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ABSTRACT

Selective accumulation of a photosensitizer and the subsequent response in only the light-
irradiated target are advantages of photodynamic diagnosis and therapy. The limited depth 
of the therapeutic effect is a positive characteristic when treating surface malignancies, 
such as peritoneal carcinomatosis. For photodynamic diagnosis (PDD), adjunctive use 
of aminolevulinic acid- protoporphyrin IX-guided fluorescence imaging detects cancer 
nodules, which would have been missed during assessment using white light visualization 
only. Furthermore, since few side effects have been reported, this has the potential to 
become a vital component of diagnostic laparoscopy. A variety of photosensitizers have been 
examined for photodynamic therapy (PDT), and treatment protocols are heterogeneous in 
terms of photosensitizer type and dose, photosensitizer-light time interval, and light source 
wavelength, dose, and dose rate. Although several studies have suggested that PDT has 
favorable effects in peritoneal carcinomatosis, clinical trials in more homogenous patient 
groups are required to identify the true benefits. In addition, major complications, such 
as bowel perforation and capillary leak syndrome, need to be reduced. In the long term, 
PDD and PDT are likely to be successful therapeutic options for patients with peritoneal 
carcinomatosis, with several options to optimize the photosensitizer and light delivery 
parameters to improve safety and efficacy.

Keywords: Surgical guidance; Photodynamic diagnosis; Photodynamic therapy; 
Photosensitizer; Carcinomatosis

INTRODUCTION

Fluorescence-guided surgical resection is emerging as a valuable clinical approach to 
improve tumor margin identification and enable maximal safe reductive surgery [1]. Several 
fluorescent agents are currently used routinely in clinical practice for surgical guidance, 
such as indocyanine green (ICG) [2] and fluorescein [3]. Additionally, various novel 
fluorophores are in development, including molecules or nanoparticles that are specifically 
targeted to tumors through conjugation to antibodies or peptides [4,5]. A further option 
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is to use fluorophores that are also photodynamic sensitizers, and in this case, the term 
“photodynamic diagnosis (PDD)” is often used. Photodynamic therapy (PDT) utilizes high 
doses of photosensitizer and light to destroy malignant tissue, often via the generation 
of cytotoxic reactive oxygen species (ROS), such as singlet oxygen. Tumor cell death may 
occur directly via necrotic and/or apoptotic pathways or by shutting down the tumor 
microvasculature via endothelial cell death when light is applied while the photosensitizer 
remains in circulation [6]. Historically, many developments in PDD and PDT have been 
closely linked, although not all fluorophores (materials that emit longer-wavelength light 
upon photoexcitation) are photosensitizers (molecules producing biochemical changes 
through photophysical and photochemical processes) and vice versa. Indeed, fluorescence and 
ROS generation are competing processes, as illustrated in Fig. 1. Singlet oxygen-mediated 
PDT occurs only when a photosensitizer, oxygen, and light are present in sufficient amounts 
(Fig. 2). Ideally, the photosensitizer should also have a degree of selectivity for tumor tissue 
over normal tissue selectivity, either through higher uptake in malignant cells/tissues and/or 
through differential sensitivity to ROS-mediated damage. The advantages of PDT as a clinical 
modality include its low systemic toxicity (apart from skin photosensitivity, reported with 
some earlier photosensitizers) and excellent tissue healing, since the lack of heat means that 
collagen is not destroyed during PDT and the normal tissue architecture is preserved. More 
recently, preclinical and clinical evidence have shown that immune upregulation contributes 
to the tumor response [7,8].

While many potential PDD/PDT agents can be used in the management of peritoneal 
carcinomatosis (PC), 5-aminolevulinic acid (5-ALA)-induced protoporphyrin IX (PpIX) is 
of special interest. 5-ALA is a small agent that is administered orally and is involved in the 
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Fig. 1. Photophysical pathways (energy-level diagram) in PDD and PDT. 
PDD = photodynamic diagnosis; PDT = photodynamic therapy; PS = photosensitizer; ROS = reactive oxygen species.
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Fig. 2. Schematic showing the interactions between the main elements required in PDT.

https://jgc-online.org


regulation of heme biosynthesis. Exogenous ALA increases heme synthesis; during the 
penultimate step, the fluorescent photosensitizer PpIX preferentially accumulates in tumor 
cells [9], most likely due to the low levels of ferrochelatase needed to convert PpIX into heme.

A variety of visible and near-infrared light sources (diode lasers, light-emitting diodes 
[LEDs]) and light delivery technologies, including fiberoptics and specialized light diffusers, 
are used [10-12] depending on the treatment site and clinical requirements. Both surface 
application and interstitial light delivery may be applied externally, intraoperatively, or 
endoscopically. PDT is particularly well suited for the treatment of surface malignancies, 
such as basal cell carcinomas and early-stage intraluminal lesions [13,14], where selective 
photosensitizer uptake in the tumor cells, targeted light irradiation, and, depending on the 
wavelength, limited light penetration in tissue can selectively destroy tumor or pre-malignant 
lesions (dysplasia) with minimal damage to underlying normal tissue. Combining PDD 
with laparoscopic guidance PDT treatment delivery using a minimally invasive approach is 
facilitated by the widespread use of endoscopic and laparoscopic tools.

