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Abstract

Motivation: Both single-cell RNA sequencing (scRNA-seq) and DNA sequencing (scDNA-seq) have

been applied for cell-level genomic profiling. For mutation profiling, the latter seems more natural.

However, the task is highly challenging due to the limited input materials from only two copies of

DNA molecules, while whole-genome amplification generates biases and other technical noises.

ScRNA-seq starts with a higher input amount, so generally has better data quality. There exists

various methods for mutation detection from DNA sequencing, it is not clear whether these meth-

ods work for scRNA-seq data.

Results: Mutation detection methods developed for either bulk-cell sequencing data or scDNA-seq

data do not work well for the scRNA-seq data, as they produce substantial numbers of false posi-

tives. We develop a novel and robust statistical method—called SCmut—to identify specific cells

that harbor mutations discovered in bulk-cell data. Statistically SCmut controls the false positives

using the 2D local false discovery rate method. We apply SCmut to several scRNA-seq datasets.

In scRNA-seq breast cancer datasets SCmut identifies a number of highly confident cell-level

mutations that are recurrent in many cells and consistent in different samples. In a scRNA-seq

glioblastoma dataset, we discover a recurrent cell-level mutation in the PDGFRA gene that is highly

correlated with a well-known in-frame deletion in the gene. To conclude, this study contributes

a novel method to discover cell-level mutation information from scRNA-seq that can facilitate

investigation of cell-to-cell heterogeneity.

Availability and implementation: The source codes and bioinformatics pipeline of SCmut are avail-

able at https://github.com/nghiavtr/SCmut.

Contact: yudi.pawitan@ki.se

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Cell-to-cell heterogeneity is a common feature in cancer and it has

potentially important clinical consequences (Huang, 2009), but it is

not possible to study this phenomena using traditional bulk-cell

sequencing. Recent advances of single-cell sequencing technologies

enable the study of molecular processes at cell level (Navin, 2014;

Van Loo and Voet, 2014; Wang and Navin, 2015; Wen and Tang,

2016). Detection of genomic mutations using single-cell DNA
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sequencing (scDNA-seq) has been reported for several diseases, e.g.

breast cancer (Wang et al., 2014) and renal carcinoma (Xu et al.,

2012). However, with very low-input materials coming only from

two copies of DNA molecules (Navin, 2014; Van Loo and Voet,

2014), scDNA-seq suffers many problems such as technical errors,

amplification bias, low physical coverage, chimeric DNA, non-

uniform coverage, allelic drop-out (ADO) event, etc (Van Loo and

Voet, 2014; Wang and Navin, 2015). General analysis tools for

detecting single-nucleotide variants (SNVs) from scDNA-seq data

that address some of these issues have appeared recently, e.g.

Monovar (Zafar et al., 2016).

Single-cell RNA sequencing (scRNA-seq) has also a considerable

development in recent years. Even though a mammalian cell contains

a very low amount of RNAs (Wang and Navin, 2015), the number of

copies of RNAs in a cell is still much greater than that of DNAs.

ScRNA-seq has been widely used in investigating gene expression of

cells. The information of SNV and allele-specific expression (ASE) of

single cell from scRNA-seq have also been investigated recently. For

example, in Kim et al. (2015a), the authors predict that only 17.8%

stochastic ASE patterns contribute to biological noise. Similarly,

Borel et al. (2015) report that 76.4% of heterozygous SNVs display

stochastic monoallelic expression in single cells. Recently, Kim et al.

(2015b) study the heterogeneous expression of SNVs in a study of

patient-derived xenograft cells of lung adenocarcinoma.

Bulk-cell RNA sequencing (bcRNA-seq) from a population of

cells has been used to detect genomic variants in many studies (Goya

et al., 2010; Tang et al., 2014). For instance, in recent study, Piskol

et al. (2013) report that over 70% of all expressed coding variants

are identified from RNA-seq, and whole exome sequencing (WES)

and RNA-seq have comparable numbers of identified exonic var-

iants. So it is natural to investigate genomic variants from the

scRNA-seq data. For example, Chen et al. (2016) investigate the

single-cell single-nucleotide polymorphisms (SNPs) based on

scRNA-seq in colon cancer. However, up to now, to our best know-

ledge, there are no methods specifically designed to detect cell-level

somatic mutations from scRNA-seq.

In this study, we show that mutation detection methods that are

developed for either bulk-cell or scDNA-seq data do not work well

for the scRNA-seq data, as they produce too many false positives.

We propose a novel statistical method—called SCmut—to identify

cells that harbor mutations discovered in bulk-cell data. In brief, the

method first collects somatic mutations from bulk-cell DNA

sequencing (bcDNA-seq) of tumor and matched germline tissues.

