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Abstract: Dyslipidemia is a typical trait of patients with chronic kidney disease (CKD) and it is
typically characterized by reduced high-density lipoprotein (HDL)-cholesterol(c) levels. The low
HDL-c concentration is the only lipid alteration associated with the progression of renal disease in
mild-to-moderate CKD patients. Plasma HDL levels are not only reduced but also characterized
by alterations in composition and structure, which are responsible for the loss of atheroprotective
functions, like the ability to promote cholesterol efflux from peripheral cells and antioxidant and
anti-inflammatory proprieties. The interconnection between HDL and renal function is confirmed
by the fact that genetic HDL defects can lead to kidney disease; in fact, mutations in apoA-I, apoE,
apoL, and lecithin–cholesterol acyltransferase (LCAT) are associated with the development of renal
damage. Genetic LCAT deficiency is the most emblematic case and represents a unique tool to
evaluate the impact of alterations in the HDL system on the progression of renal disease. Lipid
abnormalities detected in LCAT-deficient carriers mirror the ones observed in CKD patients, which
indeed present an acquired LCAT deficiency. In this context, circulating LCAT levels predict CKD
progression in individuals at early stages of renal dysfunction and in the general population. This
review summarizes the main alterations of HDL in CKD, focusing on the latest update of acquired
and genetic LCAT defects associated with the progression of renal disease.
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1. Introduction

High-density lipoproteins (HDL) are a highly heterogeneous class of lipoproteins,
with subclasses differing in density, size, shape, and composition. HDL heterogeneity is
the result of the action of several plasma and cellular factors such as enzymes, transfer
proteins, and membrane receptors and transporters [1]. Among these factors, lecithin–
cholesterol acyltransferase (LCAT) plays a central role, being the only enzyme able to
esterify cholesterol in plasma lipoproteins, mainly in HDL [2]. Kidney contributes to
HDL catabolism, being the major site of apoA-I and small HDL particles degradation.
These particles can be removed from the circulation by glomerular filtration, as their
size allows the crossing of the glomerular barrier [3]. In the proximal tubule, apoA-I
is entirely reabsorbed by the action of cubilin, a multiligand receptor expressed in the
apical membrane of kidney tissue which binds apoA-I with high affinity and mediates
its endocytosis [4]. There is evidence that renal cubilin-mediated uptake of apoA-I from
the glomerular filtrate might be part of a salvage process that affects plasma apoA-I/HDL
levels [5].

The link between plasma HDL and the kidney is bidirectional. On one side, chronic
kidney disease (CKD) affects plasma HDL levels, HDL structure and subclass distribution,
and HDL functionality; on the other side, inherited HDL disorders can lead to kidney
dysfunction, as in LCAT deficiency.

This review addresses the current knowledge on the two aspects: (i) how CKD
affects HDL structure, composition, and functionality, and (ii) how HDL defects affect
renal function.
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2. HDL in CKD
2.1. Dyslipidemia in CKD

CKD is a pathological condition characterized by the presence of kidney damage or
reduction of the glomerular filtration rate (GFR) for more than 3 months and it is classified
into five stages based on the values of GFR [6]. In 2017, the cases of all-stage CKD recorded
reached the global prevalence of 9.1% [7]. The onset of CKD can be attributable to a wide
range of different risk factors, including diabetes, hypertension, oxidative stress, and in-
flammation. Cardiovascular disease (CVD) represents the first cause of mortality in CKD
patients and is related to a wide range of risk factors, including diabetes, hypertension,
inflammation, and oxidative stress [8]. The risk of cardiovascular events gets higher as
the kidney function declines [9]. Dyslipidemia is a major CVD risk factor in the general
population and is frequently observed among patients with CKD. The alterations in lipid
profile of CKD patients include increased triglycerides and decreased HDL-cholesterol
(HDL-c) levels, while the levels of low-density lipoprotein (LDL)-cholesterol are within
or below the normal range [10]. Hypertriglyceridemia is one of the most common quanti-
tative lipid abnormalities and starts at early stages of CKD. Indeed, some clinical studies
have reported that plasma triglycerides concentration increases in patients with impaired
renal function when serum creatinine levels and glomerular filtration rate are still in the
normal range [11,12]. Reduced catabolism of triglyceride-rich lipoproteins (very-low-
density lipoproteins (VLDL), chylomicrons, and their remnants), as observed in individuals
with predialysis CKD [13], and increased liver secretion of these particles [14] have been
suggested to explain the hypertriglyceridemia in kidney disease.