Historically, PC was considered an incurable condition in patients with gastric, pancreatic, 
colorectal, or ovarian cancers. The discovery of one or more metastatic nodules during surgery 
changes the surgical plan from curative to palliative resection, or to no resection. Thus, early 
diagnosis of metastatic nodules has significant clinical implications. Despite improvements 
in computed tomography (CT) and magnetic resonance imaging (MRI), tumor nodules less 
than 5 mm are rarely detectable before surgery, and some are overlooked during surgery [15]. 
PDD addresses the latter; used as an adjunct to diagnostic laparoscopy, PDD with ALA-PpIX 
fluorescence contrast increases the rate of PC diagnosis by as much as 30% [16].

Aggressive treatments for peritoneal metastasis, such as cytoreductive surgery with 
hyperthermic intraperitoneal chemotherapy [17], intraperitoneal chemotherapy [18], or 
pressurized intraperitoneal aerosol chemotherapy [19], have shown positive outcomes in 
some patients. PDT has also been investigated as an adjunct to cytoreductive surgery [20-
24]. In principle, PDT is an attractive option, since the treatment effect is confined to the 
irradiated area and to a few millimeters below the tissue surface, while high accumulation 
of photosensitizer in cancer cells may provide a further level of selectivity. However, clinical 
experience to date is limited, and serious treatment-related complications have been reported 
[25], as discussed below.

The aims of this paper are: 1) to briefly review the current status and limitations of PDD and 
PDT for the treatment of PC originating from gastrointestinal or gynecological cancers, and 
2) to consider potential approaches to overcome these limitations so that the advantages of 
PDT can be achieved with an improved safety profile in clinical practice.

STATUS OF PDD IN PC

Preclinical studies
Ovarian, colorectal, and gastric cancer cell lines have been used in mouse and rat models 
of PC with induced metastatic nodules (Table 1). ALA-PpIX is the most widely studied 
agent under blue light (405 nm) excitation, with detection of red (≥600 nm) fluorescence. 
Considering that clinical laparoscopy systems were used for these studies, the smallest 
detectable tumor size of approximately 0.5 mm should be comparable between patients 
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[35]. The sensitivity and specificity for in situ tumor detection were derived from examining 
of hundreds of metastatic nodules (e.g., 555 [27], 171 [28], and 105 [33]) and were within the 
range 21%–100% and 53%–100%, respectively. The diagnostic accuracy has been validated 
in experiments using tumor cells expressing red [27] or green [16,26] fluorescent proteins. 
Selective localization of photosensitizer in tumor versus normal tissue was measured by 
fluorescence spectroscopy and expressed as the tumor-to-normal ratio (TNR), and the reported 
values varied from 1.17 to 6.27. Time series measurements indicated that the maximum 
fluorescence intensity differed in tissues in different anatomical regions (small bowel, 
peritoneum, and liver) [37,40]. This has clinical implications, since PC nodules in a patient may 
have different fluorescence readings during PDD depending on the anatomical site and time 
between ALA administration and fluorescence detection. This requires further investigation.

Clinical trials
5-ALA is the only photosensitizer used to date for PDD of PC arising from gastric, ovarian, 
and pancreatic cancers (Table 2). In most studies, 20 mg 5-ALA was administered orally 3–4 
hours before PDD. Unlike in animal models, not all patients had metastatic cancer nodules; 
therefore, the sensitivity and specificity could not be determined. However, the accuracy 
of PDD has been compared with that of white light tumor visualization: the detection rate 
under white-light (range, 11.7%–100%) [16,42,43,45,49,50,54,55] increased by an average 
of 10% (range, 0–33%) [26,43,45,49,53-56] when 5-ALA PDD was also used. In addition, 
fluorescence imaging identified patients with metastatic nodules that were missed under 
white-light investigation [43,45,49,55,56]. The prognostic impact of these additionally 
detected nodules was not determined. A study of 113 patients with metastatic nodules 
revealed by PDD, and subsequently resected, had survival times similar to those in 51 patients 
with no metastatic nodules [43]. However, this important finding needs to be confirmed 
using larger sample sizes. Regarding the size of peritoneal nodules that can currently 
be detected by PDD, Menon et al. [57] found that nodules as small as 1 mm in diameter 
contained measurable levels of PpIX. Interestingly, another study revealed no detectable 
fluorescence, even in primary tumors, in patients who underwent neoadjuvant chemotherapy 
prior to PDD [16]. Although the regimen and mechanism were not described in the report, 
this finding should be investigated in patients receiving neoadjuvant chemotherapy.

Complications associated with the diagnostic use of ALA-PpIX for fluorescence detection are 
rare. Since the PpIX concentration in skin peaks around 3–4 hours after ALA administration, 
and is undetectable by 24 hours [58], patients are advised to avoid direct sunlight and bright 
artificial lights for 1 day, and few complications have been reported. Self-limiting nausea 
and vomiting were the only morbidities reported following oral ALA administration at 
diagnostic doses (<30 mg/kg body weight); however, the possibility of adverse events should 
be considered during the procedure [46,54].

STATUS OF PDT IN PC

Preclinical studies
Ovarian cancer is the most common primary tumor that has been investigated in preclinical 
studies of PDT for PC, followed by gastric cancer (Table 3). A variety of photosensitizers and 
corresponding treatment wavelengths have been used in mouse and rat models. Thus, the 
treatment protocols have varied in terms of the photosensitizer-light time interval and light 
doses. Unlike human trials, repeat treatment schedules have been used often. Molpus et al. 