Then, combining with the collection of SNVs of single cells

extracted from scRNA-seq, SCmut statistically detects the somatic

mutations at cell level using the two-dimensional local false discov-

ery rate (2D local fdr) method. We apply the method to several

scRNA-seq datasets from (i) two breast cancer patients in a recent

study (Chung et al., 2017), (ii) two sets of cells from the breast can-

cer cell line MDA-MB-231, and (iii) one set of glioblastoma cells. In

(i) the discovered cell-level mutations are well separated between

tumor and non-tumor cells, and in (ii) the mutations are replicated

in two independent datasets. In the glioblastoma dataset (iii), we dis-

cover a cell-level mutation that is highly correlated with a well-

known 24 bp in-frame deletion in the PDGFRA gene. The cell-level

mutation information can be used to support the characterization of

cell-to-cell heterogeneity in cancer.

2 Materials and methods

The analysis pipeline is presented in Figure 1. First, the FASTQ files

of scRNA-seq and bcDNA-seq are put through preprocessing steps

for alignment, duplicate removal, recalibration, etc. to generate

aligned sequences in BAM files. Next, the DNA samples of tumor

and germline are used to obtain somatic mutations. Then, variant

calling is implemented to all data samples of both single cell and

bulk cell to get the list of SNVs. Finally, statistical methods are

applied to the SNV list to discover cell-level mutations. Details of

each step are presented in the following sections.

2.1 Data preprocessing
For DNA-seq data, which are the WES data in our examples, the

FASTQ files are mapped to human hg19 annotation of Ensembl

GRCh37.75 using BWA (Li and Durbin, 2009) version 0.7.10 to

achieve aligned reads (BAM files). After mapping, duplicate reads

are marked and removed to reduce biases from library preparation,

e.g. PCR artifacts using Picard (http://broadinstitute.github.io/pic

ard/) version 2.3.0. Realignment around indels (GATK

IndelRealigner) are implemented to improve the read alignment pos-

sibly caused by mismatches. Finally, base quality scores are recali-

brated (GATK BaseRecalibrator) to deal with the problems of over-

or under-estimated scores caused by errors of sequencing machines.

These two last steps are applied with the supports of known variant

sites from Phase I of 1000 Genomes Project and dbSNP-138 (Sherry

et al., 2001). All the tools of GATK are implemented in GATK ver-

sion 3.6.

To process RNA-seq data, the FASTQ files are also mapped to

human hg19 annotation of Ensembl GRCh37.75, but using Tophat

(Trapnell et al., 2009) Version 2.0.12 and Bowtie2 (Langmead

et al., 2009) Version 2.2.3 to create BAM files. Then the follow-up

processes are generally similar to the processing workflow of DNA-

seq data. However, to avoid possible specific pitfalls of RNA-seq

data, such as sequences overhanging into the intronic regions, after

the step of removing read duplicates, an extra step (GATK

Split’N’Trim) is applied. In this step, reads marked with ‘N’ symbol

are eliminated and sequences overhanging regions into the intronic

regions are hard-clipped.

After the preprocessing phase, the reads of RNA-seq and DNA-

seq data are aligned and summarized for downstream analysis.

2.2 Somatic mutation detection from bcDNA-seq and

variant calling
From the bcDNA-seq of tumor tissue and matched germline, the

somatic mutations can be discovered by any somatic mutation detec-

tion methods, such as Mutect (Cibulskis et al., 2013) or VarScan

(Koboldt et al., 2012), etc. For the breast cancer and GBM patients

data, we detect somatic mutations with the support of the databases

of known SNP and indels from Phase I of 1000 Genomes Project

and dbSNP-138 (Sherry et al., 2001).

Next, all samples of both single cells and bulk tissue are put

through variant calling using SAMtools (Li et al., 2009) version 1.3

followed by VarScan (Koboldt et al., 2012) version 2.3.7. An SNV is

retained for further analysis only if it has at least (i) five supporting

reads, (ii) 1% variant frequency, and (iii) 15 average quality score,

for at least one sample. For each valid SNV, we compute the cell-

level statistics, including total reads and variant-allele frequency

(VAF).

2.3 2D local false discovery rate
Ideally, a variant caller with its statistical method should achieve a

high specificity and minimize the number of false positive mutations

as possible. However, as we show in Section 3.1, when applied to

scRNA-seq data, the traditional methods designed for DNA-seq
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data produce high false positive rates (FPRs). Therefore, we intro-

duce a statistical approach to overcome this issue.

To get a procedure that is both efficient and has a good control

of the false positives, we adapt a fdr2d procedure, originally devel-

oped for analysis of microarray data (Ploner et al., 2006). Let denote

the total reads by z1 and the VAF by z2, measured for each SNV

from each cell. The fdr2d based on z ¼ ðz1; z2Þ is defined as

fdr2dðz1; z2Þ � p0
f0ðz1; z2Þ
f ðz1; z2Þ

; (1)

where f0ðzÞ is the 2d-density function of the statistic from the null

variants, and f(z) the marginal density from all sites. The parameter

p0 is the proportion of null variants; for simplicity, in the current ap-

plication, we set p0 ¼ 1, which is conservative since that is its max-

imum value.

