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Dynamics of protein noise can distinguish between
alternate sources of gene-expression variability
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Within individual cells, two molecular processes have been implicated as sources of noise in gene
expression: (i) Poisson fluctuations in mRNA abundance arising from random birth and death of
individual mRNA transcripts or (ii) promoter fluctuations arising from stochastic promoter
transitions between different transcriptional states. Steady-state measurements of variance in
protein levels are insufficient to discriminate between these two mechanisms, and mRNA single-
molecule fluorescence in situ hybridization (smFISH) is challenging when cellular mRNA
concentrations are high. Here, we present a perturbation method that discriminates mRNA birth/
death fluctuations from promoter fluctuations by measuring transient changes in protein variance
and that can operate in the regime of high molecular numbers. Conceptually, the method exploits
the fact that transcriptional blockage results in more rapid increases in protein variability when
mRNA birth/death fluctuations dominate over promoter fluctuations. We experimentally demonstrate
the utility of this perturbation approach in the HIV-1 model system. Our results support promoter
fluctuations as the primary noise source in HIV-1 expression. This study illustrates a relatively
simple method that complements mRNA smFISH hybridization and can be used with existing
GFP-tagged libraries to include or exclude alternate sources of noise in gene expression.
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Introduction

Clonal cell populations exhibit considerable cell-to-cell varia-
tion in the levels of any specific protein (Elowitz et al, 2002;
Blake et al, 2003; Kaern et al, 2005; Raser and O’Shea, 2005;
Sigal et al, 2006; Raj and van Oudenaarden, 2008). This
variation or expression noise is essential for diverse cellular
processes, such as the regulation of probabilistic cell-fate
decisions and the generation of phenotypic heterogeneity
across isogenic cell lines (Suel et al, 2006; Maamar et al, 2007;
Chang et al, 2008; Losick and Desplan, 2008; Sureka et al,
2008; Singh and Weinberger, 2009; Razooky and Weinberger,
2011; Munsky et al, 2012). Tight control of expression noise is
also vital for optimal functioning of housekeeping proteins,
and diverse diseased states have been attributed to an increase
in expression noise in particular genes (Cook et al, 1998;
Kemkemer et al, 2002; Fraser et al, 2004; Bahar et al, 2006).
Collectively, these results suggest that gene-expression noise

profoundly affects biological function and underscore the
importance of developing methods that pinpoint the source of
noise in a given gene circuit.

Gene-expression noise is often decomposed into intrinsic
and extrinsic noise (Elowitz et al, 2002). While extrinsic noise
arises from intercellular differences in the amounts of cellular
components (e.g., RNA polymerases and ribosomes), intrinsic
noise results from the random timing and discrete nature of
biochemical reactions associated with promoter remodeling,
transcription, translation, and degradation of mRNA and
protein species. Although several techniques are available to
separate extrinsic and intrinsic noise (e.g., see Elowitz et al,
2002 and Newman et al, 2006), methods to discriminate between
the different sources of intrinsic noise are far less developed.
Experimental evidence suggests that transcriptional intrinsic
noise originates from two sources: (i) Poisson mRNA fluctuations
arising from probabilistic synthesis and decay of individual
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mRNA transcripts (mRNA birth/death fluctuations) and
(ii) promoter switching between different transcriptional
states (promoter fluctuations). mRNA birth/death fluctuations
constitute a major source of stochasticity in gene expression
since many mRNA species are present at very low molecular
counts within cells (Bar-Even et al, 2006; Newman et al, 2006;
Taniguchi et al, 2010). These mRNA fluctuations are trans-
mitted downstream through translational bursting to generate
intercellular variability in protein levels. Alternatively, protein
variability results from promoter switching between different
transcriptional states. An important consequence of promoter
switching is transcriptional bursting, where multiple mRNAs
are created per promoter-firing event (Raser and O’Shea, 2004;
Golding et al, 2005; Raj et al, 2006; Yunger et al, 2010; Suter
et al, 2011; Muramoto et al, 2012). In this study, we sought to
develop a method to determine the relative contributions of
mRNA birth/death fluctuations and promoter fluctuations to
intrinsic gene-expression noise, assuming that protein levels
are the only observable state of the system.

