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Pituitary adenylate cyclase-activating polypeptide (PACAP, gene name ADCYAP1) is a
multifunctional neuropeptide involved in brain development and synaptic plasticity. With
respect to PACAP function, most attention has been given to that mediated by its
specific receptor PAC1 (ADCYAP1R1). However, PACAP also binds tightly to the high
affinity receptors for vasoactive intestinal peptide (VIP, VIP), called VPAC1 and VPAC2
(VIPR1 and VIPR2, respectively). Depending on innervation patterns, PACAP can thus
interact physiologically with any of these receptors. VPAC2 receptors, the focus of
this review, are known to have a pivotal role in regulating circadian rhythms and to
affect multiple other processes in the brain, including those involved in fear cognition.
Accumulating evidence in human genetics indicates that microduplications at 7q36.3,
containing VIPR2 gene, are linked to schizophrenia and possibly autism spectrum
disorder. Although detailed molecular mechanisms have not been fully elucidated,
recent studies in animal models suggest that overactivation of the VPAC2 receptor
disrupts cortical circuit maturation. The VIPR2 linkage can thus be potentially explained
by inappropriate control of receptor signaling at a time when neural circuits involved
in cognition and social behavior are being established. Alternatively, or in addition,
VPAC2 receptor overactivity may disrupt ongoing synaptic plasticity during processes of
learning and memory. Finally, in vitro data indicate that PACAP and VIP have differential
activities on the maturation of neurons via their distinct signaling pathways. Thus
perturbations in the balance of VPAC2, VPAC1, and PAC1 receptors and their ligands
may have important consequences in brain development and plasticity.

Keywords: VPAC2 receptor (VIPR2), schizophrenia, psychiatric disorders, neurodevelopment, synaptic plasticity,
cognition

INTRODUCTION

Pituitary adenylate cyclase-activating polypeptide (PACAP) and the closely related neuropeptide
vasoactive intestinal peptide (VIP), exhibit widespread expression in the central and peripheral
nervous systems. Their receptors (PAC1, VPAC1, and VPAC2) are widely expressed in the brain
but are also present in a multitude of peripheral target organs, including those of cardiovascular,
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renal, digestive, immune, endocrine, and reproductive systems.
Due to cell-specific localization patterns, differing (VIP-ergic
vs. PACAP-ergic) innervation configurations, and the existence
of multiple alternate signaling pathways, the ligand/receptor
interactions modulate physiological activities in highly specific
manners (Vaudry et al., 2009). Importantly, these ligand
receptor interactions, especially, PACAP/PAC1, are also known
to modulate nervous system development, regeneration, and
synaptic plasticity (Waschek, 1996, 2002, 2013; Otto et al., 2001;
Hashimoto et al., 2006, 2011; Vaudry et al., 2009; Harmar et al.,
2012; Rajbhandari et al., 2021). Moreover, we and others have
investigated the involvement of PACAP in multiple behaviors
in animals and in human disease by performing phenotype
analyses of PACAP-deficient mice and genetic linkage analyses in
humans. For example, PACAP-knockout mice exhibit increased
locomotor activity, anxiety/anxolytic phenotypes, depression-like
behavior, deficits in learning and memory, cognitive impairment
(Hashimoto et al., 2001, 2009; Tanaka et al., 2006; Ishihama
et al., 2010; Hattori et al., 2012; for reviews see: Hammack and
May, 2015; Mustafa et al., 2015; Shibasaki et al., 2015; Farkas
et al., 2017; Missig et al., 2017; Reglodi et al., 2018b; Johnson
et al., 2020). Of note, the behavioral phenotype of PACAP-
knockout mice varies under different environmental conditions
and different genetic backgrounds (mouse strain), and with
the specific gene sequences that were deleted in the different
PACAP gene knockout models. In humans, the dysregulation
of PACAP and the PAC1 receptor has been associated with
schizophrenia, depression, and post-traumatic stress disorder
(PTSD) (Hashimoto et al., 2007, 2010; Ressler et al., 2011; Mercer
et al., 2016; Ross et al., 2020).

Recently, genetic studies aimed at the discovery of copy
number variants (CNVs) have revealed that microduplications
of VIPR2 gene were strongly associated with schizophrenia
(see below and Levinson et al., 2011; Vacic et al., 2011;
Yuan et al., 2014; Li et al., 2016; Marshall et al., 2017).
While both ligands (VIP and PACAP) appear to play roles in
neural cell proliferation, maturation, synaptogenesis, protection
and regeneration (see below and Falluel-Morel et al., 2007;
Hill, 2007; Passemard et al., 2011), the pathological roles of
PACAP and VIP and their mechanistic links to mental health
disorders remain largely unknown. In the present review, we
aimed to summarize physiological functions of the VPAC2
receptor, recent genetic research linking VIPR2 duplications to
schizophrenia, and relevant actions of VPAC2 receptors in animal
and cell culture models.