The fdr2d measures the relative contributions of null SNVs to

the observed density at z, so it measures the rate of false discoveries

if we declare the sites with observed value z ¼ ðz1; z2Þ to be muta-

tions. Thus we can control the false positives directly by limiting the

estimated fdr2d. Since the non-mutations are not known, a key step

of the method is to generate z by Monte Carlo sampling from non

bc-mutation sites in the bc-DNA data. A non-parametric smoothing

procedure is then used to estimate fdr2d.

Denote by SNV1; . . . ; SNVm the bc-mutation sites from the

bcDNA-seq data. The observed statistics are z values from these m

SNVs across all single cells 1; . . . ;n. Let Z be the m�n matrix of

observed z values. For convenience, assume each cell of the matrix

contains the pair of statistics (z1, z2). The data required to estimate

f0ðzÞ are based on K random samples, each of size m, of the null

SNVs, i.e. the non bc-mutation sites. As for the bc-mutations we

limit to SNVs with VAF ¼ 0 in the germline, since somatic muta-

tions are not likely to have any variant in germline. Denote these

samples as Z�1; . . . ;Z�K, representing samples of Z under the null hy-

pothesis of no mutation. In all of the examples in this paper we use

K¼100 samples.

In principle, we could use non-parametric density smoothing to

estimate f(z) from the observed z’s, and f0ðzÞ from Z�1; . . . ;Z�p, then

compute the fdr2dðzÞ by simple division. However, in practice this

approach is problematic: at the edges of the distribution of z the

ratio is noisy, and to control the noise, different amounts of

Fig. 1. The pipeline for detecting cell-level mutation from scRNA-seq data. First, the FASTQ files of scRNA-seq and bcDNA-seq are put through preprocessing

steps for alignment and clean-up to create aligned sequences in BAM files. Next the somatic mutations are detected from bcDNA-seq data, and both single-cell

and bulk-cell data are put through variant calling procedures. Suppose the data contain n single cells and the number of obtained SNVs is M. Finally statistical

methods, particularly the 2D local false discovery rate, are used to identify cell-level mutations. The bottom-right panel is an example of cell-level mutations dis-

covered by SCmut from the single cells of primary tumor of patient BC03 in this study. The contour map represents the statistics from the permutation in 2D local

fdr method, and each filled-circle point presents a mutation of a single cell. The red dots and blue triangles indicate the tumor cell and non-tumor cell, respective-

ly. The significant cell-level mutations with fdr2d < 0:2 and fdr2d < 0:05 are marked by orange (light) and brown (dark) squares, respectively

Cell-level mutation detection from scRNA-seq 4681



smoothing are required for the two functions. Statistically it is better

to estimate

rðzÞ � Kf0ðzÞ
f ðzÞ þ Kf0ðzÞ

;

as the target parameter, and compute the fdr2d as

fdr2dðzÞ ¼ p0
rðzÞ

Kf1� rðzÞg ; (2)

so only a single smoothing operation is needed. The 2d-estimation

of r(z) involves:

1. treating all the statistics from Z�1; . . . ;Z�K as ‘successes’ and the

observed statistics from Z as ‘failures’, so that r(z) is the propor-

tion of successes as a function of z.

2. Performing a non-parametric smoothing of the success-failure

proportion as a function of z.

Further details of the 2D local fdr approach are given in the

Supplementary Report.

After the fdr2d estimation, each observed candidate of the cell-

level mutations has a corresponding fdr2d value (Pawitan et al.,

2005). The threshold of fdr2d < 0:2 is typically used in our exam-

ples. Note that fdr2d is not a P-value, so it does not follow the usual

reasoning for P-value thresholds. For example, if we report 10 sig-

nificant mutations with fdr2d < 0:2, then we expect only <2 false

positives or >8 true positives. So, fdr2d < 0:2 is a reasonable cutoff,

while fdr2d < 0:05 is too conservative and would lead to unneces-

sarily low sensitivity.

