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Abstract: Due to the morphological resemblance between the electrospun nanofibers and extracellular
matrix (ECM), electrospun fibers have been widely used to fabricate scaffolds for tissue regeneration.
Relationships between scaffold morphologies and cells are cell type dependent. In this study, we
sought to determine an optimum electrospun fiber diameter for human vascular smooth muscle cell
(VSMC) regeneration in vascular scaffolds. Scaffolds were produced using poly(caprolactone) (PCL)
electrospun fiber diameters of 0.5, 0.7, 1, 2, 2.5, 5, 7 or 10 µm, and VSMC survivals, proliferations,
infiltrations, and phenotypes were recorded after culturing cells on these scaffolds for one, four,
seven, or 10 days. VSMC phenotypes and macrophage infiltrations into scaffolds were evaluated
by implanting scaffolds subcutaneously in a mouse for seven, 14, or 28 days. We found that human
VSMC survival was not dependent on the electrospun fiber diameter. In summary, increasing
fiber diameter reduced VSMC proliferation, increased VSMC infiltration and increased macrophage
infiltration and activation. Our results indicate that electrospun PCL fiber diameters of 7 or 10 µm
are optimum in terms of VSMC infiltration and macrophage infiltration and activation, albeit at the
expense of VSMC proliferation.

Keywords: electrospinning; vascular smooth muscle; vascular scaffold; infiltration; optimization

1. Introduction

Populations with cardiovascular disease are growing in many countries and their health care
cost has also increased rapidly [1,2]. To cure the disease, replacements of damaged blood vessels by
auto-transplantation are required, but most of the patients cannot supply suitable blood vessels for
the surgery. Therefore, demands for non-autologous vessels have been increased and in the case of
large-diameter (>6 mm) blood vessels, various synthetic vascular grafts were developed and well
utilized. However, synthetic vascular grafts of diameter < 6 mm are frequently occluded by thrombosis,
aneurysms, or intimal hyperplasia [3,4]. Tissue engineering provides an alternative approach in which
cells are seeded or encapsulated in scaffolds fabricated from biodegradable polymers [3,5,6]. Until now,
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organs including bladder and trachea as well as tissues including bone, cartilage, skin and muscle,
were regenerated by utilizing various types of biodegradable polymers [7–12]. Especially, the success
of tissue engineered vascular grafts is governed, among other factors, by the development of a scaffold
that mimics extracellular matrix (ECM), which is a 3D network of 50–500 nm diameter structural
protein and polysaccharide fibers [13].

Morphological similarities between electrospun nanofibers and ECM are a major driver for the
use of electrospun mats as a scaffold, and the high surface area: Volume ratios and interconnected
pores of these fibrous meshes ensure cell attachment and oxygen/nutrient transport [14–17]. However,
electrospinning has its limitations, such as, poor cellular infiltration [17,18]. Electrospun scaffolds
consist of closely packed nanofiber layers that only provide a superficial porous structure, due to
their sheet-like nature. Decreasing electrospun fiber diameters increases the number of fiber–fiber
contacts/unit length, which reduces the average pore size [19]. Furthermore, cell infiltration is
extremely important for tissue engineering scaffolds, since tissue regeneration cannot be achieved if
cells do not proliferate inside scaffolds [20].

Vascular structures consist of three layers, that is, intima, media and adventitia [21]. The media
consists of vascular smooth muscle cells (VSMCs) and provide mechanical strength and the vasoactive
responsiveness of blood vessels [22–24]. Therefore, vascular grafts that facilitate VSMC penetration
deep into grafts are a prerequisite for producing an integral media layer that mimics the function of
the vascular smooth muscle [25].

VSMCs have either contractile or synthetic phenotypes. VSMCs of the synthetic phenotype can
rapidly proliferate and produce ECM, whereas those of the contractile phenotype maintain the function
of vascular media. Furthermore, it is critical that the contractile VSMC phenotype be achieved at the
proper development stage, otherwise uncontrolled proliferation of VSMCs in grafts will thicken vessel
walls and narrow lumen [25,26]. In addition, it is known that the mean scaffold pore size significantly
affects cell morphology and phenotypic expressions [27].

