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The Human Microbiome Project

(HMP) [1,2] is a concept that was long

in the making. After the Human Ge-

nome Project, interest grew in sequenc-

ing the ‘‘other genome’’ of microbes

carried in and on the human body

[3,4]. Microbial ecologists, realizing that

.99% of environmental microbes could

not be easily cultured, developed ap-

proaches to study microorganisms in situ

[5], primarily by sequencing the 16S

ribosomal RNA gene (16S) as a phylo-

genetic and taxonomic marker to identify

members of microbial communities [6].

The need to develop corresponding new

methods for culture-independent studies

[7,8] in turn precipitated a sea change in

the study of microbes and human health,

inspiring the new term ‘‘metagenomics’’

[9] both to describe a technological

approach—sequencing and analysis of

the genes from whole communities rath-

er than from individual genomes—and

to emphasize that microbes function

within communities rather than as indi-

vidual species. This shift from a focus on

individual organisms to microbial inter-

actions [10] culminated in a National

Academy of Science report [11], which

outlined challenges and promises for

metagenomics as a way of understanding

the foundational role of microbial com-

munities both in the environment and in

human health.

Pioneering medical microbiologists

applied these approaches, finding far

more microbial diversity than expected

even in well-studied body site habitats

[12]. Technological advances further

enabled sequencing of communities

across the human body, and immunolo-

gists began exploring the fundamental

role of microorganisms in the maturation

of the innate and adaptive immune

systems. Initial metagenomic studies of

human-associated microbial communi-

ties were performed using the traditional

Sanger platform [13,14]. Upon intro-

duction of pyrosequencing [15], the

number of 16S-based data sets increased

dramatically [16,17]. The time was right

to invest in a concerted study of the

microbial communities associated with

the human body and the metabolic

capabilities they provide—the human

microbiome (Figure 1) [18].

To coordinate these efforts relating the

microbiome to human health, the NIH

Common Fund launched the HMP as a

community resource program (http://

commonfund.nih.gov/hmp/) [19]. One

of its main goals was to create a baseline

view of the healthy human microbiome

in five major areas (airways, skin, oral

cavity, gastrointestinal tract, and vagina)

and to make this resource available to

the broad scientific community. Charac-

terizing the baseline state of the micro-

biota is a critical first step in determining

how altered microbial states contribute

to disease (e.g., [13,20–23]). Previous

work showed wide inter- and intra-

personal diversity of human-associated

microbes [24], necessitating analysis of a

large number of subjects and character-

ization of many reference bacterial

genomes [25] to assist in interpretation

of metagenomic data. The scope of the

HMP thus required a particularly diverse

consortium (Figure 2A), and collabora-

tion among these teams ultimately stim-

ulated research growth throughout the

field and produced a study including the

first consistent sampling of many clini-

cally relevant body habitats, within a

large population, with paired 16S profil-

ing and deep metagenomic sequencing

coverage for hundreds of microbial

communities.

The HMP required careful consider-

ation of ethical, legal, and social impli-

cations (ELSI) unique to the study of the

microbiome [26]. Such research raises

questions regarding traditional distinc-

tions between self and non-self, human
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and non-human, genetics and environ-

ment, and health and disease. The

prospect of manipulating the microbiota

in ways that could permanently alter an

individual’s biological identity requires

the development of new ethical para-

digms analogous to, but not identical to,

those already considered for gene thera-

py. Likewise, just as gene patents have

proven controversial, defining who

‘‘owns’’ a microbiome raises difficult

questions of intellectual property. The

ELSI team helped to develop an appro-

priate sample collection protocol, to draft

a template for informed consent, and

consulted on ethical issues arising during

the study, such as the possibility that

unique human microbiome ‘‘signatures’’

[27] might compromise participant pri-

vacy. A portion of the HMP’s dedicated

research budget continues to be commit-

ted to integrating multidisciplinary ap-

proaches (including philosophical, social

science, and legal methods) to study these

issues and involve stakeholders including

study participants, scientists, policy mak-

ers, patients, and indigenous populations.

