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Abstract: The bacterial type VI secretion system (T6SS) is a protein secretion apparatus widely dis-
tributed in Gram-negative bacterial species. Many bacterial pathogens employ T6SS to compete with
the host and to coordinate the invasion process. The T6SS apparatus consists of a membrane complex
and an inner tail tube-like structure that is surrounded by a contractile sheath and capped with a
spike complex. A series of antibacterial or antieukaryotic effectors is delivered by the puncturing
device consisting of a Hcp tube decorated by the VgrG/PAAR complex into the target following the
contraction of the TssB/C sheath, which often leads to damage and death of the competitor and/or
host cells. As a tool for protein secretion and interspecies interactions, T6SS can be triggered by
many different mechanisms to respond to various physiological conditions. This review summarizes
our current knowledge of T6SS in coordinating bacterial stress responses against the unfavorable
environmental and host conditions.

Keywords: bacteria; stress response; signaling interference; T6SS

1. Introduction

Bacteria can use secretion systems to transport individual proteins, as well as DNA–
protein and protein–protein complexes into adjacent cells or the external medium. These
secretion systems are critical for bacterial survival and adaptation to complex environ-
mental conditions via their diversified secreted effectors, which are required for nutrition
uptake, toxin delivery, cell-to-cell communication, and interspecies competition. Nine secre-
tion systems (T1SS, T2SS, T3SS, T4SS, T5SS, T6SS, T7SS, T8SS (curli/Csg), and T9SS) have
been identified in Gram-negative and Gram-positive bacteria [1–4]. Among them, the type
VI secretion system (T6SS) (Figure 1), a complex contractile nano-machine similar to bacte-
riophage tail in structure, retains one of the most complicated secretion mechanisms [5].
T6SS is a needle-like multiprotein machine which is a member of contractile injection sys-
tems. Its structure consists of the membrane complex, the baseplate structure, and the tail
tube sheath complex [6–8]. ClpV, a type of hexameric AAA+ ATPase, pulls the exposed N
terminus of TssC and releases it from the contracted sheaths to replenish the pool of sheath
subunits for starting a new cycle of assembly [9–11]. VgrG trimer recruits the hemolysin
coregulated protein (Hcp) to become polymerized as the inner tube [5,12]. The type VI
secretion system (T6SS) of bacteria was first detected in Rhizobium leguminosarum in
2003 [13,14]. In the next seventeen years, it was found that at least 1/4 Gram-negative
bacteria species contain T6SS [15,16]. T6SS is often involved in multiple processes related
to bacterial virulence [17–21]. To cope with external pressures, bacteria use T6SS to secret
toxins into the external environment [3,22]. Moreover, T6SS has been shown to attack
bacterial competitors [23–25], or to defeat the host defense mechanisms [26,27], in order to
colonize a host niche and/or survive in competition. In this review, we discuss the current
findings on the T6SS-mediated stress responses to reactive oxygen species, temperature,
pH during competition and invasion processes.
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Figure 1. The basic components, structural assembly, and effector delivery of the T6SS apparatus. OM, outer membrane.
IM, inner membrane.

2. Metal Ion Uptake for ROS Stress Response

Both the host immunity and the environmental factors such as heavy metals and an-
tibiotics will lead to increased reactive oxygen species (ROS) levels in bacterial pathogens
significantly [2]. The formation of ROS (e.g., hydrogen peroxide, hydroxyl radical, and su-
peroxide) is inevitable in an oxygen-rich environment [28,29]. Other factors causing the
generation of ROS include peptidoglycan recognition proteins [30], antimicrobial com-
pounds with bactericidal activity [31], and attacks from competing bacteria and bacterio-
phages [32]. Elevated levels of ROS in cells will cause oxidative damage to DNA, proteins,
lipids, and other macromolecules [33]. Bacteria are well known to respond to oxidative
stress with the help of some regulatory proteins, like SoxR, SoxS, OxyR, or ZntR, which
coordinate specific ROS stress tolerance mechanisms [34–36]. For example, the synthesis of
antioxidant enzymes (e.g., peroxidase, glutaredoxin, uperoxide dismutase, thioredoxin)
and small molecular weight antioxidants (e.g., β-carotene, tripeptide glutathione, vitamin
C, and vitamin E) can be induced via these regulatory proteins to combat the adverse
effects of ROS [33,37,38].