This study was performed to determine the optimal poly(caprolactone) (PCL) electrospun fiber
diameter that maximizes VSMC survival, proliferation, and infiltration and that modulates VSMC
phenotypes in a manner compatible with those required for the development of vascular grafts.

2. Materials and Methods

2.1. 3D Printed Support Layer

The scaffold for VSMC, which is only made with PCL fiber, was so thin and it was hard to handle
for the VSMC culture. Thus, we made a support layer for PCL electrospun fiber deposition by a 3D
printer (Geo technology, Incheon, Korea). The 3D printed support layer was the size of 150 mm (W) ×
150 mm (L) × 0.2 mm (H) which consists of 2 × 2 mm sized squares and the material for printing was
PCL (MW 45,000, Sigma-Aldrich, St. Louis, MO, USA) (Figure 1A,B).

2.2. PCL Electrospinning for PCL Fiber

Electrospun fibers were deposited on the 3D printed supporting layer using an electrospinning
device (NanoNC, Seoul, Korea). Figure 1C showed fabrication conditions used by the diameter.
The flow rate of the electrospinning solvent was fixed at 0.8 mL/h and the spinning distance was 60 mm.
Fiber morphologies in scaffolds were observed using an optical microscope (Optical microscope,
OPTIKA, Ponteranica (BG), Italy) and average fiber diameters were measured.

2.3. Cell Culture

Human VSMCs were purchased from the American Type Culture Collection (ATCC; No.CRL-1999,
Manassas, VA, USA). Cells were cultured in the DMEM/F12 medium (Gibco, Waltham, MA,
USA) containing 15% fetal bovine serum (FBS; Gibco, Waltham, MA, USA), 100 units/mL of
penicillin/streptomycin (P/S; Gibco, Waltham, MA, USA) at 37 ◦C in a humidified 5% CO2 atmosphere.
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The medium was changed every 2–3 days. When cells reached confluence, they were removed from
the culture dish using 0.25% trypsin-Ethlenediaminetetraacetic acid (EDTA; Gibco, Waltham, MA,
USA), centrifuged, and resuspended in DMEM/F12. Scaffolds were soaked overnight in 70% EtOH,
repeatedly rinsed with ultra-pure water, sterilized by exposing them to ultraviolet (UV) light for 30 min
and then coated with 1% gelatin for 30 min before introducing the cells.Polymers 2018, 10, x FOR PEER REVIEW  3 of 15 
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Figure 1. Fabrication process and results of the electrospinning based scaffold. (A) Schematic of
electrospinning device and fiber fabrication process; (B) schematic of electrospun scaffold for vascular
smooth muscle cells (VSMCs) culture; (C) shape of the 3D printed supporting layer and scaffold of
electrospun fibers on the 3D printed supporting layer.

2.4. Live/Dead Assay

VSMCs were seeded at a density of 1.5 × 104 cell/scaffold in a 96-well plate for one, four,
seven or 10 days. The live/dead fluorescent solution of calcein-acetoxymethyl (AM) and ethidium
homodimer-1 (EthD-1) was prepared according to the manufacturer’s instructions (Thermo Fisher,
Waltham, MA, USA). Scaffolds were then submerged in the solution and incubated at 37 ◦C for 40 min
before being washed in phosphate-buffered saline (PBS; Gibco, Waltham, MA, USA) and observed
under a fluorescent microscope (Zeiss LSM 510, Oberkochen, Germany). Image J software was used to
quantify calcein-AM staining levels in scaffolds to assess cell viability. Percentages of live cells were
calculated by Equation (1).

Cell viability (%) = (number of live cells/number of total cells) × 100 (%) (1)

2.5. Cell Proliferation Assay

Cell proliferation rates were measured using a cell counting kit (CCK8; Dojindo, Kumamoto,
Japan). Cells were seeded in 12-well plates at a density of 1.6 × 105 cell/scaffold. After one, four, seven
or 10 days, 100 µL of CCK-8 solution was added to each well and cells were incubated at 37 ◦C for 2 h.
Absorbances were measured at 450 nm using an ELISA reader (VERSAmax, San Jose, CA, USA).