Planning for Human
Microbiome Studies: Tools,
Techniques, and Design

Any study of human populations must

put both subject protection and study

design first, and the HMP was no excep-

tion. Power calculations for microbiome

studies in human cohorts are particularly

challenging, as they must simultaneously

address assay types (e.g., 16S versus shot-

gun), depth of sequencing, taxon detection,

and fold abundance changes in clades,

genes, or pathways of interest [28–31].

After study design, as the HMP spanned

multiple sequencing centers over a pro-

longed duration, the group established

standardized and benchmarked protocols

for sample collection [2], handling, and

subsequent 16S profiling [32]. Metage-

nomic library construction was likewise

standardized among centers, and stringent

quality control was aided by the optimiza-

tion of 16S read processing [33] and by

improved taxonomic frameworks for clas-

sification of microbial sequences prior to

biological interpretation [34].

Finally, quality data generation from

appropriately designed microbiome stud-

ies enables a variety of subsequent com-

putational analyses (Figure 2B). While we

refer the reader to existing broader reviews

of human microbiome bioinformatics [35–

37], here we highlight numerous recent

approaches specifically developed during

the HMP. Several of these focused on

microbial interactions, such as ecological

network reconstruction [38,39]. Other

computational methods dealt with meta-

genomic sequences, including both assem-

bly-based [40,41] and assembly-free anal-

yses of microbial community membership

[42] and metabolic function [43]. Both

data types enable taxonomic and phylo-

genetic profiling [44,45], and ecological

metrics proved to associate microbial,

gene, and pathway diversity on an un-

precedented scale [2]. The HMP Data

Analysis Coordination Center (DACC,

http://hmpdacc.org) hosts all available

HMP data and many tools, focusing the

tremendous quantity of raw data through

lenses such as SitePainter [46]; IMG/

HMP, an HMP-specific version of the

Figure 1. Timeline of microbial community studies using high-throughput sequencing. Each circle represents a high-throughput
sequence-based 16S or shotgun metagenomic bioproject in NCBI (May 2012), indicating the amount of sequence data produced for each project
(circle area and y-coordinate) at the time of publication/registration (x-coordinate). Projects are grouped by human-associated (red), other animal
(black), or environmental (green) communities, and shotgun metagenomic projects are marked with a grey band. Selected representative projects are
labeled: open ocean [68], deep sea [69], lean mouse [70], diarrheal illness [71], costal ocean [72], lean/obese gut [53], human microbiome [56],
MetaHIT (gut) [58], cow rumen [73], soil (NCBI BioProject PRJNA50473), and human gut [74]. Note that HMP has deposited a total of 7.44 terabases of
shotgun data in SRA, of which 49% is host DNA derived data that was filtered and only available through protected access in dbGaP project
phs000228.
doi:10.1371/journal.pbio.1001377.g001
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Integrated Microbial Genomes (IMG [47])

system; METAREP [48]; and MG-RAST

[49], and efforts are ongoing to provide

these data for meta-analysis alongside

other human microbiome studies in the

cloud.

Community Structure, Function,
and a ‘‘Core’’ Human
Microbiome

The HMP was designed in part to

address a key question about our microbial

selves: do all humans have an identifiable

‘‘core’’ microbiome of shared components

comparable to our shared genome [50]?

Several definitions of ‘‘core’’ have been

proposed, recently unified in one concep-

tual framework [51]. Earlier studies re-

ported that different people shared few

microbes in their gut and skin microbiota

[17,52–56], a greater fraction of their oral

microbiota [56,57], or might be classifi-

able into multiple core microbiomes based

on vaginal [20] and gut communities [58].

The HMP provides a comprehensive

picture of the human microbiome cover-

ing multiple body sites and thus an in-

depth exploration of these concepts. The

study confirmed high inter-individual var-

iation [59] and showed that even rare

organisms in these communities are im-

portant reservoirs of genetic diversity [60].

Additionally, the large HMP cohort shows

that the composition of the gut micro-

biome rarely clusters subjects into discrete

types, as was suggested before on more

limited data [61]; although other habitats

such as the vagina can exhibit such

clustering [20], the gut was most often

characterized by smooth abundance gra-

dients of key organisms [2].