Reduced HDL-c concentration is a typical trait of the CKD dyslipidemia. The reduction
of HDL-c and apoA-I concentrations observed in patients with CKD are partly explained
by the downregulation of apoA-I synthesis by the liver [15] but also by the defective LCAT
concentration and activity, leading to altered plasma HDL remodeling [16]. The maturation
of HDL particles is impaired in CKD due to a severely delayed LCAT-dependent conversion
of nascent discoidal preβ-HDL into mature spherical α-HDL [16,17], resulting in the
accumulation of preβ-HDL in the plasma of CKD patients [18,19]. Other factors contribute
to increase lipid-poor HDL particles in the plasma of CKD patients, like their impaired
renal clearance [20,21] and the elevated concentration of triglyceride-rich lipoproteins [22],
which represent a source of nascent HDL.

Plasma HDL in patients with CKD show a selective reduction of LpA-I–A-II par-
ticles [16], likely explained by an accelerated catabolism of these particles when LCAT
activity is reduced, as observed in genetic LCAT deficiency [23].

The proteome composition of HDL in CKD is altered, as recently reviewed by Marsche
et al. [20]. Specific HDL proteins, such as serum amyloid 1 (SSA1) and apoC-III, are
increased in CKD patients [24–26]. SSA1 is one of the major acute-phase proteins se-
creted during inflammation and is an atherogenic mediator [27]; apoC-III is an inhibitor
of lipoprotein lipase and a strong predictor of CVD risk [28,29]. Moreover, HDL from
patients on hemodialysis present an increased amount of albumin, lipoprotein-associated
phospholipase A2, apoA-IV, α-1-antitrypsin, retinol-binding protein 4 and α-2 catenin, and
lysophospholipids [30]. Besides the enrichment in these components, a reduction in apoA-I,
apoA-II, apoC-I, apoM, and paroxonase-1 (PON 1) has been reported consistently [30–33].

The structural modifications observed in HDL are associated with the impairment of
fundamental HDL functions. HDL capacity to promote cholesterol efflux from macrophages,
a parameter inversely associated with the likelihood of coronary artery disease indepen-
dently of HDL-c levels [34], is impaired in CKD patients [33,35], likely due to the HDL
enrichment in SSA1 and apoC-III and the depletion in apoA-I, apoA-II, and phospho-
lipids [20,36,37]. HDL ability to maintain correct endothelial homeostasis is also compro-
mised in CKD patients because of chronic inflammation and oxidative stress; moreover,
Speer et al. have demonstrated that in CKD patients, HDL are not only dysfunctional
but become “toxic” for the accumulation of asymmetric dimethylarginine which enhances
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reactive oxygen species (ROS) and suppresses endothelial NO bioavailability by activating
the Toll-like receptor-2 pathway [38].

HDL antioxidant ability is also impaired in patients with CKD [33,39], likely due
to a reduction in PON-1 and apoA-I content, two molecules known to exert antioxi-
dant activity [40], and a concomitant enrichment of acrolein-modified apoA-I [41]; this
latter modification also contributes to explain the reduced HDL-mediated cholesterol
efflux [31,42]. Finally, in patients with CKD, a loss of the anti-inflammatory activity of HDL
has been reported, explained at least in part by the enrichment in acute-phase proteins,
such as SAA [43], and in apoC-III, involved in the activation of inflammatory cell response
and organ damage by alternative inflammasome activation [44] (Figure 1).
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Figure 1. High-density lipoprotein (HDL) structural and functional alterations in chronic kidney
disease (CKD). Upper panel: major modifications in HDL shape and protein composition; lower
panel: altered HDL functions. Abbreviations: LCAT, lecithin–cholesterol acyltransferase; PON-1,
paroxonase-1; apoA-I, apolipoprotein A-I; apoA-II, apolipoprotein A-II; apoC-I, apolipoprotein C-I;
apoM, apolipoprotein M; apoC-III, apolipoprotein C-III; apoA-IV, apolipoprotein A-IV; SAA, serum
amyloid A; A1AT, α-1-antytrypsin; RBP4, retinol-binding protein 4; TTR, transthyretin. The arrows
indicate increase or decrease.