In recent years, it has been revealed that T6SS is involved in the process of oxidative
stress response in bacterial pathogens, such as Vibrio anguillarum [39], Burkholderia thai-
landensis [40], Enterohemorrhagic E. coli [41], and Yersinia pseudotuberculosis [42]. Metal
ions, such as zinc (Zn2+) and manganese (Mn2+), can be used as structural components or
cofactors of antioxidant enzymes [35]. These metal ions also participate in the formation of
antioxidant complexes [43–46]. Both metals help bacteria maintain redox balance and elim-
inate ROS [38]. Zinc (Zn2+) is an essential nutrient that participates in several mechanisms
to maintain the redox homeostasis of bacteria, for instance, as a cofactor of superoxide
dismutase [45,47]. Even though there are already well-studied systems involved in metal
ion uptake and transportation, Si and colleges recently found that B. thailandensis employs
T6SS to export TseZ as a Zn2+-binding effector under the condition of oxidative stress [48]
(Figure 2A). The wild-type B. thalandensis could increase its survival rate and decrease the
level of ROS by importing zinc ions when it was exposed to exogenous oxidative stress.
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The survival rate of B. thalandensis clpv4 mutant, which is unable to import zinc ions via
HmuR, was lower than the wild-type strain and the mutant accumulated higher level
of intracellular ROS than the wild-type strain [48]. This group demonstrated that T6SS
effector TseZ interacts with HmuR (the outer membrane heme transporter) and further
showed that the HmuRSTUV system is involved in the acquisition of Zn2+ under oxidative
stress conditions [48]. HmuR is a type of dual-functional transporter which is regulated by
redox [48]. HmuR transports heme iron under normal conditions and forms an intramolec-
ular disulfide upon sensing oxidative stress [48]. The formation of the disulfide bond
leads to a conformational change, which allows HmuR to bind TseZ, and more efficiently
transfers the chelated Zn2+ into the cell [48,49]. This is a fine-tuned mechanism that allows
B. thailandensis to response to different levels of oxidative stress [48]. In Y. pseudotuberculosis,
the MarR family transcriptional regulator HpaR [50,51] directly binds the promoter of T6SS
to upregulate its expression. T6SS can secrete YezP (a zinc-binding protein substrate) which
binds extracellular Zn2+ and transports it into Y. pseudotuberculosis [42]. When wild-type
Y. pseudotuberculosis was inoculated into C57BL/6 mice, the mortality rate of the mice
exceeded 50% within two weeks. In contrast, the survival rate of mice infected by T6SS or
yezP-deficient mutant strains increased significantly [42]. This means that the Y. pseudotu-
berculosis mutant lacking T6SS or yezP has defective virulence in the process of infection
in mice. T6SS is involved in the transportation of zinc ions and is essential to increase the
survival rate of bacteria during host infection [42]. Compared with the wild-type Y. pseudo-
tuberculosis strains, the strains lacking hpaR showed lower level of virulence when it infects
mice, which further confirmed that HpaR helps Y. pseudotuberculosis to coordinate stress
response and adapt to the host environment [43]. Therefore, HpaR positively regulates
T6SS to modulate the antioxidant activity of Y. pseudotuberculosis, and the uptake of divalent
zinc ion via a yet unknown mechanism against oxidative stress [43].

