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In a general computational context for biomedical data analysis, DNA sequence classification is a crucial challenge. Several machine
learning techniques have used to complete this task in recent years successfully. Identification and classification of viruses are
essential to avoid an outbreak like COVID-19. Regardless, the feature selection process remains the most challenging aspect of
the issue. The most commonly used representations worsen the case of high dimensionality, and sequences lack explicit features.
It also helps in detecting the effect of viruses and drug design. In recent days, deep learning (DL) models can automatically
extract the features from the input. In this work, we employed CNN, CNN-LSTM, and CNN-Bidirectional LSTM architectures
using Label and K-mer encoding for DNA sequence classification. The models are evaluated on different classification metrics.
From the experimental results, the CNN and CNN-Bidirectional LSTM with K-mer encoding offers high accuracy with 93.16%
and 93.13%, respectively, on testing data.

1. Introduction

The world has 1.6 million viruses and viruses like HIV, Ebola,
SARS, MERS, and COVID-19 that jumps frommammals and
humans. The author provides a detailed study about the influ-
ence of COVID-19 in numerous sectors [1]. Due to the effect
of globalisation and intense mobilisation of the global popula-
tion, it is likely that new viruses can emerge and can spread
across as fast as the current COVID-19. Identifying the path-
ogens earlier will help prevent an outbreak like COVID-19
and assist in drug design [2]. Therefore, DNA sequence classi-
fication plays a vital role in computational biology. When a
patient is infected by the virus, the samples collected from

the patient and the genomes are sequenced. The sequenced
genomes will be compared in the GenBank (NCBI) to identify
the pathogens. The GenBank maintains a BLAST server to
check the similarity of the genome sequence. It has 106 billion
nucleoid bases from 108 million different sequences, with 11
million new ones added last year [3]. Suppose the DNA
sequences increase exponentially, machine learning tech-
niques are used for DNA sequence classification. Any living
organism’s blueprint is DNA (deoxyribonucleic acid).

Adenine (A), cytosine (C), guanine (G), and thymine (T)
are the four nucleotides that makeup DNA (T). These are
called the building blocks of DNA. The DNA of each virus
is unique, and the pattern of arrangement of the nucleotides

Hindawi
Computational and Mathematical Methods in Medicine
Volume 2021, Article ID 1835056, 12 pages
https://doi.org/10.1155/2021/1835056

https://orcid.org/0000-0002-6898-7417
https://orcid.org/0000-0002-0283-5699
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/1835056


determines the unique characteristics of a virus [4]. DNA
appears as single-stranded or double-stranded (as shown in
Figure 1). Each form of nucleotide binds to its complemen-
tary pair on the opposite strand in double-stranded DNA.
Adenine and thymine form a pair, while cytosine and gua-
nine form a pair. Ribonucleic acid (RNA) may be single-
stranded or double-stranded. In RNA, uracil (U) replaces
the thymine (T). Therefore, the genome is the sequence of
nucleotides (A, C, G, T) for DNA virus and (A, C, U, G)
for RNA virus [5].

The DNA sequence is very long, having a length of
around 32,000 nucleotides maximum, and it is challenging
to understand and interpret. This raw DNA sequence cannot
give as input to the CNN for feature extraction. It has to be
converted into numerical representation before it is proc-
essed in the CNN. The encoding method also plays a vital
role in classification accuracy. Two encoding methods used
in this paper: to begin, label encoding, in which each nucleoid
in a DNA sequence is identified by a unique index value, pre-
serving the sequence’s positional information [6]. Secondly,
K-mers are generated for the DNA sequence, and the DNA
sequence is converted into English-like statements. Thus,
any text classification technique can be used for DNA classi-
fication. Feature engineering is fundamental for any model to
produce good accuracy. In the machine learning models, fea-
ture extraction is done manually [7]. But as the complexity of
the data increases, the manual feature selection may lead to
many problems like selecting features that do not lead to
the best solution or missing out on essential features. Auto-
matic feature selection can be used to overcome this issue.
CNN [8] is one of the best deep-learning techniques used
to extract key features from the raw dataset.