2.2. HDL in CKD Progression

The described quantitative and qualitative alterations of the HDL system worsen
with the progression of CKD [45]. Importantly, the reduction of HDL-c is the only lipid
abnormality associated with the progression of renal disease in mild-to-moderate CKD
patients independently of classical risk factors such as diabetes and hypertension [46].
The association between low HDL-c concentration and progression of CKD has been
demonstrated in hemodialysis patients, who present a further significant reduction in HDL-
c, apoA-I, and apoA-II concentrations compared with CKD patients at a lower stage of the
disease [16]. A large epidemiological study, involving a cohort of two million American
veterans with a median follow-up of 9 years, showed that individuals with plasma HDL-c
levels <30 mg/dL have a 10–20% higher risk for incident CKD and/or CKD progression
compared with individuals with HDL-c ≥40 mg/dL [47]. Furthermore, the data collected
highlight the existence of a U-shaped relationship between HDL-c levels and incidence
of CKD or CKD progression in the general population, in which the risk of adverse renal
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outcome is increased not only in the lowest deciles of HDL-c concentration but also in the
highest ones [47]. These findings have been confirmed by several observational studies
showing a paradoxical association between elevated HDL-c levels and cardiovascular
events or mortality in patients undergoing hemodialysis [48,49]. The association between
HDL-c level and CKD progression in non-dialysis patients with CKD is instead conflicting;
the Chronic Renal Insufficiency Cohort (CRIC) study showed that the HDL-c level was
not independently associated with the composite end point of end-stage renal disease
(ESRD) or a 50% reduction in estimated (e)GFR in 3939 adults with CKD [50]; moreover,
the causality or consequentiality of the association between HDL-c and CKD outcomes still
needs to be confirmed [24].

2.3. LCAT in CKD

Animal studies have firstly shown that chronic kidney failure is associated with
hepatic downregulation of the LCAT gene, which leads to an impaired LCAT activity [51].
Moreover, a study on rats with nephrotic syndrome highlighted a reduction in plasma LCAT
activity due to urinary excretion of the enzyme, leading to a condition of acquired LCAT
deficiency [51]. A reduction in LCAT concentration/activity has later been demonstrated in
CKD patients at different stages of the disease [16], confirming that CKD is associated with
an acquired LCAT deficiency in humans. Reduction in LCAT leads to a defective cholesterol
esterification, impaired preβ-HDL maturation, and accelerated catabolism of LpA-I–A-II
particles, as shown in individuals with genetic LCAT deficiency [52]. Since the alterations
of the lipid/lipoprotein profile in LCAT deficiency are involved in the pathogenesis of
renal disease [53], a recent study by Baragetti et al. investigated whether the reduced
LCAT concentration in CKD patients could affect the progression of renal damage [54].
The results demonstrated that reduced circulating LCAT levels predict CKD progression
in individuals at early stages of renal dysfunction independently of changes in HDL-c
levels, confirming that changes in HDL subclass distribution contribute to the progression
of renal damage [54]. Interestingly, the same study demonstrated that baseline low LCAT
concentration predicts kidney function impairment, measured as dialysis entry and/or
basal creatinine level doubling, also in the general population [54]. Individuals with low
LCAT concentration at the baseline had decreased HDL-c and high preβ-HDL, and their
sera showed a damaging effect on podocytes and tubular cells [54]. The same study also
showed that in vitro incubation of low-LCAT subjects’ sera with recombinant human LCAT
can correct HDL abnormalities and reduce the damaging effects in renal cells [54], thus
confirming the causal relation between low LCAT concentration and toxic effects.

3. Genetic HDL Defects and CKD

Glomerular lipidosis is a condition characterized by a lipid deposition which can be
mediated by infiltrating macrophages or directly affected by resident glomerular cells [55].
This renal alteration can be observed in various diseases of non-genetic origin, such as
diabetic glomerulosclerosis [56], but it can also occur in genetic diseases, like LCAT defi-
ciency [53]. This observation strongly supports the existence of a relation between lipid
alterations and kidney disease development and progression, even if the nature of this link
is still not completely understood.