At a qualitative level, both mRNA birth/death and promoter
fluctuations generate similar predictions for steady-state
protein noise levels (Bar-Even et al, 2006; Ingram et al,
2008). Thus, steady-state distributions of protein abundances
across cells are insufficient to identify the source of intrinsic
expression noise. One increasingly popular method to quantify
the extent of stochastic promoter switching relies on counting
individual mRNA transcripts in single cells by single-molecule
fluorescence in situ hybridization (smFISH) (Raj et al, 2006;
Zenklusen et al, 2008; Tan and van Oudenaarden, 2010). mRNA
smFISH is a powerful and elegant method, but requires that
individual mRNA molecules be long enough to accommodate
the binding of at least 20 individual probes. This is needed to
insure the spot is sufficiently bright to be distinguished in
images and counted, and that the specific mRNA species being
analyzed are in a concentration low enough that individual
diffraction-limited spots do not spatially overlap.

Here, we report a method for discriminating mRNA birth/
death and promoter fluctuations that can be used with highly
expressed mRNAs and that is easily implemented across
different cell types. More specifically, we show that the
dynamical changes in protein noise levels, in response to
perturbations, are sufficient to determine the source of
intrinsic expression noise. These perturbations can be
generated relatively easily with readily available small-
molecule pharmaceutical agents that rapidly and efficiently
block transcription and translation. We illustrate the experi-
mental utility of this method by perturbing gene expression
from the human immunodeficiency virus type 1 (HIV-1) long
terminal repeat (LTR) promoter. Transient changes in reporter
protein noise levels, in response to small-molecule drugs,
show that LTR gene-expression noise results primarily
(490%) from promoter fluctuations.

Results and Discussion

Stochastic gene-expression model

To analyze the different sources of intrinsic noise in protein
abundance, we considered a stochastic model of gene
expression that incorporates both low-copy mRNA fluctua-
tions and transcriptional bursting (Figure 1). In this model,
mRNA transcription and degradation are stochastic events that
occur at exponentially distributed time intervals. Each
transcriptional event creates a burst of B mRNA molecules,
where B is a discrete random variable with probability
{B¼ i}¼ ai, iA{1,2,3y} and mean /BS, where the chevrons,
/S, represent the expected value. Note that B¼ 1 with a
probability of one corresponds to Poisson fluctuations in
mRNA counts while a large average burst size /BS implies
transcriptional bursting (i.e., promoter switching between
active and inactive promoter states). If m(t) denotes the mRNA
population count at time t, then the probability Pj(t) of having j

CV 2 = mRNA birth/death fluctuations + promoter fluctuations
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Figure 1 Stochastic hybrid model of gene expression with two different sources of noise. Schematic illustrating the two sources of noise: (i) Poisson mRNA fluctuations
arising from stochastic production and degradation of individual mRNA molecules, and (ii) promoter fluctuations arising from slow promoter transitions (red arrows)
between ‘Gene OFF’ and ‘Gene ON’ states. As protein population counts are often very large, stochasticity in protein dynamics is neglected.
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mRNA molecules at time t evolves according to the following
chemical master equation:

dP0ðtÞ
dt

¼ gmP1ðtÞ� kmP0ðtÞ

dPjðtÞ
dt
¼
Xj

i¼ 1

kmPj� iðtÞaiþ gmðjþ 1ÞPjþ 1ðtÞ

� ðgmjþ kmÞPjðtÞ; j 2 f1; 2; � � �g ð1Þ
where km is the frequency of transcription events and gm

represents the mRNA degradation rate (Mcquarrie, 1967).
Fluctuations in mRNA counts are transmitted downstream to
the protein level, which is assumed to be the only observable
state of the system. As protein population counts are typically
large, we can ignore Poisson noise arising from stochastic
birth and death of individual protein molecules. Accordingly,
protein dynamics are modeled deterministically as

dpðtÞ
dt
¼ kpmðtÞ� gppðtÞ ð2Þ

where kp is the mRNA translation rate, gp is the protein
degradation rate and p(t) denotes the protein count at time t.
Together, Equations (1) and (2) constitute a stochastic hybrid
gene-expression model in which mRNA time evolution
is discrete and stochastic, while protein levels evolve
continuously and deterministically.