2.6. Immunocytochemistry

For the immunocytochemical analysis, VSMCs were seeded at a density of 1.5 × 104 cell/scaffold
in a 96-well plate for one, four, seven and 10 days. Cells were then washed twice with PBS, fixed for
15 min in PBS containing 4% paraformaldehyde (PFA; Bioworld, Gyeong gi-do, Korea) and gently
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washed three times with PBS. After fixation, cells were incubated for 10 min in a freezer in ice-cold
100% methanol (Sigma, St. Louis, MI, USA) and then rinsed with PBS for 5 min. Blocking was achieved
by incubating cells for 60 min in 5% normal goat serum (Vector laboratories, Burlingame, CA, USA) in
PBS/0.3% Triton X-100 (Sigma, St. Louis, MI, USA). VSMC seeded scaffolds were incubated overnight
at 4 ◦C with alpha-smooth muscle actin (α-SMA) or non-muscle heavy chain antibodies (Abcam,
Cambridge, UK) at a dilution of 1:100, washed twice in PBS, and incubation for 2 h with donkey mouse
alexafluor 488-conjugated or donkey rabbit alexafluor 568-conjugated secondary antibodies (diluted
at 1:500 in blocking solution; Abcam) in the dark. After washing cells with tris-buffered saline (TBS)
twice, scaffolds were counterstained with 4’,6-diamidino-2-phenylindole (DAPI (to visualize nuclei;
Vector Laboratories). Samples were then coverslipped and visualized and photographed under a
fluorescent microscope.

2.7. Cell Infiltration

On days four, seven and 10 of culture, scaffolds were fixed in 4% PFA, stained with DAPI and cell
infiltration was assessed by the fluorescent microscopy. The image J software was used to analyze the
distribution of DAPI stained areas in each section. We defined the infiltration distance as the maximum
distance travelled by VSMCs from the seeding surface. Three sections of each scaffold were used to
quantify cell infiltration.

2.8. Experimental Animals

All protocols were approved by the Animal Subjects Committee of Gachon University. (Approval
#: LCDI-2018-0002) Male mice (C57BL6, six weeks aged, weight: 30 g; Orientbio) were used. Mice
were kept under controlled SPF conditions (22 to 24 ◦C, 55% to 60% RH) under a 12-h light/dark cycle.
During the experimental period, mice were given free access to water and to a standard rodent diet.
A scaffold containing 1.6 × 105 VSMCs was then implanted into a subcutaneous pocket in the dorsum
of each mouse. To suppress the immune rejection 5 mg/kg of cyclosporine (Sigma, St. Louis, MI, USA)
was injected subcutaneously every day after scaffold implantation until scaffold harvest. Animals
were sacrificed on days seven, 14 or 28.

2.9. Histology

Immediately after animal sacrifice, scaffolds were collected, fixed overnight in 4% PFA,
dehydrated, embedded in paraffin and cut into 4 µm sections. Immunocytochemistry was performed
using α-SMA or non-muscle heavy chain antibodies (diluted at 1:100). Alexa Fluor anti-mouse
488 or Alexa Fluor anti-rabbit 568 (diluted at 1:500) were used as secondary antibodies and
nuclei were counterstained with DAPI. To determine activated macrophage expression levels,
immunohistochemistry was performed using a peroxidase immunohistochymistry (IHC) detection
kit (Thermo Fisher, Waltham, MA, USA) and Iba1 antibody (Abcam, Cambridge, UK) at a dilution
of 1:100. Washed sections were treated with biotinylated horse anti-goat antibody (diluted at 1:200;
Abcam) and then incubated in streptavidin conjugated with peroxidase. Staining was detected using
3,3-diaminobenzidine (DAB). All images were captured at a magnification of 15 ×.

2.10. Statistical Analysis

Statistical analysis was performed using the SPSS version 21 (IBM Corporation, Armonk,
NY, USA). The significances of differences were determined by the one-way analysis of variance
(ANOVA). Bonferroni’s multiple comparison test was used to investigate relations between variables
and fiber diameters. p values of < 0.05 were deemed significant. Results are presented as
means ± standard deviations.
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3. Results