LOCALIZATION AND PHYSIOLOGICAL
FUNCTIONS OF THE VPAC2 RECEPTOR

The VPAC2 receptor is a 7-transmembrane G-protein-coupled
receptor (GPCR). Like PAC1 and VPAC1 receptors, VPAC2
couples with Gs-type trimeric G-proteins and activates adenylate
cyclase, thereby producing cAMP and triggering the activation
of protein kinase A (PKA). Additionally, the VPAC2 receptor
activates phospholipase C (PLC) through both the pertussis
toxin-sensitive (Gi/o) and -insensitive (Gq/11) pathways

(Kim et al., 2000; MacKenzie et al., 2001). The VPAC2 receptor
is widely distributed throughout the body in humans and
is highly expressed in peripheral tissues such as the heart,
stomach, pancreas, small intestine, thymus, prostate, testicle,
ovary, and placenta. Activation of the VPAC2 receptor induces
vasodilation, smooth muscle relaxation, and increases insulin
secretion. In the brain, the VPAC2 receptor is highly expressed
in neurons in the thalamus and hypothalamus, especially in the
suprachiasmatic nuclei, as well as the cerebral cortex (Sheward
et al., 1995; An et al., 2012). Its role regarding circadian rhythms
has been studied extensively using VPAC2-deficient mice and
VPAC2-overexpressing mice, demonstrating that the VPAC2
receptor is critically involved in the synchronization of neural
activity and the regulation of firing frequency (Shen et al., 2000;
Harmar et al., 2002; Cutler et al., 2003). Interestingly, we found
that VPAC2-deficient mice exhibited normal fear learning, but
a selective deficit in fear extinction (Ago et al., 2017). Notably,
impaired extinction is a primary symptom of PTSD (Milad
et al., 2009), a disease genetically linked to PACAP signaling
(Ressler et al., 2011). Consistent with deficit in fear behavior in
VPAC2 receptor knockout mice, altered synaptic structure in
the prefrontal cortex was observed, with a decrease in numbers,
lengths, and complexities of both apical and basal dendrites
(Ago et al., 2017).

In addition to their presence in neurons, VPAC2 receptors
are also expressed in astrocytes (Nishimoto et al., 2011) and
oligodendrocytes (Lelievre et al., 2006), but not at detectable
levels in microglia (Delgado et al., 2002). Only a few studies have
addressed its regulation and physiological functions in glia. In a
rat cortical cold injury model, VPAC2 receptors were found to be
upregulated in cortical neurons and astrocytes in the penumbra
(lesion border area), suggesting that VPAC2 receptors have an
important function in brain trauma (Nishimoto et al., 2011).
Furthermore, VIP immunoreactivity was detected in microglia
within these lesions, a potential non-neuronal source of ligand.
In vitro experiments utilizing cultured astrocytes showed that Ro
25-1553, a specific VPAC2 receptor agonist, induced in astrocytes
morphological changes thought to mirror gliosis in vivo.
Moreover, Ro 25-1553 up-regulated the glutamate transporters
GLAST and GLT-1. These findings, along with, the unique
spatiotemporal expression pattern of VPAC2 receptors in reactive
astrocytes and VIP in nearby microglia, suggest that VIP–
VPAC2 signaling may be involved in the induction of reactive
astrogliosis and play an important role in neuroprotection against
glutamate excitotoxicity. In another brain injury model, VIP
and Ro 25-1553 were found to attenuate the ibotenic acid-
induced cerebral white matter lesions in neonatal mice (Rangon
et al., 2005). Moreover, the protective effect of VIP was absent
in VPAC2-deficient mice. In other work, a VPAC2 receptor-
specific agonist LBT-3627 exhibited neuroprotection against
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced
loss of dopaminergic neurons in a mouse model of Parkinson’s
disease (Olson et al., 2015). LBT-3627 may have acted primarily
via VPAC2 receptor on peripheral immune cells in this study
because peripheral regulatory T cell function was enhanced
in treated mice. Increased regulatory T cell activity may thus
have dampened the inflammatory response in the brain, as
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evidenced by a reduction in microglia activation. Alternatively,
or in addition, the VPAC2 agonist may have acted more directly
within the brain, via receptors on neurons or astrocytes.