As in many studies, protein-expression noise is quantified
using the coefficient of variation squared, defined as CV2¼
s2//pS2, where s2 is the variance in protein level and /pS
denotes the average protein abundance (Paulsson, 2004, 2005;
Pedraza and Paulsson, 2008). For the gene-expression model
described above, the steady-state protein noise level is
given by

CV2¼ Zmkp

ðgmþ gpÞ ph i
¼ kp

ðgmþ gpÞ ph i|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
mRNA birth/death fluctuations

þ ðZm� 1Þkp

ðgmþ gpÞ ph i|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
Promoter fluctuations

ð3Þ
where

ph i¼ Bh ikpkm

gpgm

ð4Þ

denotes the steady-state mean protein abundance and

Zm¼
B2
� �

þ Bh i
2 Bh i ð5Þ

represents the steady-state Fano factor (also known as ‘noise
strength’) of the mRNA population count (see Supplementary
Appendix A in Supplementary information). Equation 3
represents the total intrinsic noise in gene expression and
can be decomposed into components representing expression
variability originating from mRNA birth/death fluctuations
and stochastic promoter switching. When Zm¼ 1, then mRNA
population counts have Poisson statistics, and protein noise
levels primarily arise from mRNA birth/death fluctuations. In
contrast, when Zm¼ 10, then 90% of the protein noise is
generated through promoter fluctuations and transcriptional
bursting of mRNAs from the promoter. Finally, we point out
thatZm is directly related to the mean transcriptional burst size
/BS for many promoters. In particular, analysis shows that for

a two-state promoter model, where the ON state is unstable
and the promoter spends most of the time in the OFF state,
Zm¼ 1þ/BS (see Supplementary Appendix B). Thus, Zm is
representative of the mean burst size for many promoters
including HIV LTR, which have been shown to reside mostly in
the OFF state (Raj et al, 2006; Singh et al, 2010; Suter et al,
2011). We next explore methods to determine Zm for a specific
promoter or gene.

Equations 3 and 4 show that increasing the frequency of
transcription events, km, increases the steady-state mean
protein abundance, but decreases the steady-state noise level
such that the product CV2� ph i remains fixed. Thus, intrinsic
noise scales inversely with mean protein abundance, consis-
tent with experimental observations in both prokaryotes
and eukaryotes (Kepler and Elston, 2001; Thattai and van
Oudenaarden, 2001; Ozbudak et al, 2002; Simpson et al,
2004; Bar-Even et al, 2006; Newman et al, 2006). One method
to determine Zm would be through the scaling of CV2

versus ph i, as the scaling factor is proportional to it
(Equation 3). However, the scaling factor also depends on
the mRNA translation rate kp and protein and mRNA half-
lives, and thus, this method requires a priori knowledge of
these parameters. Moreover, for this CV2 versus ph i method,
one needs to quantify protein abundances in absolute
molecule counts rather than fluorescence intensities, as is
typically the case. Thus, steady-state measurements of protein
noise magnitude are insufficient to determine Zm and, hence,
insufficient to discriminate between the different components
of intrinsic noise. Below, we predict analytically and demon-
strate experimentally that Zm can be inferred from transient
changes of protein population mean and noise magnitude in
response to transcriptional and translational perturbations to
gene expression.

Analytical results: dynamics of protein noise
magnitude in response to perturbations

Small-molecule drugs provide a convenient method to perturb
genetic circuits and realize transient changes in protein levels
across different cell types. In this section, we theoretically
analyze the effects of small-molecule drugs that specifically
block transcription and translation. These drugs are routinely
used to determine the stability of mRNAs and proteins (Zhou,
2004; Yen et al, 2008; Hao and Baltimore, 2009). Such
experiments typically involve bulk assays that track transient
changes in mean molecular abundances across a population of
cells. In response to a complete block of translation or
transcription, the mean protein levels /p(t)S decay as,

pðtÞh i
pð0Þh i ¼ expð� gmtÞ or

pðtÞh i
pð0Þh i ¼

gp expð� gmtÞ� gm expð� gptÞ
gp� gm

;

ð6Þ

respectively, where t represents the time since drug addiction.
Thus, both mRNA and protein half-life can be quantified by
monitoring /p(t)S in response to blocks in transcription and
translation. Next, we investigate how cell-to-cell variation in
protein levels (coefficient of variation squared) changes in
response to these small-molecule drugs and whether this
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change provides information about unknown system para-
meters, such as Zm.