Most importantly, from the DNA dataset, the key fea-
tures are not very clear. The extracted features from the raw
DNA sequence are fed into the LSTM and bidirectional
LSTM models for classification. This paper compared the
accuracy and the other metrics of the CNN model with
hybrid models such as CNN-LSTM [9] and CNN-
Bidirectional LSTM [10]. The same models are run with both
label encoding and K-mer encoding to conclude which
encoding is best for the DNA sequence.

The author proposed deep learning methods like CNN,
DNN, and N-gram probabilistic model to classify DNA
sequence. A new approach to extract the features using the
random DNA sequence based on the distance measure is
proposed. Finally, they evaluated the model with four differ-
ent datasets, namely, COVID-19, AIDS, influenza, and hepa-
titis C [11]. This study presented the classification of mutated
DNA sequence to identify the origin of viruses using the
extreme gradient boosting algorithm. They achieved an accu-
racy of 89.51% using a hybrid approach of XGBoost learning
to classify DNA sequence [12]. The N4-methylcytosine from
the DNA sequence is predicted using the deep learning
model’s feature selection and stacking method and the area
under the curve greater than 0.9 [13]. The author proposed
a classification model for DNA barcode fragment and short
DNA sequence. The author created a free Python package
to perform alignment-free DNA sequence classification.
The developed model used the K-mer feature extraction

method and optimal machine learning model for type and
achieved an accuracy of around 99% [14]. The linear classi-
fier like Multinomial Bayes, Markov, Logistic Regression,
and Linear SVM is used to classify the partial and complete
genomic sequence of the HCV dataset is proposed. The
author evaluated and compared the results for different K
-mer size [15]. In [16], the author presented the method for
predicting SARS-CoV-2 using the deep learning architecture
with 100% specificity. The author proposed a new algorithm
for improving code construction that is distinct from the
DNA sequence obtained. They replaced brute force decoding
with syndrome decoding [17]. In this study, the author used

RNA DNA
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Figure 1: DNA and RNA structure.

Table 1: Metadata information of the dataset.

Column name Type

Assembly Number

SRA_Accession Number

Release date Date

Species String

Genus String

Family String

Molecule type String

Sequence DNA sequence

Length Number

Publications Date

Geo_Location String
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an ensemble decision tree approach to classify the complex
DNA sequence dataset. The author used the XGBoost and
Random Forest ensemble techniques to obtain a 96.24%
and 95.11% accuracy, respectively [18]. In this work,
machine learning methods are used to classify the DNA
sequence of cancer patients, and the Random Forest algo-
rithm performs better [19]. The author proposed a CNN-
based model to classify exons and introns in the human
genomes and achieved a testing rate of 90% [20]. The author
used CNN for metagenomics gene prediction. The author
trained 10 CNN model on 10 datasets.

The ORFs (noncoding open reading frames) were
extracted from each fragment and converted into numerical
to give input to the CNN model. GC content of the fragment
is used as the feature matrix. The author achieved an accu-
racy of around 91% on the testing data [21]. They used deep
learning to classify genetic markers for liver cancer from the
hepatitis B virus DNA sequence in this analysis, and the
training dataset had an accuracy of about 96.83% [22]. The
DL architecture is proposed to classify three genome types
of the coding region, long noncoding region, and pseudore-
gions and achieve an average accuracy of 84% [23]. The
author used the one-hot encoding technique to represent
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Figure 2: Distribution of each class and number of samples in a dataset.
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Figure 3: Sample dataset with genomic sequences and their length.
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Figure 4: Sequence data encoding using Label Binarizer.
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Figure 5: Sequence data encoding using the K-mer technique.
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the sequences of DNA. The model is evaluated with 12 DNA
sequence dataset which contains binary classification [24]. In
[25], the author proposed the DL architecture to predict the
short sequences in 16s ribosomal DNA and achieves the
maximum accuracy of 81.1%. The spectral sequence
representation-based deep learning neural network was pro-
posed [26]. The author tested the model on a dataset of 3000
16S denes and compared the results with GRAN (General
Regression Neural Network). The author found the best
hyperparameters for the model, which obtained better
results. The role of big data plays a vital role in intelligent
learning [27]. From the literature review, the research gap is
identified that for classification of different DNA sequencing
for other diseases, using the generalised model is not carried
out. By considering the fact, the main contribution of this
study can be summarised as follows:

(1) To the best of our knowledge, this is the first time a
deep learning model was developed to classify
COVID, MERS, SARS, dengue, hepatitis and
influenza

(2) To represent sequences, we used both Label and K
-mer encoding, which preserve the position informa-
tion of each nucleotide in the sequence

(3) Three different deep learning architectures for classi-
fying DNA sequences are presented in this paper:
CNN, CNN-LSTM, and CNN-Bidirectional LSTM

Section 2 delves into the proposed deep learning algo-
rithm and dataset acquisition and data preprocessing to show
how nucleotide sequences are interpreted as input to the
model—the findings of the model and validation studies pre-
sented in Section 3. Section 4 contains some observations and
discussion.

2. Methodology

2.1. Data Collection. The complete DNA/Genomic sequence
of the viruses like COVID, SARS, MERS, dengue, hepatitis,
and influenza obtained from the public nucleotide sequence
database: “The National Centre for Biotechnology Informa-
tion (NCBI)” (https://www.ncbi.nlm.nih.gov). The format
of the DNA sequence data is FASTA file, and the metadata
is provided in Table 1. The length of the sequence ranges
from 8 to 37,971 nucleoids. The class distribution of each
class with the number of samples is shown in Figure 2. The
sample DNA sequences from the dataset with the complete
genomic sequence of a virus, the length of the sequence,
and the class labels are shown in Figure 3.

From the dataset, it is clearly showing that there is an
imbalanced dataset problem. SMOTE (Synthetic Minority
Oversampling Technique) is employed [28] to handle this
problem. In our dataset, MERS and dengue DNA sequences
are deficient in numbers. Synthetic samples for the minority
classes like MERS and dengue are generated using the
SMOTE algorithm to match the majority class closely.
SMOTE picks a minority class instance randomly and

TGACATGGGTACACATGACGGG K-mer

Label encoding

Embedding
layer

CNN layer

LSTM/Bi-
directional

Classification

Figure 6: Workflow of the proposed model for the classification of DNA sequence.

Table 2: Complete architecture specification of proposed CNN
model.

Layer (type) Output shape Param #

Embedding (None, 1000, 8) 128

Conv1D_1 (None, 1000, 128) 3200

MaxPooling1D_1 (None, 500, 128) 0

Conv1D_2 (None, 500, 64) 24640

MaxPooling_2 (None, 250, 64) 0

Flatten (None, 16) 0

Dense_1 (None, 128) 2176

Dense_2 (None, 64) 8256

Dense_3 (None, 6) 390
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Figure 7: Architecture of the LSTM model.
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searches for its k closest minority class neighbors. The syn-
thetic instance is then constructed by randomly selecting
one among the k nearest neighbors b and connecting a and
b within the feature space to supply a line segment. The syn-
thetic instances are created by combining the two chosen
examples, a and b, in a convex way. This procedure can be
used to make an artificial instance for the minority classes.

2.2. Data Preprocessing. Preprocessing data is the most criti-
cal step in most machine learning and deep learning algo-
rithms that involve numerical rather than categorical data.
The genomic sequence in the DNA dataset is categorical.
There are many techniques available to convert the categori-
cal data to numerical. The encoding technique is the process
of converting the categorical data of nucleotide into numeri-
cal form. In this paper, label encoding and K-mer encoding
are used to encode the DNA sequence. The effect of the
encoding technique on the classification accuracy is analysed.
In Label encoding, each nucleotide in the DNA sequence is
assigned an index value like (A-1, C-2, G-3, and T-4) as
shown in Figure 4. The entire DNA sequence is converted
into an array of numbers using LabelBinarizer ().

In K-mer encoding technique, the raw DNA sequence is
converted into an English-like statement by generating K
-mers for the DNA sequence. Each DNA sequence is trans-
formed into a K-mer of size m, as shown in Figure 5, and
all the K-mers generated are concatenated to form a sentence
[29]. Now, natural language processing technique can be
used to classify the DNA sequence. The word embedding
layer is used in this study to transform the K-mer sentence
into a dense feature vector matrix.

2.3. Classification Models. In this work, three different classi-
fication models CNN, CNN-LSTM, and CNN-Bidirectional
LSTM are used for DNA sequence classification.