Mutations in genes codifying for key proteins in lipid metabolism and HDL func-
tion, like apoA-I, apoE and apoL, have been associated with alterations in renal function
(Table 1).

ApoA-I is the major protein component of HDL in plasma. Several mutations in the
APOA1 gene have been identified: some of them are associated with reduced LCAT activity,
leading to a strong reduction of HDL levels and a high risk of early-onset cardiovascular
disease, while other mutations exert an amyloidogenic effect, increasing the propensity
of the encoded protein to form insoluble fibrils, which can deposit in different organs
including the kidney, leading to mild renal dysfunction which can progress to end-stage
kidney failure [57–59].
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ApoE is a structural key regulatory protein of chylomicrons, LDL, VLDL, and HDL [60].
Mutations in the APOE gene have been associated with lipoprotein glomerulopathy, a
rare form of renal lipidosis that leads to nephrotic syndrome [61]; histologically, this con-
dition is characterized by abnormal lipoprotein deposition in glomerular capillaries and
mesangial proliferation [62]. Moreover, the relative allele frequency of apoE affects renal
functionality in different ways: for example, Oda et al. have demonstrated that apoE2 has
higher frequency in patients with ESRD, to the disadvantage of a reduced frequency of
apoE4 [63]. Subsequent studies have confirmed that the ε2 allele of the APOE gene might
increase the risk of ESRD [64]. Finally, a reduction of APOE expression at the glomerular
level has been described in focal and segmental glomerulosclerosis and may contribute to
the pathogenesis of the disease, without a pathogenetic role of genetic variants [65]. All
these results suggest that alterations in the APOE gene could be involved in the increased
susceptibility to glomerular damage, but the eventual cause–effect relationship needs
further investigations.

ApoL1 is an apolipoprotein, encoded by the APOL1 gene, which co-localizes with
apoA-I in HDL particles [66]. Two variants of the APOL1 gene, named G1 and G2, have
been associated with an increased risk of developing renal disease in individuals of African
ancestry [67,68]. Genotypes presenting the two variant alleles in any combination (homozy-
gous G1/G1, homozygous G2/G2, or compound heterozygous G1/G2) are associated
with higher risk of renal disease, while heterozygous subjects have no or only minimally
increased risk [55,69]. APOL1 risk variants present a high frequency in subjects of African
ethnicity affected by focal segmental glomerulosclerosis, HIV-associated nephropathy, and
nondiabetic end-stage kidney disease; moreover, carriers of high-risk genotypes show a
strongly increased odds ratio for these diseases compared to individuals carrying APOL1
low-risk genotypes [68–70]. Several pathogenic mechanisms have been proposed to explain
the relationship between APOL1 risk variants and renal toxicity. Studies on renal cells or
animal models have demonstrated that the expression of APOL1 G1 and G2 variants is
associated with a number of processes contributing to the increase of renal damage, such
as mitochondrial dysfunction and reduced maximum respiration rate [71,72], induction of
the stress-activated protein kinases p38 MAPK and JNK [73], activation of protein kinase R
pathway [74], and induction of podocytes injury via activation of autophagy [75,76].

3.1. Genetic LCAT Deficiency

Familial LCAT deficiency (FLD, OMIM# 245900) is a rare autosomal recessive condi-
tion caused by loss-of-function mutations in the gene encoding LCAT. FLD patients are
characterized by markedly low plasma HDL-c levels. Clinical manifestations of the disease
include corneal opacity, anemia, and proteinuria, which usually progresses to renal failure
by the fourth decade of life. Loss-of-function mutations in the LCAT gene are also the
cause of fish-eye disease (FED, OMIM# 136120). Similar to FLD, FED is also characterized
by low HDL-c levels; however, FED patients are generally spared from renal disease and
experience relatively more benign outcomes [53]. More than one hundred mutations in
the LCAT gene have been identified to date, spread all along the LCAT gene [77]. Mu-
tations in the LCAT gene leading to the lack of protein production or to the production
of a completely inactive LCAT enzyme cause FLD [53,77]. Mutations characterized by
the production of an enzyme lacking activity on the HDL substrate (α-LCAT activity) but
retaining activity on apoB-containing lipoproteins (β-LCAT activity) cause FED [53,77].
The differential diagnosis of FLD and FED is limited to carriers of two mutant LCAT alleles
and requires the distinct in vitro measurement of α-LCAT activity using a standardized
exogenous HDL and the cholesterol esterification rate in plasma lipoproteins that include
both α and β-LCAT activity [52]. Both measurements are null in FLD cases, whereas in
FED cases, only α-LCAT activity is null [52]. Carriers of one mutant LCAT allele cannot be
classified as FLD or FED based on biochemical criteria, and differential diagnosis requires
the expression of LCAT mutants in cultured cells and subsequent measurement of LCAT
activities in cell media [78].
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From a biochemical point of view, FLD patients present abnormal plasma lipid and
lipoprotein profiles characterized by an increased amount of unesterified cholesterol,
low levels of HDL-c, a preponderance of small discoidal pre-β HDL particles, and the
presence of LpX, an abnormal lipoprotein principally composed of phospholipids (60%)
and unesterified cholesterol (30%) [79]. Under electron microscopy analysis, LpX appears
as a multilamellar vesicle with bi- or multi-layer phospholipids. The size of LpX is variable,
and its diameter ranges from 30 to 70 nm [79]. Unfortunately, there is no routine clinical
laboratory method for detecting LpX, whose presence can be detected by agarose gel, but
cannot be quantified.