Manganese (Mn2+) is another important micronutrient transition metal involved in
many biochemical processes, especially in the process of resisting oxidative stress [44,46].
Mn2+ can be used as a cofactor or as a substitute of iron in certain iron-containing enzymes
that reduce the ROS damage to bacteria [44,49,52,53]. In mammalian hosts, Mn2+ are strictly
restricted by the mechanism of nutritional immunity [54,55]. Bacteria also have several
strategies to acquire manganese, including ATP-binding cassette family transporter [56],
Mn2+-selective channel protein [57], and natural resistance-associated macrophage protein
family transporter [58,59]. Recently, Si and colleagues reported that T6SS helps cells acquire
manganese under oxidative stress in B. thailandensis [40]. Compared with the wild-type
strain, the survival rate of B. thailandensis T6SS clpV4 mutant strains under oxidative stress
was decreased significantly in manganese-rich environment [40]. This difference in survival
rate is regulated by OxyR (a conservative regulator of oxidative stress) via an Mn2+- binding
T6SS effector [40,42]. OxyR is known as an oxidative stress regulator that controls the
expression of many important genes to resist oxidative stress, such as ahpCF, ccpA, dps,
goRA, grxA, katG, and oxyS [60–64]. Under oxidative stress condition, B. thailandensis T6SS
secretes TseM (Mn2+-binding effector) (Figure 2B), which binds Mn2+ to promote its uptake
through MnoT (a TonB-dependent outer membrane transporter). Facing the oxidative
stress from cumene hydroperoxide, compared with clpV4 mutant strains, wild-type strains
exhibit higher survival rates, higher concentration of Mn2+ and lower intracellular ROS
levels [40]. Thus, T6SS-mediated manganese uptake alleviates the attack from ROS, which
significantly improves the survival rate of B. thailandensis under oxidative stress [40].
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Figure 2. The model of T6SS-mediated stress response to environmental pressure. (A) B. thailandensis
T6SS effector TseZ as a proteinaceous zincophore interacts with heme transporter HmuR to acquire
zinc, which facilitates Zn2+ transportation to resist oxidative stress. HmuR forms intramolecular
disulfide bond to transport zinc instead of heme under oxidative stress. (B) B. thailandensis T6SS
effector TseM transports Mn2+ to resist oxidative stress with the help of outer membrane transporter
MnoT. TseM is secreted into the extracellular milieu to scavenging Mn2+ and deliver it to MnoT when
bacteria encounter oxidative stress.