A potentially more universal ‘‘core’’

human microbiome emerged during the

consideration of microbial genes and

pathways carried throughout communi-

ties’ metagenomes. While microbial or-

ganisms varied among subjects as de-

scribed above, metabolic pathways

necessary for human-associated microbial

life were consistently present, forming a

functional ‘‘core’’ to the microbiome at all

body sites [2,43,53]. Although the path-

ways and processes of this core were

consistent, the particular genes that im-

plemented them again varied. Microbial

sugar utilization, for example, was en-

riched for metabolism of simple sugars in

the oral cavity, complex carbohydrates in

the gut, and glycogen/peptidoglycan deg-

radation in the vaginal microbiome [62].

The healthy microbiome may thus achieve

a consistent balance of function and

metabolism that is maintained in health,

but with fine-grained details personalized

by genetics, early life events, environmen-

tal factors such as diet, and a lifetime of

pharmaceutical and immunological expo-

sures [41].

The Healthy Microbiome
Informs Studies of Disease

Data from individuals without overt

signs of disease serve as an excellent

reference for disease-associated micro-

biome studies, while also providing a

comprehensive baseline for comparison

of Western populations with disparate

geographic, ethnic, and genetic cohorts

[63]. The adoption of uniform sampling,

nucleic acid extraction, sequencing, and

analysis protocols is an important step in

such integration, with some success al-

ready realized in, for example, several

aspects of autoimmune disease. The in-

flammatory bowel diseases have long been

linked to the human gut microbiome [22],

with integration of host genotype, gene

expression, and microbial membership

now suggesting mediation of specific

host-microbial interactions by human gene

products as well as by host environment

[64,65]. Bacteria are of course not the only

mediators of dysbiotic disease, and meta-

genomic approaches can also be used to

identify potential viral etiologies (e.g., in

pediatric fever of undefined origin [66]).

Likewise the ‘‘healthy’’ microbiome pro-

Figure 2. HMP consortium activities as a model for microbiome data generation and analyses. (A) Initiatives within the HMP coordinated
to isolate samples, generate data, perform analysis, and publish results. Technology development was employed to develop novel bacterial culture and
DNA isolation techniques. Ethical Legal and Social Implications (ELSI) work anticipated societal implications and guided policies associated with human
subject microbiomes. Clinical sites were collected samples from large cohorts of healthy individuals, with nucleotide sequence information derived at
four sequencing centers at the Baylor College of Medicine (BCM), the Broad Institute, the J. Craig Venter Institute (JCVI), and the Washington University
Genome Institute (WUGI). Additional demonstration projects assessed primarily microbiome alterations related to disease. In addition to analysis
throughout the HMP consortium, computational tools were funded to address, for example, genome assembly, microbial ecology, and statistical
modeling. A data analysis and coordination center provided a portal to all data generated. (B) Overview of the analysis approaches that were the
ultimate product of the HMP consortium, corresponding to data products and protocols available at http://hmpdacc.org.
doi:10.1371/journal.pbio.1001377.g002
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vides a baseline not only for integration

with disease-related studies, but for broad-

er populations such as a recent compari-

son using HMP protocols among a cohort

of pregnant women [67]. The normal

variation of the microbiome within

healthy states and its potential misregula-

tion in disease is thus being pursued in

earnest, as related laboratory and compu-

tational methods continue to be adapted

to better characterize the impact of

bacteria, archaea, viruses, and fungi

throughout human body habitats.

The HMP has thus greatly advanced

our knowledge of the microbes in a

healthy adult reference population, and

provided much-needed infrastructure in

terms of reference genomes, laboratory

protocols, computational methods, and

ELSI considerations [1,2] to help enable

a vast range of studies that will likely find

associations between human-associated

microbial communities and disease. The

next steps will be to discover which of

these microbial community changes result

from disease and which cause it, to

understand how healthy variation relates

to variation within the context of different

disorders, and to use a combination of

laboratory and computational techniques

to begin unraveling causal mechanisms on

levels ranging from the molecular to the

societal. In particular, the study of indi-

viduals of all ages and across cultures,

together with prospective longitudinal

studies and careful work in in vitro and

animal models, will be critical to develop-

ing both the science and the technology

that will allow us to alter our microbial

genomes, far easier to alter than the host

genome within each of our ‘‘human’’ cells,

in order to maintain and improve health.
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