We first consider a translational block to gene expression.
Recall that, in this gene-expression model, protein production
and degradation are modeled as differential equations. A
translational block would result in a deterministic exponential
decay in protein levels in each individual cell, which would
shift the distribution of protein level across the cell population
to lower levels without changing its coefficient of variation.
Thus, in case of a translational block, this model predicts that
no additional information can be gained from the higher order
statistical moments of p(t).

We next consider a transcriptional block to gene expression
by setting the frequency of transcriptional events km¼ 0 at
time t¼ 0. Assuming the system was at steady state before the
block, the protein-noise level (measured by the coefficient of
variation squared, CV2(t)) changes as

CV2ðtÞ
CV2

¼ f ðgm; gp;Zm; tÞ ð7Þ

where CV2 is the initial protein-noise level given by (3), and
function f ðgm; gp;Zm; tÞ is a monotonically increasing function
of t (see Supplementary Appendix C in Supplementary
information). With transcription blocked, mRNA levels
exponentially decay, leading to an increase in cell-to-cell
variability, as would be expected from the inverse scaling of
noise and mean levels. This increase in mRNA noise is
transmitted to encoded proteins, causing CV2(t) to mono-
tonically increase over time (Figure 2). Interestingly, this
analysis indicates that the rate of increase of CV2(t) is
dependent on the source of intrinsic noise. This point is

illustrated in Figure 2, which plots the function fðgm; gp;Zm; tÞ
for different values of Zm, and hence different relative
contributions of mRNA birth/death and promoter fluctuations
to expression noise. More specifically, as we increase Zm, the
initial rise in the protein-noise level becomes more and more
gradual. Intuitively, this occurs because, when expression
noise results primarily from promoter fluctuations, then
mRNA counts are sufficiently high, and mRNA degradation
is essentially a deterministic process. Thus, when transcription
is blocked, mRNAs degrade approximately deterministically
across single cells, which reduces protein levels and generates
a slow increase in CV2(t). On the other hand, when expression
noise originates from mRNA birth/death fluctuations, then a
transcriptional block results in stochastic degradation of
mRNAs across the cells, which rapidly increases the protein-
noise levels (Figure 2). In summary, the increase in protein
cell-to-cell variability after transcription is blocked is depen-
dent on Zm, and the dynamics of CV2(t) can discriminate
between alternative sources of intrinsic stochasticity in gene
expression. Finally, we point out that although the above
results were derived assuming deterministic protein dynamics
(i.e., Equation 2), modeling protein synthesis and decay
stochastically does not significantly alter the predictions in
Figure 2 (see Supplementary Appendix D).

Equation 7 shows that the rise in protein-noise levels after a
transcription block is dependent on Zm, gm, and gp. Assuming
protein and mRNA degradation rates are known or have been
determined from the kinetics of protein decay (Equation 6),Zm

can be directly inferred from CV2(t). Since this procedure to
quantify Zm depends on examining relative changes in CV2(t),
it will work irrespective of whether protein levels are
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Figure 2 Transient changes in gene-expression noise can discriminate between mRNA birth/death and promoter fluctuations. Predictions for changes in gene-
expression noise after transcription are blocked when protein half-lifep2�mRNA half-life (gmp2gp, left, note that this is expressed in terms of degradation rate) and
protein half-life42�mRNA half-life (gm42gp, right, note that this is expressed in terms of degradation rate), for different contributions of promoter fluctuations to gene-
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2.5-h protein half-life with a 3-h (left) and 1-h (right) mRNA half-life.
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quantified in terms of fluorescence intensity or molecular
counts. However, if data on absolute protein molecular count
are available, then the frequency of transcriptional events km

and the mRNA translation rate kp can also be determined from
the steady-state protein mean and noise level (Equations 3
and 4). Hence, by combining transient data on the statistical
moments of p(t) (Equations 6 and 7) together with their
steady-state values (Equations 3 and 4), one can infer all the
parameters of the gene-expression model.

One limitation of this method is that it may not be applicable
in cases where the mRNA half-life is much shorter than the
protein half-life. This limitation arises because when mRNA half-
life is short, mRNA transcripts quickly decay to zero once
transcription in blocked. With no available mRNA, protein decay
will be dominated by protein degradation alone and will not
contain any information about the underlying mRNA dynamics.
For example, when gm is much larger than gp, then decay in
mean protein levels is always given by p(t)¼ exp(� gpt),
irrespective of whether transcription or translation is blocked
(Equation 6), hence providing no information on the mRNA half-
life. Thus, for this method to work, reporter systems need to be
used where both mRNA and protein degradation reactions are
first-order processes that occur with known comparable rates.
Moreover, small-molecule drugs used for perturbing transcrip-
tion/translation should not alter these decay rates.