3. Adaptation to Changes in Temperature and pH

Low pH is a factor produced by the host’s defense mechanism when it is infected,
which can limit the growth of pathogens. T6SS also plays a role in bacterial stress response
towards low intracellular pH, an environmental stress encountered frequently by bacte-
ria during phagocytosis. OmpR is a well characterized regulator from the EnvZ/OmpR
two-component regulatory system, which regulates the expression of genes in response
to changes in the osmolarity and pH [65]. A recent study showed that Y. pseudotuber-
culosis OmpR directly binds to the promoter of T6SS to regulate its expression [66,67]
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(Figure 3A). The survival rate of T6SS-deficient strains is significantly reduced under acidic
conditions [67]. Additionally, OmpR-induced T6SS expression in a low pH environment is
essential for the survival of Y. pseudotuberculosis [67]. Compared with the wild type, the sur-
vival rate of Y. pseudotuberculosis ompR mutant in acidic environment was significantly
reduced, which was confirmed by measuring colony-forming unit (CFU) after growing for
two hours in pH 4.0 buffer [67]. In Y. pseudotuberculosis, ClpV4 may uses its ATPase activity
to pump hydrogen ions to extracellular matrix to maintain intracellular pH homeostasis.
This could be a general strategy for pathogens to resist acidic environments encountered in
phagosomes [67]. In Agrobacterium tumefaciens, the ExoR-ChvG/ChvI cascade can activate
T6SS in acidic conditions [68] (Figure 3B). ExoR associates with ChvG (transmembrane
sensor kinase) in neutral pH environment, which inhibits the ChvG/ChvI two-component
system signaling by physical interaction, resulting in decreased expression of T6SS and
secretion activity [68]. At acidic pH, ExoR no longer inhibits the activity of ChvG, which
phosphorylates the response regulator ChvI and thus positively regulates the expression of
T6SS [68]. In α-Proteobacteria (including many symbionts and plant or animal pathogens),
it may be a common phenomenon that ExoR-ChvG/ChvI cascade system regulates T6SS
due to the extensive distribution and highly conservative nature of ExoR and ChvG/ChvI
in these bacteria.
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Figure 3. (A) The model of T6SS-mediated acid resistance in Y. pseudotuberculosis. EnvZ receives the
acidic pH signal to promote the phosphorylation of OmpR, which activates the expression of T6SS.
T6SS maintains the pH homeostasis by H+ extrusion via the ATPase activity of ClpV4. (B) Acidic
pH can activate T6SS expression by ExoR-ChvG/ChvI. ExoR associates with ChvG and inhibites
the activity of ChvG/Chvl two-component system in neutral pH, which reduces the expression and
secretion of T6SS. In acidic pH, ExoR degrades from ChvG sensor kinase and then phosphorylates
ChvI, which facilitates the expression of imp and hcp. The color of arrows represents the level of
expression. Blue, no expression. Pink, low expression. Red, normal expression.
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V. cholerae undergoes temperature fluctuations in its natural aquatic habitat and during
the course of infection. Temperature is a key signal to control the outbreak of cholera. Re-
cent studies showed that bacterial pathogens could employ T6SS to facilitate adaptation to
temperature changes. For example, temperature is a vital environmental signal to regulate
V. cholerae physiology and has a huge influence on its survival status and pathogenicity [69].
The V. cholerae cold shock protein CspV was shown to regulate T6SS and mediate inter-
species killing when temperature is changed [69]. In the aquatic crustacean Daphnia magna
infection model, CspV-deficient V. cholerae strains showed significantly reduced virulence
that is mediated by T6SS [69]. The expression of V. cholerae T6SS-related genes such as
hcp, which encodes a hemolysin-coregulated protein, was down-regulated at 15 ◦C and
up-regulated at 25 ◦C [69,70]. Moreover, using E. coli as a prey strain in mixed culture with
V. cholerae showed that the number of colony-forming unit of E. coli decreased by 5-fold at
37 ◦C, and by 16-fold at 25 ◦C, without significant change at 15 ◦C. During this competition
process, expression of CspV was essential for V. cholerae to kill E. coli through T6SS [69]
(Figure 4). Temperatures of 15 ◦C and 25 ◦C simulated the living conditions of V. cholerae
in the environment and 37 ◦C simulated the living environment in the human body [69].
Transcriptomic analysis showed that V. cholerae T6SS expression varied at different stages
of the infection process when it invades the host and enters the environment from the
host [69]. V. cholerae can respond to changes in temperature, thereby changing the ability to
form biofilms and activate T6SS [69]. These processes in turn affect bacterial survival and
pathogenicity. Temperature changes may be the key signal for V. cholerae to distinguish the
host from the environment and to promote the expression of genes essential to survive in
different environments. This is important to understanding the mechanism of pathogen
survival in the host. In the continuation of the infection cycle, how to re-adapt to the
environment after leaving the human body is also an important life process [69,71,72].
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Figure 4. T6SS-mediated temperature adaptation and competition. The expression of T6SS-related
genes in V. cholerae is regulated by temperature. V. cholerae showed significantly different virulence at
different temperatures.

4. Interspecies and Intraspecies Competition

Bacteria can sense attack from T6SS of neighboring cells and activate their own
stress response towards them [73]. One of the most well characterized examples is that
P. aeruginosa rapidly activates its own T6SS to fight against V. cholerae after being attacked by
TseL (T6SS effector with phospholipase activity) from V. cholerae [26,74] (Figure 5A). Kamal
and colleague suggested that TseL can activate the expression and assembly of P. aeruginosa
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T6SS to evoke a retaliatory response to V. cholerae [74]. Under T6SS attack from neighboring
cells, P. aeruginosa activates its immunity-independent stress response pathways for self-
protection [74]. On the other hand, the regulation cascade of TagQRST-PpkA-PppA-Fha1
can sense attack from V. cholerae T6SS [26,74–76]. TseL can be sensed by TagQRST which in
turn induces P. aeruginosa retaliation against V. cholerae [26,74]. The stress response system of
P. aeruginosa coordinates a strong defense against the effectors of V. cholerae and contributes
to its survival during bacterial competition [74]. This novel type of immunity-independent
stress response is similar to the innate immunity in bacteria [74].
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T6SS-delivered TseL and induces a counterstrike in P. aeruginosa. (B) After sensing the effector attack of T6SS, E. coli and
V. cholerae induce envelope stress response through Rcs phosphorelay and BaeSR (blue) or WigKR (green). The induced
genes produce protective effects in different ways. PG, peptidoglycan. EPS, exopolysaccharides. VPS, Vibrio polysaccharide.