359https://jgc-online.org https://doi.org/10.5230/jgc.2020.20.e39

Photodynamics in Peritoneal Carcinomatosis

https://jgc-online.org


360https://jgc-online.org https://doi.org/10.5230/jgc.2020.20.e39

Photodynamics in Peritoneal Carcinomatosis

Ta
bl

e 
2.

 P
DD

: c
lin

ic
al

 tr
ia

ls
Ye

ar
Au

th
or

Di
se

as
e

N
o.

Su
rg

er
y

PS
D

os
e 

(m
g/

kg
)

Ro
ut

e
Ti

m
e 

in
te

rv
al

 
(h

)

W
av

el
en

gt
h 

(n
m

)
D

et
ec

t 
ad

di
tio

na
l 

pa
tie

nt
s?

D
et

ec
t 

ad
di

tio
na

l 
le

si
on

s?

Dx
 (%

) u
si

ng
 

w
hi

te
 li

gh
t 

on
ly

Dx
 (%

) u
si

ng
 w

hi
te

 
lig

ht
+fl

uo
re

sc
en

ce
Se

ns
.

Sp
ec

.
Co

m
pl

ic
at

io
ns

20
18

H
ar

ad
a 

et
 a

l. 
[4

2]
Pa

nC
34

SL
5-

AL
A

20
O

ra
l

3
40

0
N

o
N

o
11

.7
11

.7
-

-
N

o
20

17
Us

hi
m

ar
u 

et
 a

l. 
[4

3]
G

C
11

3
SL

5-
AL

A
20

O
ra

l
4

40
0

Ye
s

Ye
s

43
.4

57
.5

-
-

-

20
17

H
ill

em
an

ns
 e

t 
al

. [
44

]
O

C
20

SL
5-

AL
A

10
O

ra
l

5
40

0
-

-
-

-
75

10
0

N
o

20
16

Ki
sh

i e
t a

l. 
[4

5]
G

C
38

SL
5-

AL
A

16
.6

O
ra

l
4

40
0

Ye
s

Ye
s

31
.5

42
.1

81
.1

-
-

20
16

Yo
ne

m
ur

a 
et

 a
l. 

[4
6]

H
et

er
og

en
ou

s
11

5
CR

S+
H

IP
EC

5-
AL

A
20

O
ra

l
4

40
0

-
-

-
35

.5
35

.6
10

0
N

au
se

a 
(1

),
 

vo
m

iti
ng

 (1
)

20
15

Yo
ne

m
ur

a 
et

 a
l. 

[4
7]

H
et

er
og

en
ou

s
13

8
CR

S+
H

IP
EC

5-
AL

A
20

O
ra

l
2

40
0

-
-

-
45

.6
46

10
0

-

20
14

N
am

ik
aw

a 
et

 a
l. 

[4
8]

G
C

21
SL

5-
AL

A
16

.6
O

ra
l

4
40

0
-

-
-

52
.4

57
.7

10
0

N
o

20
14

Ki
sh

i e
t a

l. 
[4

9]
G

C
52

SL
5-

AL
A

16
.6

O
ra

l
4

40
0

Ye
s

Ye
s

46
.1

55
.7

88
.1

-
-

20
14

Ko
nd

o 
et

 a
l. 

[2
6]

CR
C

12
SL

5-
AL

A
20

O
ra

l
3

40
0

-
Ye

s
-

66
-

10
0

N
o

20
14

Li
u 

et
 a

l. 
[5

0]
O

C,
 P

PC
20

CR
S+

H
IP

EC
5-

AL
A

20
O

ra
l

2
44

0
N

o
-

10
0

10
0

95
10

0
N

o
20

14
Ca

nb
ay

 [5
1]

PP
PS

C
1

CR
S+

H
IP

EC
5-

AL
A

3.
3

O
ra

l
2

40
0

-
-

-
-

-
-

N
o

20
12

Ki
sh

i e
t a

l. 
[1

6]
G

C
13

SL
5-

AL
A

16
.6

O
ra

l
4

40
0

-
-

39
72

93
10

0
-

20
12

M
ur

ay
am

a 
et

 a
l. 

[5
2]

G
C

13
SL

5-
AL

A
15

O
ra

l
3

40
5

-
-

-
38

.4
10

0
10

0
N

o

20
06

Lo
ni

ng
 e

t a
l. 

[5
3]

O
C,

 F
TC

17
Se

co
nd

-l
oo

k 
la

pa
ro

sc
op

y
5-

AL
A

30
ip

5
40

0
N

o
Ye

s
-

55
10

0
88

-

20
05

Zo
pf

 e
t a

l. 
[5

4]
H

et
er

og
en

ou
s

30
SL

5-
AL

A
20

O
ra

l
6

44
0

N
o

Ye
s

23
.3

23
.3

10
0

96
Su

nb
ur

n 
(1

),
 

na
us

ea
 (1

),
 

fe
ve

r (
1)

, 
br

ad
yc

ar
di

a 
(1

)
20

04
Lo

ni
ng

 e
t a

l. 
[5

5]
O

C
13

Se
co

nd
-l

oo
k 

la
pa

ro
sc

op
y

5-
AL

A
30

ip
5

40
0

Ye
s

Ye
s

27
.5

41
.3

92
95

N
o

20
00

O
rt

h 
et

 a
l. 