RECENT GENETIC STUDIES ON
SCHIZOPHRENIA

Schizophrenia is a severe mental health disorder, with a
prevalence of about five cases per 1,000 individuals. The onset of
this disease in men typically occurs in late teens to early twenties,
and in women presents in the late twenties to early thirties.
By the early 1990’s, concordance and heritability studies had
already provided strong evidence that risk to the development
of schizophrenia involves, and likely requires, multiple genetic
alterations in concert with environmental factors (McGue and
Gottesman, 1991). More recent molecular genetic approaches,
including large-scale genome-wide association studies (GWAS)
have led to the discovery of specific gene mutations and molecular
pathways that confer risk to developing this disease. For
example, a GWAS on schizophrenia that included approximately
37,000 patients and 113,000 healthy subjects revealed 108
genomic regions with a statistically significant association with
schizophrenia (Schizophrenia Working Group of the Psychiatric
Genomics Consortium, 2014). Additionally, recent large-scale
studies employing deep RNA sequencing have successfully
identified associated splicing quantitative trait loci (sQTL or
splice QTL) (Battle et al., 2014; GTEx Consortium, 2015).
Appling mRNA sequencing in the human pre-frontal cortex,
a significant enrichment of sQTLs in schizophrenia risk loci
was found (Takata et al., 2017). In particular, single nucleotide
polymorphisms (SNPs) of sQTL that regulate the alternative
splicing of genes such as FXR1 and SNAP91 were strongly
associated with schizophrenia. FXR1 encodes a homolog of
fragile-X mental retardation protein (FMRP) that is responsible
for fragile X syndrome. The encoded protein of FXR1 is
known to interact with FMRP (Zhang et al., 1995). Targets of
FMRP are known to be involved in the genetic architectures
of schizophrenia (Purcell et al., 2014). SNAP91, on the other
hand, encodes the clathrin-associated protein AP180. AP180 is
enriched in the presynaptic terminal of neurons and plays an
essential role in synaptic neurotransmission (Koo et al., 2015).
These findings suggest potential new genetic mechanisms by
which brain sQTL SNPs regulate genes in which altered function
results in enhance risk for schizophrenia.

Analysis of copy number variation (CNV) has become an
important tool in the identification of novel and important
mutations associated with disease and phenotypic traits.
While CNVs typically explain only a small proportion of
trait heritability, they may have large effects and functional
consequences. Therefore, analyses of CNVs has a strong potential
to lead to the elucidation of processes involved in pathogenesis
of mental health disorders. For instance, it is well-known
that 22q11.2 deletion presents a high risk for developmental
neuropsychiatric disorders (odds ratio 20.3 and frequency 0.31%
for schizophrenia) (Sullivan et al., 2012). Among other potentially
relevant genes altered in this large multi-gene loci, a single

nucleotide mutation of RTN4R, encoding the Nogo receptor 1,
at 22q11.2 was significantly associated with schizophrenia. The
RTN4Rmutation results in decreased Nogo receptor binding with
LINGO1, and thereby affects the formation of neuronal growth
cones (Kimura et al., 2017).

These examples are meant to simply highlight the immense
progress in the field of schizophrenia genetics that has occurred
in the last decade. Readers are referred to excellent reviews
in the literature that cover genetic advances in schizophrenia
(for example, Avramopoulos, 2018; Dennison et al., 2020). With
multiple technological advances, many types of genetic variants
that increase the risk have been now recognized. While the type
and contribution to the risk vary among genetic variants, there
might be concordance in the functions of genes they implicate.

VPAC2 RECEPTOR MICRODUPLICATION
LINKAGE TO SCHIZOPHRENIA AND
OTHER PSYCHIATRIC DISEASE

In 2011, it was first reported that microduplications at 7q36.3
were strongly associated with schizophrenia (odds ratio 16.4 and
frequency 0.24%) (Levinson et al., 2011; Vacic et al., 2011). All
duplications overlapped with the VIPR2 gene or were located
within 89 kb upstream of the transcription start site. Increased
VIPR2 mRNA expression and cAMP accumulation in response to
VIP and a VPAC2 receptor agonist BAY 55-9837 were observed
in cultured lymphocytes of patients, demonstrating the functional
significance of the microduplications (Vacic et al., 2011). These
findings suggest the possible involvement of excessive signaling
via the VPAC2 receptor in the pathophysiology of schizophrenia.
Inheritances of the duplications at 7q36.3 were evaluated in
three families and were shown to be de novo in one family, in
which the duplication was observed in the proband but not in
his/her unaffected parents. Subsequently, the association between
the VIPR2 CNV and schizophrenia were reported in a large
scale study of the Han Chinese population (Yuan et al., 2014;
Li et al., 2016). In another report, a novel smaller (35 kb)
duplication upstream of the VIPR2 promoter was discovered
within a smaller cohort of about 300 schizophrenic patients
in the Japanese population. This novel variant was relatively
common (2%) in the Japanese population, but found not to be
associated with increased schizophrenia risk (Aleksic et al., 2013).
It can be concluded that this 35 kb variant does not capture
the effects of the various gene segments identified by Vacic and
colleagues, which together span a larger area of the VIPR2 gene
(Vacic et al., 2011).