3.1. Fabrication of Scaffolds with Different Microstructures and Physical Properties

To evaluate a cell response by various microstructures, we fabricated electrospun fiber scaffolds.
After preparing the 3D printed PCL support of 150 mm (W) × 150 mm (L) × 0.2 mm (H) which
consists of 2 × 2 mm sized squares, various size of PCL fibers were electrospun on the PCL support.
The vertical thickness of electrospun layer was 400 ± 1 µm and their fibers had uniform circular shapes.
In each scaffold, average diameters were 0.5, 0.7, 1, 2, 2.5, 5, 7, or 10 µm (Figure 2A ~ H). Mean pore
sizes of the scaffolds ranged from 2.03 ± 0.32 µm to 16.97 ± 5.83 µm and pore sizes were increased
with fiber diameter (Table 1).
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Figure 2. Morphologies of electrospun fibers. (A) 0.5 µm (diameter); (B) 0.7 µm (diameter); (C) 1 µm
(diameter); (D) 2 µm (diameter); (E) 2.5 µm (diameter); (F) 5 µm (diameter); (G) 7 µm (diameter); (H)
10 µm (diameter).

Table 1. Electrospun fiber diameters and their fabricating conditions.

Condition Fiber Diameter (µm) Concentration of PCL (wt%) Chloroform/MethanolVoltage (kV) Pore Size (µm)

A (0.5 µm) 0.53 ± 0.09 5 1:1 5 2.03 ± 0.32
B (0.7 µm) 0.69 ± 0.07 7.5 1:1 8 4.51 ± 1.49
C (1 µm) 1.01 ± 0.03 7.5 3:1 13 6.06 ± 1.58
D (2 µm) 1.98 ± 0.07 7.5 4:1 13 6.76 ± 1.97

E (2.5 µm) 2.51 ± 0.57 7.5 4:1 9 7.15 ± 1.26
F (5 µm) 5.06 ± 0.05 7.5 100:0 8 16.66 ± 5.20
G (7 µm) 7.05 ± 0.68 10 100:0 7.5 16.40 ± 4.96

H (10 µm) 10.16 ± 0.76 10 100:0 7 16.97 ± 5.83

3.2. In Vitro VSMC Survival on Scaffolds

To estimate biocompatibility scaffolds, we observed the VSMC survival on each of the scaffolds
with 8 types of fiber diameters using a live/dead assay (Figure 3A,B). During the VSMC culture time
of 10 days, all scaffolds showed the cell survivals of more than 85% and they kept cell survival rate
of 95% from day seven. Compared with scaffolds with various fiber sizes, after one and four days
of culture, percentages of live cells on smaller fibers (95%) were greater than on larger fibers (85%).
However, no difference was observed after seven or 10 days of culture.
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3.3. In Vitro VSMC Proliferation on Scaffolds

To evaluate the cell response of scaffolds with various pore and fiber sizes, we observed the
VSMC proliferation using a CCK-8 assay (Figure 3C). During the first four days of culture, no
significant relation was observed between proliferation and fiber diameter. However, after seven days,
a proliferation rate of scaffolds with 0.5, 0.7 and 1 µm fibers (A, B, and C) was rapidly increased and
scaffolds with 2, 2.5 and 5 µm (D, E, and F) fibers showed a moderate cell proliferation level. And at
day 10, scaffolds with large fiber diameters of 7 and 10 µm (G and H) showed lowest proliferation
performance, although a number of cells were increased.

3.4. In Vitro VSMC Infiltration

To evaluate the cell infiltration at scaffolds with various pore and fiber sizes, cross-sections of
VSMC cultured scaffolds were analyzed by DAPI staining (Figure 4A,B). Infiltration distance increased
as the fiber diameter increased, and was greatest for 5, 7, 10 µm fiber diameter scaffolds after four, seven,
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and 10 days of culture. Especially, at day 10, VSMCs were fully infiltrated on 5, 7, 10 µm fiber diameter
scaffolds, while they showed an infiltration of a half of scaffold thickness on the other conditions.
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VSMCs infiltration depth. (**: p < 0.01)

3.5. Maintenance of VSMC Phenotype on Scaffolds

We evaluated VSMC phenotypes on scaffold seeding surfaces (Figure 5A). The α-SMA stain was
used to detect the contractile type and the non-muscle MHC was used to detect the synthetic type [28].
After culture for seven days, the contractile phenotype was maintained on all 8-scaffold types, but
at 10 days the synthetic type started to appear (Figure 5B). When we defined ‘synthetic type ratio
(%)’ as the ratio of synthetic type VSMC (non-muscle MHC positive cell) to total cells (DAPI positive)
(Figure 5C), it was found that the change ratio increased with fiber diameter.
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phenotype change in scaffolds with various fiber diameters (red = Synthetic type VSMCs stained for
non-muscle heavy chain, green = contractile type VSMCs stained for α-SMA); (B)comparison of the
number of synthetic type VSMCs between culture day one and day 10; (C) calculation of phenotype
change ratio of VSMCs in scaffolds. (**: p < 0.01)