2.4 Datasets
2.4.1 Breast cancer patient dataset

The full dataset from Chung et al. (2017) contains 11 breast cancer

patients from different (predicted) molecular subtypes Luminal A,

Luminal B, HER2-enriched and Basal-like. We select two patients

BC03 (HER2-enriched) and BC07 (Basal-like) because they have

scRNA-seq data of the tumor and lymph node tissues. In addition,

we also collect the bulk-cell whole exome sequencing (bcWES) data

of the primary tumor, lymph node and the matched blood. For the

scRNA-seq, cells were processed by Fluidigm C1 system combining

with SMARTer Ultra Low Kit for cell capture and library prepar-

ation. In bcRNA-seq, bulk RNAs were extracted from pooled cells

or tumor tissues using RNeasy Plus Micro kit and prepared with

SMARTer Ultra Low Kit. Then, the cDNAs libraries were sequenced

using Nextera XT DNA Sample Prep Kit for cDNAs amplification

following by HiSeq 2500 sequencing system (Illumina) with 100 bp

paired-end read long. Each single cell from the scRNA-seq data con-

tains 5.8 6 1.4 million reads. The scRNA-seq data were downloaded

from the NCBI Gene Expression Omnibus database under the acces-

sion code GSE75688. The bulk WES data were downloaded from

the NCBI Sequence Read Archive under the accession code

SRP067248.

After eliminating low quality data (Chung et al., 2017), patients

BC03 and BC07 contain, respectively, 33 and 50 cells from the pri-

mary tumor, and 53 and 52 cells from the lymph node. For bcWES

data, the exomes are captured and sequenced by SureSelect XT

Human All Exon V5 kit and HiSeq 2500 Illumina system using

100 bp paired-end mode. The coverage is 100� for tumors and 50�
for blood samples. The authors also separated the cells into tumor

and non-tumor (lymphocyte) cells. The further details of the datasets

are referred to the original paper.

2.4.2 Breast cancer cell-line dataset

The dataset includes a batch of 96 scRNA-seq samples from triple-

negative breast cancer cell line (MDA-MB-231) (control group), and

another batch of 96 scRNA-seq samples from the same cell line but

treated with metformin (treated group). Single cells were captured

and sequenced using a combination of Fluidigm protocol and

Illumina HiSeq machine. There are on average 4.9 million read-

pairs per cell, with read length 100 bp. Two cell groups were

sequenced in separate batches, thus making them fully independent.

After removing empty-cell wells (the negative controls), there remain

82 and 88 cells in the control group and the treated group, respect-

ively. Since there are no available DNA-seq of the cancer cell line

and matched normal germline, we obtain 99 confirmed-somatic

mutations of MDA-MB-231 cell line from the COSMIC database

(Forbes et al., 2017) for downstream analysis (available in

Supplementary Table S1 of the Supplementary Report).

2.4.3 Glioblastoma dataset

This dataset contains 96 cells from a primary brain tumor of a glio-

blastoma multiforme (GBM) patient (patientID SF10282) from a re-

cent study (Müller et al., 2016). Libraries of single cells were

captured and prepared on the Fluidigm C1 system then sequenced

on HiSeq 2500 (Illumina) using paired-end 100 bp protocol. The

bcWES data of the tumor and matched blood were sequenced using

Illumina-HiSeq 2500 machine with 100 bp paired-end reads.

Further details of the dataset are referred to the original publication.

3 Results

3.1 Challenges of mutation detection from scRNA-seq
3.1.1 Concordance of VAFs between scRNA-seq and bulk-cell

sequencing data

To assess the quality of scRNA-seq, we first check their concordance

with the more established bcDNA-seq and bcRNA-seq. Figure 2

shows the result for primary breast cancer from patient BC03, com-

paring the VAFs from scRNA-seq (pooled across 33 cells) against

the VAFs from bcRNA-seq and bcDNA-seq (bcWES). Only com-

mon variants (present in � 50% cells) are included. The correlation

is high (r¼0.89) with bcDNA-seq (Panel b), and even higher

(r¼0.96) with bcRNA-seq (Panel a). Thus, despite the high level of

noise, scRNA-seq data can capture the underlying variant informa-

tion that exists in bulk-cell data.

3.1.2 High level of noise in scRNA-seq data

The high proportion of stochastic monoallelic expression of SNVs is

well known in scRNA-seq data (Borel et al., 2015). Figure 3 displays

the total reads (coverage) and VAFs of the data from the primary

Fig. 2. The concordance of VAFs of SNVs of scRNA-seq with bcRNA-seq (a)

and bcWES (b).
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breast cancer of patient BC03. We first apply Mutect (Cibulskis

et al., 2013) to discover the mutations in the tumor from the bcWES

data. The mutated sites are highlighted in the plots using red/blue

colors, where the red is for the mutated sites from tumor cell and the

blue is for the ones from non-tumor cell. The distributions of the

non-mutated sites (gray circles) in the scRNA-seq (Panel a) and

bcWES (Panel b) are similar. However, the distributions of the

mutated sites (in red/blue) in the scRNA-seq and bcWES are very

different.

When we include only SNVs with no germline variant (VAF ¼ 0

in germline data), the distributions of non-mutated SNVs in scRNA-

seq and bcWES are now clearly different (Panels c and d). In

scRNA-seq data (Panels a and c), SNVs with VAF � 1 are common-

ly observed across many cells. For bulk-cell data, such high VAF

would be a strong evidence for mutation sites, but there is very little

overlap between these SNVs and the bulk-cell mutation calls. In

(Panel d), the mutation sites in bcWES are detectable as the extreme

points of the distribution. But, in (Panel c), those mutation sites lie

in the middle of the distribution. These features highlight the diffi-

culty of mutation detection from scRNA-seq data alone, as the ap-

proach used for in bcWES is not likely going to work.