[5
6]

Pa
nC

12
SL

5-
AL

A
20

O
ra

l
6

40
0

Ye
s

Ye
s

-
-

-
-

-
PD

D 
= 

ph
ot

od
yn

am
ic

 d
ia

gn
os

is
; P

S 
= 

ph
ot

os
en

si
tiz

er
; D

x 
= 

di
ag

no
si

s;
 P

an
C 

= 
pa

nc
re

at
ic

 c
an

ce
r;

 S
L 

= 
st

ag
in

g 
la

pa
ro

sc
op

y;
 5

-A
LA

 =
 5

-a
m

in
ol

ev
ul

in
ic

 a
ci

d;
 G

C 
= 

ga
st

ric
 c

an
ce

r;
 O

C 
= 

ov
ar

ia
n 

ca
nc

er
; C

RC
 

= 
co

lo
re

ct
al

 c
an

ce
r;

 P
PC

 =
 p

rim
ar

y 
pe

rit
on

ea
l c

ar
ci

no
m

a;
 P

PP
SC

 =
 p

rim
ar

y 
pe

rit
on

ea
l p

ap
ill

ar
y 

se
ro

us
 c

ar
ci

no
m

a;
 C

RS
+H

IP
EC

 =
 c

yt
or

ed
uc

tiv
e 

su
rg

er
y 

hy
pe

rt
he

rm
ic

 in
tr

ap
er

ito
ne

al
 c

he
m

ot
he

ra
py

; F
TC

 =
 

fa
llo

pi
an

 tu
be

 c
an

ce
r;

 ip
 =

 in
tr

ap
er

ito
ne

al
.

https://jgc-online.org


361https://jgc-online.org https://doi.org/10.5230/jgc.2020.20.e39

Photodynamics in Peritoneal Carcinomatosis

Table 3. PDT: preclinical studies
Year Author Host Disease No. PS Dose  

(mg/kg)
Route Time 

interval 
(hr)

Wavelength (nm) # repeats Fluence 
(light 

dose, J/
cm2)

Primary endpoint

2017 Kato et al. [59] Mice PanC (AsPC1, BxPC3) 21 Mal3-
Chlorin

1.25 ip 4 660 2 13.9 Tumor burden 
(day 21), cell death 
pathology (1 day)

2016 Harada et al. 
[60]

Mice OC (SHIN3-luc-RFP) 20 GSA-IR700 0.025 ip 3 NIR 3 100 RLU (7 days)

2016 Ishida et al. [61] Mice GC (MKN-45-luc) 20 TRA-IR700 80 µg/
mouse

ip 24 690 1 50 Survival (120), 
tumor burden 
(weight, 28 days)

2016 Yokoyama et al. 
[62]

Rats OC (DISS) 20 5-ALA 250 ip 3 600 1 90 Survival (90 days)

2015 Li et al. [4] Rats OC (NuTu-19) 40 PBCA-NP-HB 10 ip 1 N/A 1 50 Survival (110 days)
2015 Sato et al. [63] Mice OC (SKOV-luc-D3, 

HER2+)
64 TRA-IR700 100 µg/

mouse
iv 24 NIR 1 100 RLU (14 days)

2014 Sato et al. [64] Mice GC (N87-GFP, Her2+) 60 TRA-IR700 100 µg/
mouse

iv 48 NIR 6 450 TV (24 day), 
survival(80D)

2014 Tsujimoto et 
al. [5]

Mice GC (MKN-45-luc) 16 ICGm,s 100 µL iv 48 808 1 500 Survival (70 days), 
tumor burden 
(number and weight 
of tumor, 21 days)

2013 Hino et al. [65] Mice GC (MKN-45 EGFP) 20 5-ALA 250 ip 5 410, 525, 635 1 4.5 Histologic response 
(48 hr)

2011 Mroz et al. [66] Mice CRC (CT26-Luc) 60 BB4 5 ip 24 White light, 540, 
635

1 100 Survival (35 days), 
histology (24 hr)

2010 Estevez et al. 
[67]

Rats OC (NuTu-19) 60 HAL 100 ip 4 532 Fract vs. 
Cont

45 Necrosis value 
(0–4) (1 day)

2010 Kishi et al. [68] Mice GC (MKN-45 EGFP) 30 Talaporfin 10 ip 4 664 1 10 Pathologic response 
(24 hr), toxicity (3 
days)

2010 Piatrouskaya et 
al. [69]

Rats Sarcoma (SaM-1) 18 Fotolon 2.5 iv N/A 670 1 5 Necrosis area 
(pathology) (4 days)

2010 Raue et al. [70] Mice CRC (DHD/K12/TRb) 90 5-ALA 150 ip 6 630 1 N/A Tumor burden 
(tumor weight, 
ePCI, day 21)

2009 Zhong et al. [28] Mice OC (NIH:OVCAR5) 7 BPD-MA 0.25 ip 1.5 690 1 25 Tumor burden (day 
19)

2008 Ascencio et al. 
[71]

Rats OC (NuTu-19) 36 HAL 100 ip 4 532 Fract vs. 
Cont

45 Necrosis value 
(0–4) (1 day)

2008 Ascencio et al. 
[72]

Rats OC (NuTu-19) 52 HAL 100 ip 4 532 1 45 Necrosis value 
(0–4) (1 day)

2007 Ascencio et al. 
[73]

Rats OC (NuTu-19) 54 5-ALA 60 ip 4 532, 630 1 150 Necrosis value 
(0–4) (1 day)

2007 Song et al. [74] Rats OC (NuTu-19) 26 HMME 10 ip 3 Red 1 50 Survival (60 days)
2005 del Carmen et 

al. [75]
Mice OC (NIH:OVCAR5) 155 BPD 0.25 ip 1.5 690 1 20 Survival (180 days), 

tumor burden, 
weight (day 21)