Vacic et al. (2011) also showed that VIPR2 CNVs exhibited
higher frequencies in autism spectrum disorder (ASD) compared
to control individuals. This requires confirmation because
the number of autism-affected individuals was comparatively
small. In other papers, the presence of a VIPR2 CNV was
reportedly present in an ASD patient and his ASD-afflicted father
(Firouzabadi et al., 2017). In another type of work, neonatal
blood concentrations of VIP, but not PACAP, were found to be
higher in children later diagnosed with ASD compared to control
subjects that did not (Nelson et al., 2001). In another genetic
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FIGURE 1 | Proposed mechanism for the roles of VIP and PACAP system in neural development and mental health disorders. Mouse primary embryonic cortical
neurons extend axons and dendrites in vitro in the absence of added peptide. Addition of VIP results in a reduction in total numbers and lengths of neuronal
dendrites via the VPAC2 receptor, whereas PACAP selectively facilitates the elongation of dendrites via the PAC1 receptor (Takeuchi et al., 2020). To explain these
differential effects, it is proposed that VPAC2 and PAC1 signaling undergoes differential timed activations in brain development under normal (physiological)
conditions. When the VPAC2 receptor activity is enhanced by VIPR2 duplications or by pharmacological activation, or if PACAP–PAC1 signaling is reduced by
PACAP deficiency, the VPAC2 signaling would be expected to become relatively amplified. This might cause the delay of neural maturation and thus impaired
synaptic function, leading to brain dysfunction.

analysis, VIPR2 SNPs were found to be significantly associated
with depression (including bipolar disorder) (Soria et al., 2010)
and hypomethylation at CpG sites of VIPR2 was observed in
DNA samples derived from the saliva of children with attention-
deficit/hyperactivity disorder (Wilmot et al., 2016).

ROLE OF THE VPAC2 RECEPTOR IN
SYNAPTOGENESIS

Impairments of dendritic and synaptic density in pyramidal
neurons across multiple brain regions, such as changes
in dendritic arborization, dendritic spine number/type,

and morphology, have been observed in schizophrenia
(Moyer et al., 2015), indicating that altered synaptogenesis
and/or plasticity may be an important factor underlying this
mental health disorder. We determined more than two decades
ago that VPAC2 gene expression in the postnatal mouse brain
displays a pronounced peak at postnatal day 12, a time of active
synaptogenesis, pruning and myelination, and then declines as
animals reach adulthood (Waschek et al., 1996). In agreement
with those findings, the Allen Mouse Brain Atlas reports a peak
of VPAC2 gene expression at postnatal day 14, with highest
levels in prosomeres 2 and 3 (putatively corresponding to the
developing hypothalamus and thalamus), as well as scattered
signals in the cortex, including the prefrontal cortex. These
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observations suggest that VPAC2 receptors might play an
important role in postnatal maturation of the nervous system,
and that increased, improperly timed, or ectopic activation might
impair the establishment of circuits involved in cognition.

We thus used pharmacological approaches to determine
anatomical and behavioral changes that might occur due to
overactive VPAC2 signaling during the early postnatal period
(Ago et al., 2015). We subcutaneously administered Ro 25-1553
once daily over the first 2 weeks of life. Analysis of synaptic
proteins levels by Western blot at postnatal day 21 revealed
significant reductions of synaptophysin and postsynaptic density
protein 95 (PSD-95) in the prefrontal cortex, but not in the
hippocampus (Ago et al., 2015). The same postnatally restricted
treatment resulted in a long-term disruption of prepulse
inhibition of the acoustic startle in adult (3–4 month old) mice.
On the other hand, no effects were observed in locomotor activity
in the open-field test, sociability in the three-chambered social
interaction test, or memory function in the fear conditioning
or extinction (Ago et al., 2015). In another study, we found
that VPAC2 receptor-deficient mice exhibited abnormal dendritic
morphology of the prefrontal cortex neurons, but not basolateral
amygdala neurons (Ago et al., 2017).