Renal disease, which ultimately progresses to end-stage renal disease, is the major
cause of morbidity and mortality in FLD patients. Early in the disease course, FLD patients
develop proteinuria and focal segmental glomerulosclerosis. Kidney biopsies from FLD
patients are characteristic of the disease, with the presence of mesangial expansion, a
mild increase in mesangial cellularity, and irregular thickening of the glomerular capillary
walls [80]. Lipid deposits of unesterified cholesterol and phospholipids with resulting
vacuolization of the glomerular basement membrane and a typical ‘foamy’ appearance
are also detected [80]. These lipid deposits could contribute to accelerating the injury
by activating complement proteins; indeed, immunofluorescence microscopy analysis
highlights the presence of IgM deposit and bright granular staining for C3 in the capillary
loops, mesangium, and arteriolar walls [81,82]. Electron microscopy analysis highlights
also modification in podocytes structure with fused endothelial foot processes [83].

The pathogenesis of the renal disease in FLD is not completely understood. Animal
models of the disease are complicated by the lack of kidney injury in Lcat−/− mice, the
mouse model in which the expression of the LCAT gene is downregulated (LCAT knockout
mouse). It is important to highlight that Lcat−/− mice do not spontaneously produce
LpX [84]. Trying to induce LpX and renal disease, high-fat, high-cholesterol diets have
been administered to Lcat−/− mice, and kidney lesions were only detected in the group of
mice that accumulated LpX [84]. A different animal model has been obtained by crossing
Lcat−/− mice with sterol regulatory element binding protein (SREBP) 1a transgenic mice
(S+) [85]. These mice present a dramatic increase in hepatic lipogenesis and overproduction
of VLDL resulting in plasma LpX. When kept on regular chow diet, LCAT-KO/SREBP1a
transgenic mice spontaneously developed renal abnormalities similar to those seen in
FLD patients [85]. The direct causal role of LpX in renal disease development has been
demonstrated by a study showing that injection of LpX in Lcat−/− mice for 4 weeks led to
proteinuria and typical kidney histological hallmarks [86].

In humans, LpX appears to become trapped in capillary loops of the glomerulus
and to induce endothelial damage and vascular injury [82]. An anecdotic case reported a
significant amelioration of renal function in a FLD patient during pregnancy associated
with the disappearance of LpX in the plasma [87]. Finally, the absence of renal disease in
FED is presumably prevented by the residual LCAT activity and the lack of formation of a
significant amount of LpX [52].

Table 1 summarizes the impact of mutations in HDL-related genes on renal outcome.

Table 1. Mutations in genes codifying for key components of HDL lead to defective renal function.

Gene Mutations Impact on Renal Outcome References

APOA1 Amyloidogenic mutations

Carriers develop systemic and renal amyloidosis.
Renal disease starts as mild renal dysfunction,
which in a percentage of subjects can reach
end-stage kidney failure. Histologically, renal
damage is primarily characterized by
tubulointerstitial nephritis.

[58,59]
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Table 1. Cont.

