and miscellaneous.

(DOCX)
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