2000 Molpus et al. 
[76]

Mice OC (NIH:OVCAR5) 107 Ce6-OC125 1 ip 3 664 3 25J/mice Survival (8 days), 
tumoricidal (72 hr), 
phototoxicity (N/A)

1998 Lilge et al. [77] Mice OC (NIH:OVCAR5) 40 BPD-MA 0.25 ip 1.25 690 3 45 Tumor burden (72 
hr), irradiation dose

1996 Goff et al. [78] Mice OC (NIH:OVCAR3) 190 Ce6-OC125 0.5 ip 24 656 4 75 Survival (80 days), 
toxicity (1 hr)

1996 Molpus et al. 
[79]

Mice OC (NIH:OVCAR5) 259 BPD-MA 2 ip 1.5 690 9 20 Survival (88 days), 
BPD-MA conc. in 
tissue, phototoxicity 
(72 hr), tumoricidal 
(72 hr)

(continued to the next page)
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(benzoporphyrin derivative monoacid [BPD-MA], 690 nm activation) [79] and Kishi et al. 
(talaporfin, 664 nm) [68] reported details of phototoxicity, photosensitizer biodistribution, 
tumor response, and survival following treatment. Kishi et al. [68] used (laser) light doses 
of 2, 5, or 10 J/cm2 at 2 or 4 hours after talaporfin injection in mice. Animals treated with 2 J/
cm2 at 2 hours drug-light interval died of intestinal perforation within 2 or 3 days, whereas 
there were no complications in the group treated with 2 J/cm2 at 4 hours [79]. The efficacy 
of different treatment wavelengths has also been investigated. For example, Hino et al. 
[65] used 5-ALA and 4.5 J/cm2 of violet (405 nm), green (532 nm), or red (635 nm) light 
delivered at laparotomy. Furthermore, Mroz et al. [66] used fullerene nanoparticles as the 
photosensitizer, with white (400–700 nm), green (540 nm), or red (635 nm) external-beam 
irradiation at a light dose of 100 J/cm2. Overall, red light demonstrated an inferior therapeutic 
effect despite its common use in ALA-PpIX PDT for other indications, such as interstitial PDT 
for pancreatic [83] and brain tumors [84]. Several studies have used other photosensitizers 
activated by near-infrared light following external application [5,59-61,63,64]. This 
approach was effective, because the small body size of mice allowed the light to penetrate 
the abdominal wall into the peritoneal cavity; however, it would be ineffective in patients. 
Indeed, as discussed below, a major technical challenge in PDT for PC is how to deliver the 
treatment light so that all tissue surfaces within the complex anatomy of the peritoneal cavity 
receive an adequate light dose to optimize the efficacy and safety.

Clinical trials
Data from limited clinical trials of PDT in PC have been published (Table 4). In all cases, PDT 
was applied in a single session as an adjunct to cytoreductive or debulking surgery. Multiple 
factors need to be considered to optimize the efficacy versus safety profile of intraperitoneal 
PDT, including the choice of photosensitizer, the photosensitizer-light time interval, the 
irradiation wavelength, and the light dose and dose rate.

Photosensitizer
Each photosensitizer has unique pharmacokinetic and optical absorption (activation) 
characteristics. Patients in clinical trials on the first-generation photosensitizer, Photofrin® 
(Pinnacle Biologics, Inc., Bannockburn, IL, USA) [20,22,24,85], were instructed to avoid 
direct sunlight for 6 weeks after PDT. Second-generation photosensitizers (e.g., meta-
tetrakis[3-hydroxyphenyl]chlorin [mTHPC] and 5-ALA) are more convenient because they 
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Year Author Host Disease No. PS Dose  
(mg/kg)

Route Time 
interval 

(hr)

Wavelength (nm) # repeats Fluence 
(light 

dose, J/
cm2)

Primary endpoint

1991 Perry et al. [80] Mice Sarcoma (MCA-207) 40 Photofrin2 10 ip 24 630 1 2 Photofrin level 
(day 7)

1986 Tochner et al. 
[81]

Mice Teratoma 80 HPD 10 ip 2 514 4 N/A Survival (50 days)

1985 Tochner et al. 
[82]

Mice OC (OECC) 68 HPD 50 ip 2 514 2 N/A Survival (90 days)

PDT = photodynamic therapy; PS = photosensitizer; PanC = pancreatic cancer; Mal3-Chlorin = 5,10,15,20-tetrakis-(4-[b-D-maltotriosylthio]-2,3,5,6- 
tetrafluorophenyl)-2,3-(methano-[N-methyl]iminomethano)-chlorin; ip = intraperitoneal; OC = ovarian cancer; GSA-IR700 = galactosyl serum albumin and PS 
agent IR-700; PBCA-NP-HB = poly butyl-cyanoacryate nanoparticles entrapped with hypocrellin B; NIR = near infrared; RLU = relative light unit; GC = gastric 
cancer; TRA-IR700 = trastuzumab and PS agent IR-700; 5-ALA = 5-aminolevulinic acid; iv = intravenous; TV = tumor volume; ICGm = indocyanine green loaded 
lactosome; CRC = colorectal cancer; BB4 = N-methylpyrrlidinium-fullerence; HAL = hexaminolevulinate; BPD-MA = benzoporphyrin derivative-monoacid; N/A = 
not applicable; HMME = hematoporphyrin monomethyl ether; Ce6-OC125 = chlorin e6 conjugated with murine anti-ovarian cancer monoclonal antibody; HPD = 
hematoporphyrin derivative.
*Fluence noted is either the highest dose group compared to the validated dose after the initial dose-finding study.