Gene Mutations Impact on Renal Outcome References

APOE LPG-associated mutations

Carriers present LPG, a rare form of renal
lipidosis that leads to nephrotic syndrome,
usually present proteinuria and hypertension,
with impairment of renal function. Glomeruli
present an abnormal lipoprotein deposition in
glomerular capillaries and mesangial
proliferation.

[61,62]

APOL G1 and G2 high-risk variants

Homozygous carriers of high-risk genotypes
have an increased odds ratio for developing
FSGS, HIVAN, and non-diabetic end-stage
kidney disease. Moreover, overexpression of the
risk variants is reported in subjects affected by
these pathologies.

[68–70]

LCAT FLD mutations
Homozygous FLD carriers develop renal disease,
characterized by proteinuria and FSGS until the
stage of kidney failure.

[80–82]

Main renal dysfunctions associated with genetic mutations in genes codifying for ApoA-I, ApoE, ApoL, and LCAT, fundamental components
of HDL; Abbreviations: LPG, lipoprotein glomerulopathy; FSGS, focal segmental glomerulosclerosis; HIVAN, HIV-associated nephropathy;
FLD, familial LCAT deficiency.

3.2. CKD Progression in LCAT Deficiency

The rate of progression of renal disease in FLD patients is unpredictable, with some
patients quickly going from mild proteinuria to a rapid deterioration in renal function
even in the second decade of life [88]. Proteinuria can develop early in life, and during the
third and fourth decade of life, FLD patients can develop renal failure with symptomatic
edema and hypertension. Indices of renal function such as serum creatinine and creatinine
clearance usually remain normal in the first three decades of life [88]. Due to the rarity of
the disease, the natural history of FLD is still largely unknown; however, a recent work
has analyzed the progression of the disease in 18 FLD carriers followed, in some cases,
for more than two decades [89]. In this Italian cohort, half of the FLD patients had the
first renal event, classified as kidney failure or kidney transplantation or death for renal
complications, by the age of 46 years, with median time to a second event of 10 years [89].
Even within the same family, the development and progression of renal damage in FLD
patients are highly variable [52,77], suggesting that different genetic and environmental
factors can impact on kidney deterioration. Interestingly, in this cohort the plasma level
of unesterified cholesterol at diagnosis predicted the rate of progression of renal events
(dialysis, kidney transplantation, or death for renal complications), and patients with
unesterified cholesterol values above the median showed lower event-free survival [89].
The excess of unesterified cholesterol in these patients accumulates in LpX, which deposits
in the kidney [86].

No established therapy is currently available for FLD patients, and pharmacological
approaches are aimed at correcting the dyslipidemia typically associated with the disease
and at delaying the evolution of chronic nephropathy. Renal transplantation represents
an option in FLD cases with kidney failure; however, because transplantation does not
correct the underlying enzymatic defect, the disease can rapidly reoccur [89]. Enzyme
replacement therapy represents an option, and recombinant LCAT is currently under
clinical development [90,91]. Small-molecule LCAT activators, eventually orally active,
have been tested in vitro and proved to be able to activate not only wild-type but also
some mutant LCAT [92,93], but their development is still in the preclinical phase. Finally,
the HDL mimetic CER-001 recently proved to reduce albuminuria and increase podocyte
functionality in a mouse model of FLD [94] and to stabilize renal function in an FLD
patient [95].
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4. Conclusions

In the last decades, a clear connection between the HDL system and the kidney has
clearly emerged. The kidney plays a role in the catabolism of HDL, which are cyclically
interconverted in plasma by the action of a number of factors, with formation of delipidated
apoA-I and small HDL that can be filtered by the glomerulus and reabsorbed by the
cubilin receptor. Chronic kidney dysfunction is associated with reduced HDL-c levels and
significant alterations in HDL structure and function, which worsen with the progression of
the renal disease. The levels of the LCAT enzyme, a major player in HDL metabolism, are
also reduced in CKD, and its plasma concentration is associated with disease progression.
This is not surprising, since genetically reduced LCAT levels and activity, as in familial
LCAT deficiency, lead to severe HDL defects and, importantly, to renal dysfunction.

In conclusion, given the role of low HDL levels in the progression of CKD and the
predictive role of LCAT concentration in CKD onset or progression, therapeutic strategies
aimed at activating LCAT could restore HDL levels and function, potentially slowing
CKD progression.
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