3.6. In Vivo Subcutaneous Implantation

To evaluate a phenotype change of SMC by the electrospun fiber diameter at in vivo, VSMC
seeded 0.7, 2.5, and 10 µm scaffolds were implanted under the skin of mice (Figure 6A,B). Scaffolds
with 0.7 µm fibers showed the lowest change ratio of the synthetic type VSMC and scaffolds with
10 µm fibers showed the highest value of the synthetic type VSMC at all time points. Namely, change
ratios were found to increase with fiber diameter. In addition, when numbers of activated macrophages
in scaffolds were assessed by Iba-1 staining, it was found that the activated macrophage numbers
increased with fiber diameter at all time points (Figure 7A,B).
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Figure 6. VSMC phenotype analysis in scaffolds implanted subcutaneously in mice. (A) Contractile
type VSMCs stained with α-SMA; (B) synthetic type VSMCs stained with non-muscle heavy chain; (C)
change of conversion ratio (from contractile type VSMCs to synthetic type VSMCs) at various fiber
diameters (**: p < 0.01).
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4. Discussion

Until now, various efforts have been made to improve cell adhesion, proliferation and
differentiation by using electrospinning. However, there have been few studies on the effect of dividing
the step from nano to micro-size sections for VSMC [29–33]. Therefore, in this study, we sought to
identify an optimal diameter for PCL electrospun fiber with respect to VSMC proliferation, infiltration,
and phenotype modulation in tubular scaffolds. VSMCs play important roles in vessels as they provide
structural support and contractile function, and thus, the preparation of a mature smooth muscle layer
on vascular scaffolds is required prior to implantation [34].
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Intima is composed of endothelial cells (ECs), and ECs can proliferate rapidly on the luminal
surfaces of electrospun scaffolds and cover luminal surfaces soon after seeding in vitro [20]. However,
it remains a challenge to induce VSMCs to pass through the luminal surface and immigrate into the
interior of a scaffold to proliferate and form a VSMC layer [35]. For this reason, we considered that we
should start with a scaffold design optimized for SMC layer generation.

Cellular infiltration and other factors, such as, the diffusions of metabolites, nutrients, and waste,
are often limited by the small pore sizes of electrospun scaffolds. Furthermore, pore size has been
associated with cellular activity in many different cell types [36,37]. In the present study, cell survivals
on scaffolds after seven and nine days of culture were not found to be fiber diameter dependent,
but after one and four days of culture survivals were lower for larger fiber diameters, which were
attributed to different infiltration differences due to the larger pores of larger fiber diameter scaffolds.
Previous studies have shown that cell infiltration increases linearly with fiber diameter, and similarly,
we observed the VSMC infiltration after one, four, seven, and 10 days of culture increased by fiber
diameter [8]. In a previous study, the best cellular infiltration was achieved when pore size was close
to that of target cells, which suggests that optimum pore size is cell-specific [18,19]. In terms of cell
infiltration, we found that fiber diameters of 7 or 10 µm were optimum in terms of maximizing the
human VSMC infiltration.

As opposed to infiltration, proliferation of SMCs has been previously reported to be inversely
related to fiber diameter, and our findings concur [3]. VSMCs regulate their phenotype in response to
environmental chemical, physical, and mechanical signals, and under normal physiological conditions
VSMCs rarely proliferate. However, these cells can grow rapidly under some pathologic conditions,
such as, atherosclerosis [38]. The vascular regeneration of contractile VSMCs on scaffolds may facilitate
the production of functional tissue-engineered blood vessels, and their proliferation on scaffolds
is essential for generating vascular tissues. However, the uncontrolled proliferation of VSMCs in
implanted grafts causes the thickening of vessel walls and intimal hyperplasia and narrowing of
vessel lumens [38,39]. Thus, VSMCs that infiltrate scaffolds should exhibit appropriate phenotypes
at specific times. During the early stage, infiltrated VSMCs should exhibit the synthetic phenotype
in order to complete the construction of a smooth muscle layer, whereas later they should express
the contractile phenotype to produce a layer with normal psychological functions, which included
providing mechanical strength and maintaining the integrity of vascular grafts [40].