Importantly, the change in protein expression variability
after a transcription block becomes insensitive toZm, whenZm

is large. For example, model predictions for Zm equal to 1 and
10 are well separated in Figure 2, but predictions for Zm equal
to 10 and 80 are close to each other. Thus, it may not be
possible to get precise estimates of Zm by this method,
especially when Zm is large (i.e., high levels of transcriptional
bursting from the promoter).

Experimental results: HIV-1 LTR gene-expression
noise results primarily from promoter fluctuations

In this section, we illustrate the experimental utility of this
method by quantifying the relative contributions of mRNA
birth/death and promoter fluctuations to HIV-1 expression
noise. Stochastic expression of viral proteins from the HIV-1
LTR promoter critically influences the viral-fate decision
between active replication and post-integration latency (a
dormant state of the virus analogous to phage lysogeny)
(Weinberger et al, 2005; Weinberger and Shenk, 2007;
Weinberger et al, 2008). Thus, this is an important system to
identify the source of intrinsic noise in gene expression.

To discriminate between the different sources of intrinsic
noise using the dynamics of protein noise magnitude, it is
essential to use a reporter system in which the mRNA half-life
is not very short compared to the protein half-life. Toward
that end, we used flow cytometry measurements of a
destabilized version of GFP (d2GFP) that exhibits a 2.5-h
half-life. Previous measurements quantified a 3-h half-life for
the d2GFP mRNA (Raj et al, 2006), so gmEgp for d2GFP,
making it an ideal reporter system for this study. To quantify
HIV-1 LTR expression noise, we use our previously described
library of isoclonal populations (Singh et al, 2010), where each
isoclonal population carries a single copy of a minimal vector

encoding HIV-1 LTR driving d2GFP, integrated at a unique
location in the human genome. To focus on intrinsic noise and
remove extrinsic contributions to noise measurements, gating
of flow cytometry data was performed as described (Newman
et al, 2006; Singh et al, 2010). To filter extrinsic noise, a two-
color fluorescent reporter system (Elowitz et al, 2002) was
implemented where each cell contains a single integrated
copy of the LTR driving d2GFP and a second copy of the
LTR driving mCherry at a different integration site (see
Supplementary Figure S7). After filtering of extrinsic noise,
isoclonal populations exhibit an inverse scaling of steady-state
noise level (CV2) with mean protein abundance (Singh et al,
2010), as predicted by the model (Equation 3). This inverse
scaling of CV2 versus ph i is consistent with both mRNA
birth/death and promoter fluctuations (Equation 3), and
as mentioned above steady-state protein noise levels are
insufficient to discriminate between the different sources of
intrinsic noise.

To discriminate between mRNA birth/death and promoter
fluctuations, we analyzed dynamic changes in HIV-1 LTR
expression noise after perturbation with two transcriptional
inhibitors, actinomycin D, a small-molecule drug that rapidly and
efficiently blocks transcription by preventing RNA polymerase II
(RNAp II) elongation (Sobell, 1985), and Flavopiridol, a small-
molecule drug that blocks transcription by inhibiting the
interaction of P-TEFb with RNAp II (Chao and Price, 2001).
Introducing either transcriptional inhibitor to any of the isoclonal
populations resulted in a decrease in d2GFP fluorescence
intensity levels that was consistent with the reported 2.5-h
d2GFP protein and 3-h d2GFP mRNA half-lives (see Supple-
mentary information and Supplementary Figure S3). The fact
that the decay in d2GFP fluorescence after actinomycin D
treatment is consistent with the reported 3-h mRNA half-life (Raj
et al, 2006) suggests that the dynamics of the reporter decay are
not affected by the presence of the drug. The data also show that
d2GFP fluorescence decays, in the presence of cycloheximide,
at B3.5h both in the presence and absence of actinomycin D
(Supplementary Figure S2; Supplementary Appendix E).