Since many T6SS systems attack bacterial cell wall, envelope stress response can
often be evoked by bacteria to defend against these attacks [77–79] (Figure 5B). Envelope
stress response maintains the membrane integrity to resist the damage induced by the
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effectors [74,79]. The V. cholerae TseH, a PAAR-dependent species-specific killing T6SS
effector, was shown to damage the cell wall and activate two envelope stress response
pathways, Rcs phosphorelay and BaeSR two-component system, of E. coli [77–79]. Rcs helps
E. coli to defend against TseH-mediated attacks by activating the expression of osmotic-
response genes and increasing the production of exopolysaccharides (EPS) [79]. Moreover,
Rcs induces capsule synthesis and the formation of mucoid colonies, where the colanic acid
capsule significantly increases E. coli resistance to the attack from T6SS [79,80]. V. cholerae
employs a two-component system WigKR (VxrAB), to respond to cell wall damage and
induces the expression of peptidoglycan-repair genes to protect itself from self-killing, as a
type of immune-independent Gene defense [79,81,82]. The wild-type V. cholerae strain can
efficiently kill the wigKR mutant by delivering TseH [79]. WigKR positively regulates the
formation of biofilms and the synthesis of Vibrio polysaccharide (VPS) [83,84]. Interestingly,
the presence of vpsA has no impact on the sensitivity of wigR mutant to its own T6SS, which
demonstrates that the protection from WigKR on bacteria is not due to the regulation of
VPS but due to superseding VPS [79].

Stress responses are also involved in intra-species competition mediated by T6SS.
After two T6SS-expressing Salmonella Typhimurium stains, SL1344 (S1) and ATCC14028
(S2), were mixed and cultured, S1 could sense T6SS of S2 and activate RpoS and SoxRS
coordinating stress response, including upregulation of expression of csgD, tolC, and hilA
genes [73]. Interestingly, when S1 was co-cultured with S2 mutant lacking ClpV (an essen-
tial component of T6SS function), the expression of csgD, tolC, and hilA of S1 was no longer
up-regulated [73]. CsgD, tolC, and hilA genes are involved in biofilm matrix production,
chemical efflux, antibiotic tolerance, and epithelial invasion [73,85–89]. Similarly, V. cholerae
stains with the same T6SS effector module sets can coexist and be compatible, while
strains lacking cognate immunity genes are incompatible and outcompeted [90]. Toxigenic
V. cholerae strains carry the AAA effector/immunity module [90], which provides the most
effective killing of non-kin V. cholerae strains [91]. Interestingly, the predator V. cholerae
strains incorporate the extracellular prey DNA released from the bacteria killed by T6SS.
Therefore, Kostiuk and colleagues proposed a model: V. cholerae can exchange genetic
information including T6SS effector modules during competition in the environment and
generate a diverse genotypic pool with members of the same species, similar to genetic
card reshuffling [91].

5. Involvement of T6SS in the Regulation of Host Immune Signaling Pathways

Inflammasome activation is a crucial defense mechanism of innate immune response,
which is used by the host to fight against invading bacteria [92,93]. The host can trigger
pyroptosiss by releasing pro-inflammatory cytokines during the activation of inflamma-
somes [94,95]. Inflammatory cytoplasmic content is released into extracellular environment
after pyroptosis of myeloid cells, which further activates innate immune response and accel-
erates the clearance of bacteria in vivo [93,96]. Edwardsiella tarda can significantly inhibit the
formation of NLRP3 inflammasome via T6SS [97]. EvpP (T6SS effector of Edwardsiella tarda)
can inhibit Ca2+-dependent c-Jun N-terminal kinase (Jnk, a stress-responsive MAPK signal-
ing pathway) activation, which results in the failure of ASC oligomerization and ultimately
inhibits the activation of NLRP3 inflammasome [97]. The inhibition of EvpP-mediated
NLRP3 inflammasome notably promoted bacterial colonization in vivo [97]. This is a
mechanism adopted by pathogenic bacteria to block host signal transduction and evade
from the innate immune response of the host [97].