3.1.3 Traditional methods designed for bulk-cell sequencing data

To investigate further, we use Mutect (Cibulskis et al., 2013), a

widely used bulk-cell method to detect mutations in the single cells

of the primary breast tumor of patient BC03. In particular, the

scRNA-seq sample of each single cell (treated as tumor sample) and

the bcWES of the blood sample (normal sample) are put through the

software. We collect the detected mutations from all single cells and

plot them in Figure 4a. The gray circles of the plot are non-mutated

sites, and the red dots and blue triangles are the mutations from the

tumor and non-tumor cells, respectively. There is a total of 25 265

cell-level mutations from 24 469 mutation sites; i.e. an average of

25 265/24 469¼1.03 cells have mutations per mutation site, or

almost all mutations are singletons (seen only in one cell). The called

mutations cover the full range of VAFs and total reads above a cer-

tain value; this is an expected feature of the bulk-cell method, but

clearly unsatisfactory in this case. The distributions of the mutations

from tumor and non-tumor cells are highly overlapping, where

many red dots share the locations with blue triangles. Moreover, the

mutations from the single cells rediscover only 24 of 371 mutation

calls from the bcWES. Thus, overall, the results indicate a high pro-

portion of false positives from the mutations discovered by the

standard bulk-cell method when applied to scRNA-seq data.

3.2 Cell-level mutations in breast cancer patient BC03
We apply SCmut to detect mutations from single cells of both pri-

mary tumor and lymph-node tissues from breast cancer patient

BC03. Both primary tumor and lymph node cells have a high level

of heterogeneity, where a high proportion of different immune cells

(�50%) infiltrated into the tissues (Supplementary Table S2). The

types of cells (tumor or non-tumor) are identified in the original

study (Chung et al., 2017); we use this information to assess the

Fig. 3. Noisy data create a great challenge in identifying mutations in single

cells. (a and b) Plots of total reads versus VAFs across all SNVs for scRNA-seq

and bcWES, respectively. Panels c and d are similar to Panels a and b after

limiting by germline VAF ¼ 0. Gray circles are non-mutated SNVs and red

dots are highlighted mutated sites detected from bcWES data. The blue trian-

gles are highlighted mutated sites from non-tumor cells

Fig. 4. Comparison of SCmut to the other methods. (a) Mutations of single

cells of the primary tumor of patient BC03 discovered by Mutect. Gray circles

are non-mutated sites. The mutated sites are red dots for tumor cells or blue

triangles for non-tumor cells. (b) False positive rates computed from SCmut,

Mutect, Varscan2 and Monovar. Panels c and d are similar to Panels a and b,

respectively, but restricted to cell-level mutations that overlap with mutations

from bcWES data. Evaluation of the recovery sensitivity of SCmut and other

methods (Mutect and Monovar) using expected VAF from bcWES and

observed VAF estimated from single cells are displayed in e and f,

respectively

Cell-level mutation detection from scRNA-seq 4683
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specificity of the mutation calls, since we do not expect the non-

tumor cells to have mutations as in tumor cells.

First, we discover 371 somatic mutations from the primary

tumor using the bcWES data. Then, a total of 1 253 869 SNVs

detected across the single cells and the bulk cells are used to identify

cell-level mutations. The results of the fdr2d method for the single

cells from primary tumor dataset are presented in the panel

“Cell-level mutation detection” in Figure 1, and re-plotted in

Supplementary Figure S1. The contour map of the plot represents

the fdr2d estimate, and each point represents SNVs from a single

cell limited to the 371 bc-mutation sites above. The red and blue

points indicate the tumor cell and non-tumor cell, respectively. The

significant cell-level mutations (with fdr2d < 0:2) are marked by the

orange squares. Most of the detected significant mutations with

fdr2d < 0:2 are from tumor cells, and all satisfying fdr2d < 0:05

(marked by the brown squares) are tumor cells.

The results indicate the high specificity of SCmut, since few of

the calls are from the non-tumor cells. Looking at the top-left part

of the panel, SCmut does not call SNVs with VAF ¼ 1 as significant

mutations, as would be expected in bulk-cell analysis. In single-cell

data, these observations are quite common (Fig. 3a and c) due to

stochastic monoallelic expression (Borel et al., 2015). Thus, SCmut

is robust to the intrinsic noise of the single-cell data.