Previous studies have reported that seeded VSMCs display a strongly contractile phenotype, and
that after prolonged culture they exhibit a predominantly synthetic phenotype [41,42]. Similarly, in the
present study, VSMCs seeded on scaffolds and cultured in vitro retained the contractile phenotype
for 10 days when the synthetic phenotype was first observed. Furthermore, the number of synthetic
VSMCs was found to increase with fiber diameter. Interestingly, our in vivo study showed a similar
trend, as at seven, 14, and 28 days after scaffold implantation, the synthetic VSMC numbers increased
with the fiber diameter. In a previous study, the contractile type of VSMCs were observed three
months after the implantation of electrospun poly(glycerol sebacate) (PGS)-PCL vascular grafts in rat
aortas [43].

The VSMC layer formation in vascular grafts takes considerable time and the synthetic type
VSMCs would be expected to play an important role during the VSMC layer regeneration phase,
and during the later remodeling phase, synthetic VSMCs should adopt the contractile phenotype.
In our opinion, the in vivo study for 28 days shows a meaningful increase of synthetic phenotype for
VSMC layer regeneration. Unfortunately, we did not extend our in vivo observations beyond 28 days,
and thus, did not confirm the later synthetic to contractile phenotype shift and cannot comment on the
effect of fiber diameter on the VSMC type modulation. Nonetheless, we did find that the larger fiber
diameter scaffolds are probably advantageous in terms of the initial VSMC layer regeneration.

Macrophage activation is induced under pro-inflammatory and inflammatory conditions [44].
During the wound healing process, macrophage activation is essential. In the early wound, monocytes
and resident macrophages become activated, undertake phagocytosis of microbes and perhaps early
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neutrophils, and produce pro-inflammatory mediators and chemo-attractants [45]. Macrophages also
assist in the induction of apoptosis in neutrophils, thus turning the wound towards a non-inflammatory,
reparative state. In the later phases of wound repair, macrophages ingest apoptotic neutrophils,
producing growth factors to support tissue restoration. In the very late stages, as the wound resolves,
macrophages may guide tissue remodeling by producing factors to promote capillary regression and
collagen remodeling [45].

It is known that macrophages are able to infiltrate scaffolds with large pores more easily, and that
proliferating macrophages secrete angiogenic factors that stimulate neovascularization in adventitia
and maintain a high number of capillaries in the synthetic scaffolds, which is helpful for recruiting
sufficient myofibroblasts to form a natural ECM in the scaffold walls [46–49]. In the present study,
Iba1 stained activated macrophages were more prominent in the larger fiber diameter scaffolds,
and it seemed that larger fiber scaffolds were better in terms of stimulating neovascularization by
macrophages. In the present study, Iba1 which was used to label activated macrophages [50], were more
prominent in the larger fiber diameter scaffolds, and it seemed that larger fiber scaffolds were better in
terms of stimulating neovascularization by macrophages.

Scaffold characteristics have a strong influence on in situ tissue regeneration. When cells
interact with a scaffold, they sense both the material (ionic and electrostatic interactions) and the
microarchitecture (local geometry—film, fibers, spheres, sponge; porosity, pore size, and local
compliance [51]. Designing scaffolds to direct the cell morphology, and, therefore, mechanics, is
dependent on the typical cell dimensions in target tissues [52,53]. Our study shows that the human
VSMC survival was not dependent on the electrospun fiber diameter. Cell proliferation decreased with
scaffold fiber diameter, cells infiltration increased with fiber diameter, and numbers of VSMCs of the
synthetic phenotype and of activated macrophages in scaffolds increased with fiber diameter. Our
findings indicate that electrospun fiber diameters of 7 to 10 µm are better than smaller fiber diameters
during the early medial layer regeneration phase in terms of the VSMC layer regeneration in scaffolds
as VSMC infiltration, adoption of the synthetic VSMC, and increased macrophage numbers, albeit at
the expense of VSMC proliferation.
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