Table 3. (Continued) PDT: preclinical studies
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require the avoidance of direct sunlight or bright artificial light exposure for only 24 hours 
and are associated with lower systemic toxicity [21].

Photosensitizer-light time interval
The optimum time for PDT following photosensitizer administration depends primarily 
on the rates of uptake and clearance in tumor and normal host tissue. In addition, using 
a short drug-light interval ensures the photosensitizer is still in circulation, meaning that 
the primary anti-tumor effect is mediated by microvascular damage, primarily thrombosis; 
this strategy has been employed in the PDT of solid tumors [93]. However, since PC usually 
involves small and superficial targets following surgical debulking, and considering that 
oxygen diffusion can reach approximately 200 μm in tissue [94], using a longer interval to 
allow photosensitizer uptake by the tumor cells is preferred for direct photodynamic killing.

Treatment light wavelength
The optimum treatment wavelength for relatively superficial disease as in PC may differ 
from that for interstitial PDT of bulk tumors. For example, in the PDT of prostate cancer, in 
which a minimum light dose is required throughout a significant tissue volume [95], red or 
near-infrared light (up to 630–800 nm) is advantageous because of its deeper penetration, 
mainly due to reduced absorption of light by hemoglobin. Conversely, in PC, the risk of bowel 
perforation is less at shorter (e.g., blue or green) wavelengths. The light penetration depth 
in tissue generally increases with wavelength, and clinical trials have assumed that red and 
green light provide effective treatment depths of up to 5–10 mm and <3 mm, respectively 
[89,91,96]. Even with red light, the response of bulky tumors may be poor, as reported for 
rectal cancer [22]. An alternative is to perform cytoreductive debulking surgery followed by 
PDT with green light, with the option of adding a selective boost dose with red light in cases 
of gross tumor involvement [20,24]. If the photosensitizer has significant absorption at 
shorter wavelengths, as with porphyrin-based compounds, it may also be possible to reduce 
the total light energy dose while generating sufficient singlet oxygen for effective treatment, 
assuming that the full depth of the tumor can be adequately treated.

Light dose and rate
Tissues, including tumors, generally display a threshold behavior to PDT; that is, a minimum 
photosensitizer-light dose product needs to be reached to induce necrosis (or other 
endpoint) [97]. For a given tissue concentration of photosensitizer, the effective treatment 
depth is logarithmically proportional to the applied light dose (J/cm2); thus, to double the 
treatment depth, an approximately four-fold increase in light is required. This is a purely 
biophysical effect. However, a light dose that is high enough to induce significant tumor 
necrosis may also generate damage-associated molecular patterns (DAMPs), initiating an 
inflammatory response that triggers immune upregulation, which contributes to the overall 
tumor response [98]. At lower doses, PDT-induced apoptosis may still occur, but rarely 
stimulate an immune response, while at very low doses there may be increased tumor cell 
growth [99]. Conversely, delivering too high a light dose risks causing damage to normal 
tissue within the light field, unless there is a high tumor-to-normal tissue photosensitizer 
concentration. In general, the rate of light delivery in clinical PDT is selected to avoid 
significant tissue heating, typically being below approximately 200 mW/cm2 for well-perfused 
tissues. This has been reported for all clinical trials in PC to date [20,85]. Dose rates as low 
as 10 mW/cm2 demonstrated efficacy in a preclinical study [81], since this avoids the tissue 
oxygen being photochemically depleted faster than it can be replenished by blood perfusion, 
at least in relatively hypoxic (e.g., tumor) tissue.
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CONSIDERATIONS FOR THE CLINICAL APPLICATION OF 
PDT IN PC
In this section, we will consider the factors that contribute to the efficacy and safety of PDT 
for PC in clinical practice. As summarized above, intraperitoneal PDT has demonstrated 
favorable outcomes in terms of tumor responses [24,85,90]. However, because the patient 
cohorts have been heterogeneous within and between studies, and have included patients 
with various primary tumors (colorectal, ovarian, and sarcoma), the clinical benefits of PDT 
remain unclear. Interestingly, one study performed a recurrence-pattern analysis to assess 
the treatment response [87], which suggested the value of PDT for local control, based on 
recurrence being rarely observed at sites treated by a PDT boost dose.

Regarding safety, the high rates of adverse events, primarily perforation of the stomach, 
small intestine, and colon, as well as capillary leak syndrome, currently limit the clinical 
application of PDT. Some studies have also reported ureteral injury, but it is unclear whether 
this was related directly to the PDT [22,91]. One report described bilateral ureteral leaks that 
required bilateral nephrostomies for urinary diversion [22]. Capillary leak syndrome is the 
most serious toxicity reported, manifesting as tachycardia and hypotension requiring massive 
fluid resuscitation and prolonged mechanical ventilation, with a high incidence of pulmonary 
complications and significant whole-body edema [20,25,89]. The effects occurred during 
the first 4–5 days post-PDT, peaking at 1–3 days. Patients typically received a net positive 
fluid balance of 20 L in the first 24 hours [20]. A retrospective analysis of a phase II trial [25] 
found that this syndrome was significantly associated with surgical duration and nodule 
number. However, the analysis did not include the light irradiation dose. Thus, we assume 
that more extensive light irradiation follows more extensive surgery. The degree of systemic 
inflammatory response following cytoreductive surgery with PDT is more severe than in 
other major gastrointestinal surgeries, such as hepatectomy, pancreaticoduodenectomy, and 
esophagectomy. Thus, one can infer indirectly that trauma associated with intra-peritoneal 
PDT significantly contributes to capillary-leak syndrome.