The same pipeline is used to discover cell-level mutations in the

cancer tissue from the lymph node. We compare the significant

mutations (Supplementary Figure S2) with those from the primary

tumor. The top 10 most frequent among the significant mutations

are presented in Figure 5, the full list is supplied in Supplementary

Figure S3 of the Supplementary Document. Each rectangle of the

heatmap represents the information of the mutation (row) in a single

cell (column). Seven-mutated genes detected from bcWES data are

detected in single cells of either primary tumor or lymph node

(fdr2d < 0:2): MT-RNR2, MT-RNR1, MT-ND5, MT-TI, HUWE1,

TMEM219 and INTS8. Among those, only the mutation of gene

MT-RNR2 at position 2602 of the mitochondria chromosome is

replicated in both primary tumor and lymph node.

All cell-level mutations detected with fdr2d < 0:05 are from gene

MT-RNR2 of the tumor cells in both tissues (Fig. 5). MT-RNR2 enc-

odes the humanin, an anti-apoptotic peptide that can prevent the

translocation of Bcl2-associated X protein (Bax) from the cytosol to

mitochondria to suppress apoptosis (Guo et al., 2003). It can play a

role in regulating cell survival and apoptosis via interacting with

insulin-like growth factor-binding protein 3 (IGFBP3) (Ikonen et al.,

2003). Apoptosis is an important pathway in breast cancer where the

increase of apoptosis is associated with malignant tumors due to

increased proliferation, high grade and negativity for estrogen recep-

tors of breast tumors, and worse survival (Parton et al., 2001). The

shared mutations discovered in the primary tumor and the lymph

node would identify the clone(s) that have very likely migrated from

the primary tissue to the lymph node. This is of potential clinical sig-

nificance, as these clones have thus already shown a local metastatic

potential.

Similar analyses are applied to the single-cell datasets of the pri-

mary tumor and the lymph node tissues of patient BC07. As displayed

in Supplementary Figure S4 of the Supplementary Report, there are

few mutations frequently detected in both primary tumor and lymph

node such as PSMD7(16:74339229), POLR2L(11:842418) and

SFT2D1(6:166755986). However, none of the mutations are statistic-

ally significant with (fdr2d < 0:2) in either primary tumor

(Supplementary Figure S5) or lymph node (Supplementary Figure S6).

3.3 Comparisons with other methods
3.3.1 False positive rates

We further compare SCmut to widely used bulk-cell mutation detec-

tion methods Mutect (Cibulskis et al., 2013) and VarScan2

(Koboldt et al., 2012), and Monovar (Zafar et al., 2016), a SNV de-

tection method designed for scDNA-seq data. We use the results

from patient BC03, and first compare the FPRs. The non-tumor cells

identified in the original study (Chung et al., 2017) are used as nega-

tive controls, so we can estimate FPRs from the mutation calls on

these cells.

First, we apply these two bulk-cell methods to discover somatic

mutations from each non-tumor single cell of patient BC03 using its

scRNA-seq sample (treated as tumor) and the bcWES sample of the

patient’s blood (normal). Since there are no available P-value from

results of Mutect, we infer this value from the log odds (LODT

score) (Cibulskis et al., 2013) of tumor. The LODT score is con-

structed from the likelihood ratio between the signal (true variant)

and noise. Twice the log likelihood value is approximately v2 with

one degree of freedom (Pawitan, 2013), so we can compute the

P-value for each SNV. Following the requirement of the normal

sample to carry somatic mutations with high confidence (Cibulskis

et al., 2013), we keep only the sites with significant log odds in the

normal (LODN � 2:3).

Similarly, for Varscan2 we collect only somatic P-values from

the sites with no variant in germline. For SCmut, the P-value is com-

puted from the connection between the global FDR and P-value

(Pawitan et al., 2005). P-values for SCmut are collected from both

the breast and lymph-node samples.

Monovar is run for the set of single cells from the tumor sample

of patient BC03. Since Monovar was designed for scDNA-seq data,

we adapt some tuning parameters to make them more appropriate

for scRNA-seq data. First, ADO event is common (�20%) in

scDNA-seq (Zafar et al., 2016), but not in scRNA-seq (where the

drop-out event refers to the RNA transcripts, not alleles). So we set

the “prior probability for ADO parameter a to zero”. For the “prior

probability for false positive error”, which is suitable for the

sequencing error rate of the RNA-seq data from Illumina HiSeq, we

set P¼0.003 (Schirmer et al., 2016; Wall et al., 2014; McElroy

et al., 2012). The default values are applied for the other parame-

ters. Following the original study (Zafar et al., 2016), from the set

of SNVs called by Monovar, somatic mutations are filtered by the

bulk-cell germline variants. Since Monovar does not provide P-

Fig. 5. Top 10 most frequent significant mutations from the single cells of the

primary tumor (left) and the lymph node (right) from patient BC03. The brown

and orange boxes indicate the significant mutations with fdr2d < 0:05;