In response to both transcriptional inhibitors, the cell-to-cell
variability in fluorescence intensity levels across all the isoclonal
populations (CV2(t)) gradually increases over time (Figure 3).
Fitting the data to model predictions (see Supplementary
Appendix F for details) shows that this increase in CV2(t) is
inconsistent, for all clones, with a model where intercellular
variability in protein levels originates only from mRNA birth/
death fluctuations (Figure 3). Instead, the data indicate that
promoter fluctuations act as the dominant source of gene-
expression noise in the HIV-1 LTR promoter with a mRNA Fano
factor (Zm) of at least 10 across four different integration sites
(Supplementary Appendix F). Direct measurements of mRNA
population statistics by mRNA smFISH also show high levels
of transcriptional bursting from the HIV-1 LTR (ZmE80; see
Supplementary Appendix G) and provide an independent
experimental verification of the proposed method.

Conclusions

In summary, we present a simple method to discriminate
between mRNA birth/death and promoter fluctuations by
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measuring the dynamics of protein-expression noise in
response to perturbations. This perturbation approach is
complementary to other methods, such as mRNA smFISH, as
it only requires data at the protein level and can work at high
mRNA-expression levels. With the large libraries of GFP-
tagged proteins and reporters already exist for many systems,
it may be possible to quantify the extent of transcriptional
bursting across the genome without having to design
individual mRNA smFISH probes for each gene.

One potential shortcoming of this approach is that changes
in expression noise in response to perturbations can be
sensitive to extrinsic noise in the system. For example, in the
absence of extrinsic noise, different intrinsic-noise mechan-
isms predict very distinct changes in CV2(t) in response to
perturbations (Figure 2). However, a constitutive promoter
with high levels of extrinsic noise in the transcription rate and
a promoter with transcriptional bursting can have similar
changes in CV2(t) after transcription is blocked. Thus, the

presence of extrinsic noise hampers the ability to discriminate
the different sources of intrinsic noise. These results empha-
size that, to discriminate mRNA birth/death and promoter
fluctuations, extrinsic noise in gene expression must be
filtered out by appropriate gating of cells or use of two-color
reporter systems (as done in this paper; see Supplementary
Appendix H).

Recent theoretical observations suggest that, during cell
division, stochastic partitioning of molecules results in the
cell-to-cell variability observed in clonal populations (Huh and
Paulsson, 2011). However, the present study focuses on
transient changes in noise within a clonal population instead
of steady-state measurements. The 12-hour duration of our
experiments is also much shorter than the B30-hour doubling
time of Jurkat cells, therefore minimizing effects that may be
due to stochastic partitioning during the course of the
experiment. Most importantly, the perturbations performed
in the present study utilize small molecules, actinomycin D
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Figure 3 Transcriptional bursting is a significant source of variability in HIV-1 LTR gene-expression across different integration sites. Time courses of CV2(t) of GFP
expression, as measured by flow cytometry, for four isoclonal Jurkat T lymphocyte populations (F32, G95, LL44, and LL8) after perturbation with transcriptional blocking
drugs actinomycin D (left column) or flavopiridol (right column). The transient increases in gene-expression noise after transcriptional blocking were consistent with a
model in which HIV-1 LTR expression noise is primarily due to transcriptional bursting of mRNAs from the viral promoter (red lines; Zm¼ 15). In contrast, a model in
which mRNA birth/death fluctuations act as the dominant source of gene-expression noise (black dashed lines; Zm¼ 1), overestimates the observed transient increase
in CV2(t) for all clones. All quantities are normalized by their corresponding values of CV2(t) at t¼ 0; error bars show 95% confidence interval for the CV2(t). Source data
is available for this figure in the Supplementary Information.
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and flavopiridol, that induce cell-cycle arrest (Kuerbitz et al,
1992; Nelson and Kastan, 1994; Schrump et al, 1998; Shapiro
et al, 1999) therefore circumventing any added stochastic
effects arising from partitioning.