Using conventional PDT treatment protocols comprising single doses of photosensitizer 
and light, the greatest challenge for improving the clinical efficacy is to increase the tumor 
specificity of the photosensitizer, such that greater tumor control can be achieved using 
higher light doses while limiting off-target toxicity. A technical challenge for light delivery is 
ensuring that a minimum (threshold) light dose is delivered throughout the peritoneal cavity. 
Here, we will consider other novel approaches that may alter the equation for optimizing the 
photosensitizer and light parameters.

Route of photosensitizer administration
The pharmacokinetics and biodistribution of photosensitizers depend on the route 
of administration, as well as on their intrinsic properties. Perry et al. [80] evaluated 
the efficiency and toxicity of Photofrin2 following intraperitoneal (ip) injection versus 
intravenous (iv) administration in a mouse model [80]. The results suggested that ip 
injection is a safer and more effective route than iv administration. Kishi et al. [68] reported 
similar preclinical findings with talaporfin, leading to a switch from iv to ip administration. 
In clinical trials, Loning et al. [53,55] delivered 5-ALA ip without complications. Considering 
that ip photosensitizers can be absorbed on the surface of the peritoneal organ, which is 
analogous to topical treatments for skin tumors, direct uptake into tumor nodules may 
improve the tumor-to-normal tissue profile if the photosensitizer is distributed throughout 
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the peritoneal cavity. Depending on the formulation, a fraction of the total photosensitizer 
dose will enter the circulation and be delivered through the systemic route. Optimizing the 
formulation and dispersal of photosensitizers for ip administration to achieve the highest 
tumor uptake and TNR should be elaborated in future studies.

Irradiation schedule
During the early development of X-ray therapy, large single doses of radiation were found 
to be less effective and caused greater damage to normal tissue than multiple small doses 
(fractionation), which is now standard clinical practice. PDT has generally been delivered 
in a single session, partly because it is necessary to reach a minimum threshold dose. 
This approach has been successful in a variety of tumors and stages [12,13,95] and has the 
added advantages of patient/clinician convenience and of avoiding the need for multiple 
photosensitizer administrations. However, there are exceptions to this. For example, Kato et 
al. [59] used two irradiation sessions, on days 0 and 7, to kill disseminated pancreatic cancer 
cells following ip administration of Mal3-Chlorin (maltotriose-conjugated chlorin) in a 
mouse model. Harada et al. [60] delivered light irradiation daily for up to 3 days using a near-
infrared photosensitizer (GSA-IR700) in an ovarian cancer mouse model. Furthermore, Sato 
et al. [64] delivered 50 J/cm2 on day 1 and 100 J/cm2 on day 2, and repeated these conditions 
every week for up to 3 weeks with the photosensitizer TRA-IR700 in a gastric cancer mouse 
model. Using BPD-MA, Molpus et al. [79] delivered 20 J light irradiation in three to five 
treatments at 3–7-day intervals in a murine tumor model. The rationale for this approach was 
to exert the maximum therapeutic effect and reduce complications. Other preclinical studies 
have demonstrated that fractionized PDT using a relatively low light dose performed better 
than conventional single high-dose PDT [67,71].

A more radical approach, termed metronomic PDT (mPDT), has been proposed by Wilson 
and colleagues [11,84,100,101], in which both the photosensitizer and light are delivered 
continuously or in many small fractions at very low rates over an extended period. This is 
analogous to metronomic chemotherapy using low doses over an extended duration [102], 
although the mechanisms of action differ. Thus, in an intracranial glioma model, ALA was 
administered without toxicity in drinking water at a low rate of 100 mg/kg per day over several 
days. An optical fiber implanted in the tumor delivered light at 23 μW/cm2 over 5 days, for a 
total energy dose of 10 J/cm2, which was comparable to the total dose used in conventional 
“acute” single-fraction PDT [84]. Importantly, tumor cells underwent apoptosis with no 
evidence of necrosis. Additionally, there was no evidence of either necrotic or apoptotic 
damage to the adjacent normal brain, and post-PDT edema was reduced. This concept has 
been used clinically, at least in multiple-fraction rather than full continuous metronomic 
mode, for treating chest wall recurrences in patients with breast cancer [103,104]. We suggest 
that this strategy could be used for intraperitoneal PDT of PC, with treatment extending over 
several days, which would also allow treatment to be terminated if side effects are observed. 
The limitations of mPDT include the potential for increased tumor growth if the tumor is very 
aggressive [99] and the risk that apoptotic cell death may not trigger an immune response 
that contributes to the anti-tumor efficacy of PDT [98,105]. The main technical challenge 
will be how to safely deliver light at a low-dose rate throughout the peritoneal cavity. We are 
currently addressing this; at least in principle, one could envisage metronomic treatment 
being delivered even in an ambulatory setting following intraoperative source implantation.
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Uneven bowel contours
The small bowel, large bowel, and omentum are packed tightly into the peritoneal cavity; 
therefore, irradiating the entire peritoneal surface with a uniform dose is technically 
challenging during PDT light delivery. Historically, light-scattering media [106] have been 
used to distribute light more uniformly in order to improve treatment efficacy. A National 
Cancer Institute report described protocols for irradiating and monitoring light energy in 
the peritoneal space [24,91]. Thus, diluted (0.2%) Intralipid™ (Sigma-Aldrich, St. Louis, 
MO, USA), a liquid fat-protein suspension used for intraparental feeding, served as the 
light-scattering medium to distribute light into deep-seated bowel surfaces. A diffusing 
“wand” connected to a laser source was used for light delivery, protecting the tissues from 
thermal or mechanical injury due to direct contact [91]. In a subsequent study, 1.5% dextrose 
peritoneal dialysis solution was used instead of Intralipid, which caused hypocalcemia 
and hypomagnesemia. In turn, this was then changed to Ringer's solution with 1.7 mEq/L 
additional magnesium [24]. The visceral peritoneal surfaces (diaphragm, omentum, 
retroperitoneal gutters, pelvis, and abdominal wall) were illuminated by manually moving the 
wand, which comprised an optical fiber placed within a cuffed endotracheal tube, capped and 
filled with 0.1% lipid emulsion, with 0.02% emulsion used to inflate the cuff.