fdr2d < 0:2, respectively. The light blue presents non-significant sites with

fdr2d � 0:2. The dark blue indicates sites with no supporting reads. The red

and blue at the top refer to the tumor and non-tumor groups of cells,

respectively
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values for SNVs of cells, we compute the P-values from the reported

likelihoods of genotypes as follows. Following a recent study (Singer

et al., 2018), we first transform back the normalized and Phred-

scaled likelihoods for genotypes supplied by Monovar. Each SNV

site, which is assumed biallelic by Monovar, from a single-cell data

D, has the likelihood values of three genotypes g, including L0

(wild-type or reference genotype), L1 (heterozygous variant) and L2

(homozygous variant), where Li � PðDjg ¼ iÞ or Li � PðDjiÞ in

short. Thus, the posterior probability Pðg ¼ 0jDÞ of the wild-type

can be computed as

Pðg ¼ 0jDÞ ¼ PðDj0ÞPð0Þ
P

i¼f0;1;2g PðDjiÞPðiÞ : (3)

The genotype prior P(i) for a single cell is taken from formula

(11) of Zafar et al.’s for the number of cells m¼1. So, we have

Pð0Þ ¼ 1
2 1� hÞ;Pð1Þ ¼ hð and Pð2Þ ¼ 1

2 1� hÞð , where h ¼ 0:001 is

the population-level mutation rate. We consider Pðg ¼ 0jDÞ as the

local FDR of the mutation calls, which can then be converted into

P-value, exactly as we have done for SCmut.

Figure 4b displays the FPR curves of these methods. The y-axis

presents the observed FPR under a certain P-value threshold in the

x-axis; an unbiased method should have its FPR close to the diag-

onal line. Both Mutect and Varscan2 have a very high FPR (>0.90)

even at low P-value threshold (<0.1). As already described previous-

ly, this result again highlights the challenge of scRNA-seq data for

the traditional mutation detection methods for bulk-cell data.

Monovar has a better FPR curve, but still very high (FPR > 0:7) at

the same P-value threshold (<0.1). The FPR of SCmut tracks the tar-

get diagonal line closely, indicating that it is unbiased.

To get a fairer comparison with SCmut, we further restrict the

comparison to the mutations that overlap with the somatic muta-

tions from bcWES. Figure 4c presents the cell-level mutation status

after the restriction. There remain 132, 89 and 58 single-cell muta-

tions from Mutect, Varscan2 and Monovar, respectively. As a result,

the FPRs of these methods (Fig. 4d) are similar to those without re-

striction (Fig. 4b). This result again indicates that the cell-level

mutations are over-detected by these methods.

3.3.2 Recovery sensitivity

We use the information of VAF from the bulk-cell sequencing to com-

pare the recovery sensitivity of SCmut to the other methods. The VAF

of a mutation from bcWES reflects the fraction of tumor cells with the

mutation; the latter is observed in single-cell data. Therefore, we can

use this correspondence for assessing the sensitivity of the methods.

The mutations called by SCmut (fdr2d < 0:2), Mutect and Monovar

that are concordant to the calls of bcWES are collected from the pri-

mary tumor data of patient BC03. To avoid the effects of copy number

variants, we collect the data of copy number variants from

Supplementary Data 2 of the original study (Chung et al., 2017) and

exclude all mutations in regions not having two copies in the tumor

sample. Figure 4e and f shows the results. For SCmut, the observed

VAF estimated from the cells with the mutation calls is highly concord-

ant (r¼0.89) with the expected fraction from the bcWES. The correl-

ation is significantly higher than that from Mutect (r¼0.17) and

Monovar (r¼0.20). Thus, for the cell-level mutations, SCmut shows a

better recovery sensitivity than Mutect and Monovar.

3.4 Cell-level mutations in the breast cancer cell line
We apply SCmut to the breast cancer cell line (MDA-MB-231) data-

sets which have highly homogeneous cell populations. Results of

fdr2d are presented in Supplementary Figure S8 for the control

group and Supplementary Figure S9 for the treated group. A total of

99 somatic mutations (in exon region) from the COSMIC database

are used as the bc-mutation sites. We observe 26 and 34 SNVs that

overlap with the COSMIC sites in the control group and the treated

group, respectively. All mutations in the control group are replicated

in the treated group (Supplementary Fig. S9). There is a high con-

cordance in the coverage of mutation between two groups (Fig. 6a).

Moreover, some mutations with high coverage from genes CNIH4,

PAK1IP1 and SNRPC can be preserved up to more than 90% of

cells, indicating positive controls (Supplementary Fig. S10). We

compare the recurrences of significant cell-level mutations

(fdr2d < 0:2) between two groups by their proportion, i.e. the pro-

portion of cells sharing the same mutation site, in Panel b. The

minor variation of the mutations to the diagonal line indicates a

high correlation of the recurrent proportions between two groups

(r¼0.98). Thus, there are no significant effects of the metformin on

the somatic mutations of MDA-MB-231 cell line. In other words,

the cell-level mutations detected by SCmut are consistent between

two homogeneous cell populations of the breast cancer cell line.