Recently, Tian et al. (2019) developed a conditional human
VIPR2 CNV bacterial artificial chromosome (BAC) transgenic
(hVIPR2-BAC tg) mouse model of VIPR2 CNV. They reported
that hVIPR2-BAC tg mice showed cognitive, sensorimotor gating,
and social behavioral deficits and decrease in the complexity of
dendritic arborization of the striatal spiny projection neurons.
These findings suggest that the VPAC2 receptor plays an
important role in the regulation of the dendritic morphology
and that the VIPR2-linkage to mental health disorders may be
due in part to overactive VPAC2 receptor signaling during a
critical time of synaptic maturation in the prefrontal cortex and
striatum circuitry. A limitation of these mouse genetic models,
however, is that gene function is impaired during development
as well as in the adult. Because VPAC2 expression is altered
in both time periods, effects on behavior cannot necessarily be
attributed to alterations occurring development. Furthermore,
compensatory mechanism might come into play with long term
alterations in gene expression. Thus pharmacological approaches
have been used to study specific roles of VPAC2 receptors in
brain development.

EFFECTS OF VPAC2 RECEPTOR
ACTIVATION ON AXON AND DENDRITE
GROWTH IN CULTURED CELLS

Given that altered dendritic arborizations were observed in
the medial prefrontal cortex of VPAC2 receptor knockout and
VPAC2 receptor agonist-treated mice, we have studied the ability
of native PACAP and VIP and Ro 25-1553 to regulate the
formation of axons and dendrites in vitro using cultured neurons
from wild-type embryonic day 16 mouse cortices. VIP and Ro
25-1553 were found to dose-dependently inhibit the growth of
both axons and dendrites in these cultures, effects that were
fully blocked by H89, a PKA inhibitor and a VPAC2 receptor

antagonist PG 99-465 (Takeuchi et al., 2020). Interestingly,
PACAP had no detectable effect on axons or dendrites at lower
doses, but stimulated growth at relatively high doses, an effect
which was blocked by a MAPK/ERK kinase (MEK) inhibitor
U0126 (and not H89). Our interpretation of this data is that
VPAC2 and PAC1 receptor activation have opposing effects on
developing axons and dendrites, where VPAC2 inhibits and PAC1
stimulates growth. The stimulatory effects on PAC1 by lower
concentrations of PACAP in this cell culture model are canceled
by PACAP’s inhibitory action on VPAC2 receptors. VIP, on the
other hand, only inhibits growth because it does not significantly
activate PAC1 receptors. In physiological settings, the ultimate
effects depend on the balance of both ligands and receptors
(Figure 1). Notably, PAC1 receptors are expressed as early as
embryonic day 9.5 and remain expressed thereafter (Shioda et al.,
1997; Waschek et al., 1998), whereas VPAC2 receptors do not
become strongly expressed until about postnatal day 6 to day 12.
Thus, during early development the presence of PAC1 receptors
positively drives axon and dendrite growth. The later onset
of VPAC2 receptor expression may then provide a regulatory
mechanism to control this process. Collectively, we propose that
miss-timed, ectopic, or lack of VPAC2 receptor during critical
times of postnatal development will result in a failure to fine
tune synapse formation, resulting in synaptic aberrations and the
failure to properly develop circuits that are critical to cognition.
Moreover, we propose that similar processes are affected in adult
mice in the context of synaptic plasticity.

CONCLUSION

In this review, we present an overview of human genetic
studies implicating VIPR2 CNVs as a risk factor for developing
schizophrenia, along basic research findings in mice and cell
culture models that provide potential mechanisms to explain the
linkage. Our studies suggest that excessive activation of VPAC2
signaling during development influences the formation and
maturation of neural structures in the brain such as the prefrontal
cortex, thereby impairing sensory information processing and
cognitive function. Reported VIPR2 duplications directly lead to
excessive signaling via the VPAC2 receptor owing to increased
VPAC2 expression. In addition, considering that the PAC1
receptor is selectively activated by PACAP, VIP–VPAC2 signaling
may become amplified under certain conditions of PACAP
deficiency such as aging (Reglodi et al., 2018a). A detailed analysis
for abnormalities in development, maturation and tuning of
neurons due to VPAC2 receptor activation may help to uncover
the molecular mechanisms underlying the etiology of mental
health disorders such as schizophrenia and ASD.
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