The highly motile phagocytic cells, neutrophils and macrophages, can be recruited
to the sites of tissue infection as the first-line of defence [98]. Morpholino can be used to
further analyze the formation of inflammasome in neutrophils recruitment in zebrafish [99].
Neutrophils and macrophages are necessary for zebrafish to combat E. piscicida proliferation
and infection. After using caspy- or IL-1β-morpholino knockdown larvae to suppress the
development of neutrophils and macrophages in zebrafish larvae and comparing with that
of control zebrafish, the survival rate of zebrafish larvae decreased significantly when it was
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infected by E. piscicida [99]. The T6SS effector EvpP inhibits the recruitment of neutrophils
to promote E. piscicida proliferation and infection [99]. Furthermore, it is EvpP inhibiting
the phosphorylation of Jnk-MAPK signal pathway that leads to the inhibition of neutrophils
recruitment since the MAPK signal cascade can regulate the activation of gene transcription
of a variety of proinflammatory and chemokines [99–101]. EvpP regulates the expression of
ligand 8 (cxcl8a, also known as IL-8) and matrix metallopeptidase 13 (mmp13) by inhibiting
the Jnk-MAPK signal cascade [99]. In zebrafish, cxcl8 is the most effective chemokine which
guides neutrophils through the tissue matrix to reach the site of injury or infection [102].
Mmp13 also plays an important role in the recruitment of neutrophils [101]. The Jnk-MAPK
signaling pathway plays an important role in E. piscicida clearance, neutrophil migration
and downstream inflammasome activation in zebrafish [99]. EvpP inhibits the activation
of the Jnk-caspy inflammasome pathway in zebrafish larvae, which in turn inhibits the
recruitment of neutrophils and highlights the key role of myeloid cells in coping with
E. piscicida infection in zebrafish [99].

Hemolysin-coregulated protein (Hcp) of Salmonella enteritidis is a structural component
of the T6SS forming the inner tube which is critical to the secretion of effector proteins and
the assembly of T6SS apparatus [103,104]. Subcellular localization of Hcp in the cytoplasm
was discovered by expressing plasmid carrying pEGFP-N1-hcp in BHK-21 cells, where
Hcp regulates the gene expression along the TNF signaling pathway [105].

6. Conclusions

The widely distributed T6SS helps bacteria not only in getting a competitive advantage,
but also adapting to various stress conditions. Increasing numbers of T6SS effectors
and immunity proteins are unraveled and crystal structures are also solved for many
of these proteins. Current studies show that bacteria can take up metal ions through
T6SS to resist the damage caused by oxidative stress. Furthermore, T6SS is involved
in bacterial adaptation to temperature and pH changes, while T6SS immunity proteins
protect self or kin cells from the effector toxicity. Recent studies show that non-self cells
can use AID systems to neutralize T6SS toxins. Thus, T6SS functions inclusively as a
toxin secretion system for getting interspecies and intraspecies advantages and also a
strategy for resisting external pressures and mediate stress responses. The mode of action
of many T6SS effectors is still unknown and the discovery of more T6SS effectors is
ongoing. Interestingly, there are also evidences showing a high relevance between T6SS
bacteria and the progression of host infection. We hypothesize that T6SS mediated stress
response mechanisms are widely adopted by bacterial pathogens during interspecies
competition as well as environmental adaptation. Further clarification of T6SS mediated
stress response mechanisms may help us to understand microbial ecology, manipulation of
the compositions of microbial communities, and develop novel antimicrobial strategies.
T6SS could have great potential application in synthetic biology. The establishment of
synthetic T6SS in a probiotic or controllable tool to modulate host immunity and control
intestinal inflammation, in order to regulate host immunity or reshape microbial structure
and function, will be an interesting topic. More and more evidence points to T6SS as
a comprehensive survival strategy adopted by Gram-negative bacteria. Another topic
worthy of discussion is the potential role of T6SS in signal transduction among microbial
communities. The current research in the field still leaves great space for the discovery of
T6SS effectors. Furthermore, the exploration of their biological functions is another exciting
and significant topic of research.
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