3.5 Cell-level mutations in the glioblastoma dataset
The results of SCmut to the glioblastoma dataset are given in

Supplementary Figures S11 and S12 of the Supplementary Report.

SCmut detects a total of 104 cell-level mutations with fdr2d < 0:2.

We discover one highly recurrent mutation at chr4:55,133,837, in-

side the PDGFRA gene, and found in 31 single cells. Intriguingly

this mutation is highly correlated with a well-known 24 bp in-frame

deletion in exon 7 of PDGFRA, which is also recurrent with many

cells expressing PDGFRA (Müller et al., 2016). The corresponding

VAFs, shown in Figure 7a, have a Pearson correlation of 0.91.

While we do not understand its biological significance, statistically

the high correlation between these two events indicates the good

sensitivity of SCmut for detecting the mutation events.

We further investigate the clinical impact of the top three recur-

rent-mutated genes discovered by SCmut, including PDGFRA,

DYNC1LI2 and CHD6 (Supplementary Figure S13). We extract the

mutation status of these genes as called by Mutect in a glioblastoma

study TCGA-GBM (Brennan et al., 2013) from the TCGA project

(https://portal.gdc.cancer.gov/). Figure 7b shows that these muta-

tions together are associated with poor overall survival (P-val-

ue¼2e�04). The results for individual genes are given in

Supplementary Figure S13 of the Supplementary Report.

(a) (b)

Fig. 6. Comparison of the mutation calls of single cells between the control

group and the treated group in the MDA-MB-231 dataset. (a) The average

(across all single cells) of read coverage of the mutations is shown. (b) The

proportions of recurrences of significant cell-level mutations with fdr2d < 0:2

in the control group (x-axis) and the treated group (y-axis) are shown. Each

circle in the panels presents one mutation. For convenience, only gene names

of the mutations with high frequent/coverage are displayed
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4 Discussion and conclusion

We have proposed a novel method (SCmut) to identify cell-level

mutations from scRNA-seq. We present the challenges of identifying

mutations from single cells, showing high levels of noise and discor-

dances between the single-cell and bulk-cell data. Traditional muta-

tion detection methods developed for bulk-cell sequencing data are

shown to produce substantial number of false positives if applied to

scRNA-seq data. We use the 2D local fdr statistic to deal with the

multiple testing issues and control the false positives.

For breast cancer patient BC03, we discover one mutation from

the humanin gene, an associated apoptosis gene in the mitochondrial

chromosome, highly preserved in the tumor cells of both the primary

tumor and lymph node. In addition, our results show that the

detected cell-level mutations are well separated for tumor cells from

non-tumor cells in the highly heterogeneous patient-derived cell

populations, and consistent in the homogeneous cell-line popula-

tions. For the glioblastoma data example, we discover a cell-level

mutation that is highly correlated with a well-known in-frame dele-

tion, while the three top-ranking cell-level mutated genes are associ-

ated with poor patient survival.

Mutation detection from scRNA-seq data has some limitations.

First, the cell-level mutations must be in the exonic regions. This is a

general disadvantage of all approaches to detect mutations from

RNA sequencing or WES data. Second, the procedure is highly de-

pendent on the quality of the alignment and hence the completeness

of the transcriptome annotation. Third, the stochastic monoallelic

expression (Borel et al., 2015) might limit the expression of the mu-

tation sites in single cells. Finally, the detection sensitivity of a muta-

tion is determined by the corresponding gene expression in the cell.

An important mutation is statistically detectable from scRNA-seq

only if it belongs to a highly expressed gene. It is challenging to as-

sess cell-level mutations in genes with low or no expression, since

the low expression could be a loss-of-function effect, but could also

be due to the low coverage of scRNA-seq data, leading to false nega-

tives. Hence, in order to detect cell-level mutation events, we recom-

mend high-coverage scRNA-seq. Further discussion about the

detection sensitivity and the coverage threshold of SCmut is pre-

sented in the Supplementary Document.

It is worth noting that SCmut focuses on detection of somatic

SNVs where the sites are homozygous in normal sample but hetero-

zygous in the tumor sample. Other types of variants such as single-

nucleotide polymorphism (variants between normal samples) and

homozygous SNVs (variants that are heterozygous in the normal

sample but homozygous in the tumor sample) are not in the scope of

this study.

To conclude, this study demonstrates that cell-level mutations

can be detected from scRNA-seq data using SCmut. The identified

mutations specific to cells can facilitate the characterization of the

cell-to-cell heterogeneity, for instance in identifying tumor/non-

tumor cells, assessing individual drug-response, profiling cell sub-

clones, etc.
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