Measuring transient changes in reporter expression noise in
response to a transcriptional block showed that transcriptional
bursting of mRNAs from the HIV-1 LTR is a significant source
of noise in viral gene expression. It is now well established that
the HIV-1 LTR exhibits a block in transcriptional elongation:
after transcriptional initiation from the LTR, RNAp II is poorly
processive and stalls 50–70 nucleotides after initiation
proximal to a nucleosome referred to as nuc-1 (Kao et al,
1987; Jordan et al, 2003). One attractive model is that the
stochastic recruitment of elongation and chromatin remodel-
ing factors can enhance elongation processivity and remodel
nuc-1, respectively, resulting in a stochastic burst of multiple
stalled mRNAs (Singh et al, 2010). Such transcriptional
bursting can be an important regulatory mechanism to
generate high cell-to-cell variability in the levels of expressed
viral proteins for HIV-1 decision-making between active
replication and latency in single cells. These results add to
an increasing body of work (Austin et al, 2006; Cox et al, 2008;
Dunlop et al, 2008; Warmflash and Dinner, 2008; Munsky et al,
2009; Sanchez et al, 2011; Wong et al, 2011) showing that
fluctuations in protein levels carry important information, and
that measuring statistical properties of these fluctuations can
be an important tool for characterizing the regulatory
mechanisms of genetic circuits.

Materials and methods

Construction and maintenance of isoclonal
populations

Isoclonal populations containing a single integrated copy of either one
or both minimal vectors encoding HIV-1 LTR driving d2GFP (termed as
LTR-d2GFP) or HIV-1 LTR driving Cherry (termed as LTR-mCh) were
constructed as described (Weinberger et al, 2008). Individual isoclonal
populations were maintained in RPMI-1640 (supplemented with
L-glutamine, 10% fetal bovine serum, and 1% penicillin-streptomycin)
in a humidified environment at 371C and maintained by passage at
between 2�105 and 2�106 cells/ml.

Blocking gene expression with small-molecule
drugs

To measure transient changes in reporter expression after a transcrip-
tional block, actinomycin D (Sigma-Aldrich), at a final concentration
of 0.1, 1, or 10 mg/ml, or flavopiridol (Sigma-Aldrich), at a final
concentration of 3mM, was added to cells. After the addition of either
inhibitor, cells were collected at regular intervals, and the GFP
expression for each isoclonal population was measured by flow
cytometry on a BD FacsCalibur (BD Biosciences, San Jose, CA;
see below). For analyzing transient changes in reporter expression
after a translational block, protein synthesis was blocked with
cycloheximide (Sigma-Aldrich), at a final concentration of 10mg/ml.
In Supplementary Figure S2 in Supplementary information, both
cycloheximide and actinomycin D were added to cells at 10 mg/ml at
the same time.

Flow cytometry analysis

Reporter expression in the LTR-d2GFP isoclonal population was
measured by flow cytometry on a FACSCalibur and subsequently

analyzed using FlowJot (Treestar, Ashland, Oregon). Expression
variability within the isoclonal population was quantified using the
coefficient of heterogeneity in cell size, cell shape, and cell-cycle state
(i.e., extrinsic noise) was minimized by a previously adopted approach
of drawing a small gate around the forward (FSC) and side (SSC)
scatter medians that contains at least 5000 cells (Newman et al, 2006).
Coefficient of variation is computed from this gated population with
the statistics toolbox in FlowJo.

smFISH microscopy

A smFISH probe set for d2GFP was designed using the online software
available from Biosearch Technologies (Novato, CA) (with the
following inputs: no masking, 34 probes, 20-nt oligo length, and a
spacing of 2 nt. Jurkat T Lymphocytes were stuck down onto No. 1.5
thickness cover glass 8-well plates (Lab-Tek) as described (Weinberger
and Shenk, 2007) and fixed for 10 min in 3.7% formaldehyde, followed
by treatment with 70% ethanol at 41C for 18 h. smFISH was performed
as described (Waks et al, 2011). Two independent experiments were
performed and B100 cells were collected for each experiment (196 in
total). A Nikon Ti-E widefield epifluorescence microscope equipped
with the Nikon Perfect Focus System, automated stage, a Plan Apo
100� oil 1.4NA objective, CoolSnap HQ2 CCD 14bit Camera, and
Sutter Lambda XL lamp excitation light source was used. Each image
was acquired with a 3-s exposure time, 260 nm slices in the z-direction,
and 45 slices for each position selected.

Image analysis

Quantitative image analysis was performed using code obtained from
http://www.biology.ucsd.edu/labs/rifkin/software.html. Image seg-
mentation to differentiate between spots in neighboring cells was
performed using custom code written in MATLAB (available upon
request).

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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