The delivered light intensity (fluence rate, mW/cm2) was continuously monitored during 
irradiation by a photodiode sutured to the tissue surface in the right upper quadrant, left 
upper quadrant, and pelvis, with an additional, untethered diode placed in the target 
region. The wand was moved manually to achieve the highest uniformity in light delivery 
by equalizing the cumulative light dose received by the photodetectors. Depending in the 
organ, the target light dose was 5–10 J/cm2, and was calculated (according to the power 
of light delivered by the wand), based on the surface of each region as a percentage of 
the total peritoneal surface, and assuming that the body surface area was the same as the 
peritoneal surface area [107]. Measuring the delivered light dose in this complex setting is 
challenging [108], and the use of an anatomical phantom to simulate, and thereby optimize, 
intraoperative PDT has been proposed [109]. There is significant room for improvement in 
the process of light-delivery and monitoring. For example, there could be more extensive 
use of multiple distributed light sources for the simultaneous illumination of different 
intraperitoneal surfaces, and by continuous imaging and multiple point measurements of 
the light distribution, with automatic feedback control to dynamically adjust the power from 
each light source. This type of on-line monitoring and control system has been used for 
other complex anatomical sites, such as whole-prostate PDT [110], guided by pre-treatment 
planning based on volumetric CT or MRI.

Surgical procedure
Several minor surgical issues could result in large differences in the efficacy of PDT. First, 
since blood on a tissue surface strongly absorbs the activating light (to a greater or lesser 
extent, depending on the wavelength), complete hemostasis should be ensured [23]. 
Likewise, when the peritoneal cavity is filled with a light-scattering fluid, it is important to 
avoid blood contamination, since the increased path length of the light amplifies the effect 
of hemoglobin absorption, such that continuous or frequent fluid exchange during light 
irradiation may be required. Second, bowel edema, ascitic fluid collection, and subsequent 
ileus are common after PDT of PC. One clinical trial reported a high incidence of perforations 
at the anastomosis sites [24], although there was no histological evidence of injury except at 
the enterotomy. Thus, the PDT-induced edema was thought to cause traction on the staple 
line or focal ischemia and subsequent perforation. Transient thrombocytopenia is also 
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commonly observed in PC patients receiving PDT [24,89]. Although this was self-limiting, it 
could increase surgical morbidity.

CONCLUSIONS

Photodynamic diagnosis, that is, fluorescence imaging or point spectroscopy of the 
photosensitizer, could be used as an adjunct to improve the detection of otherwise 
unidentified peritoneal metastasis during diagnostic laparoscopy. Except for some self-
limiting skin photosensitivity, the photosensitizer is associated with minimal side effects, 
given that low (sub-therapeutic) doses and light exposures are used. Since diagnosis of 
peritoneal metastasis is critical for clinical decision making, PDD is likely to become 
standard clinical practice. The main issue is which fluorescent agent to use (which may 
or may not be photodynamically active), while issues around the additional costs for the 
equipment and the photosensitizer, as well as the increased procedural time, are also 
important practical factors.

Regarding photodynamic treatment, the limited thickness of intraperitoneal nodules, 
especially after surgical debulking, makes PDT a suitable modality, given that the limited 
light penetration protects underlying organs from injury. The effective treatment depth 
depends on the photosensitizer, its concentration in the target tumor, the tumor-to-normal 
tissue selectivity, as well as the treatment wavelength, tissue optical properties at this 
wavelength, and tissue oxygenation. To date, clinical trials of PDT in PC have demonstrated 
moderate anti-tumor efficacy, but high complication rates. Therefore, the various treatment 
parameters, particularly the photosensitizer selectivity and light delivery, require further 
development and optimization to translate this modality into routine clinical practice 
with safe and reliable outcomes. Given i) the diverse range of photosensitizers available 
(including, in the future, active tumor targeting), ii) the increasing sophistication of PDT 
treatment planning, delivery, and monitoring technologies that have been demonstrated in 
the PDT of other cancers, iii) the use of novel photobiological strategies such as mPDT, and 
iv) the full exploitation of the immune effects of PDT, clinical translation and adoption are 
likely to be feasible in the foreseeable future. Current research in our laboratory on mPDT 
and specialized light delivery systems will hopefully advance this field.
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