The label encoding and K-mer techniques are used to
encrypt the DNA sequence, which preserves the position
information of each nucleotide in the sequence. The embed-
ding layers is used to embed the data from the above two
techniques. The CNN layer is used as the feature extraction
stage, and it is given as the input for LSTM and bidirectional
LSTM for classification. The workflow for the proposed work
is shown in Figure 6.

2.3.1. CNN. CNN is a common deep-learning technique that
can yield cutting-edge results for most classification prob-
lems [30, 31]. CNN performs well not only on image classifi-
cation, but it can also produce good accuracy on text data.
Mainly, CNN is used to automatically extract the features
from the input dataset, in contrast to machine learning
models, where the user needs to select the features 2D CNN
[32], and 3D CNN is used for image and video data, respec-
tively, whereas 1D CNN is used for text classification. The
DNA sequence is treated as a sequence of letters (nucleoids
A, C, G, and T). Since CNN can work only with numerical
data, the DNA sequence is converted into numerical values
by applying one hot encoding or label encoding. The CNN
architecture uses a series of convolutional layers to extract
features from the input dataset. Max pooling layer after each
convolutional layer and the dimensions of extracted features
are reduced. In the convolutional layer, the size of the kernel
plays a significant role in function extraction. The model’s
hyperparameters are the number of filters and kernel size
[33]. Table 2 shows the summary of the complete architec-
ture of the proposed CNN model. The first layer is the
embedded layer with dimension 8. This layer converts the
words to a vector space model based on how often a word
appears close to other words. The embedding layer uses ran-
dom weights to learn embedding for all of the terms in the
training dataset [34]. Two convolutional layers are added to
the model with filters of 128 and 64, along with the kernel
of size (2 × 2) with ReLU as an activation function for feature
extraction. The feature map dimensions are reduced by add-
ing a max pooling layer of size (2 × 2). Finally, the feature
maps are converted into single-column vector using the flat-
ten layer. The output is passed to a dense layer with neurons
128 and 64, respectively. The softmax function is used as the
classification layer, which can perform well for the multiclass
problem. The softmax layer consists of N units, where the N
is the number of units. Each unit is fully connected with per-
vious layer and computes the probability of the each class on
N by means of Equation (1).

Softmax = ewNx+bN

∑N
m=1e

wmx+bm
: ð1Þ

y0 y1 y2 yi

S'0S'i
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XiX2X1X0

S0

A'

A A A A

A'A' A'
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Figure 8: Architecture of bidirectional LSTM.

5Computational and Mathematical Methods in Medicine



Wm is the weight matrix connecting the mth unit to the pre-
vious layer, x is the last layer’s output, and bm is themth unit’s
bias.

2.3.2. CNN-LSTM. Long short-term memory (LSTM) is a
recurrent neural network (RNN) that can learn long-term
dependencies in a sequence and is used in sequence predic-
tion and classification. It includes a series of memory blocks
known as cells, each of which comprises three gates: input,
output, and forget. The LSTM will selectively remember
and forget things in this case [35]. Figure 7 depicts the LSTM
model’s overall architecture. It is capable of learning and rec-
ognises the long sequence. The current state is calculated

using Equation (2),

ht = f ht−1, Xtð Þ, ð2Þ

where X t is the input state, h t is the current state, and h ð
t − 1Þ is the previous state.

In the LSTM, the forget gate is in charge of removing any
information from the cell state. When detailed information
becomes invalid for the sequence classification, the forget
gate outputs a value of 0, indicating to remove the data from
the memory cell. This gate takes two inputs, h_(t-1) (input
from the previous state) and X_t (input from the current
state). The input will be multiplied by a weight and added
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Figure 9: Confusion matrix of Label encoding and K-mer encoding for DNA sequence classification.

6 Computational and Mathematical Methods in Medicine



with bias. Finally, the sigmoid function is applied. The sig-
moid function outputs the value ranging from 0 to 1. The
input gate in the LSTM is responsible for adding all the rele-
vant value to the cell state. It involves two activation func-
tions: firstly, the sigmoid function controls what values add
to the cell state. The second function is the tanh function,
which returns values in the range of -1 to +1, indicating all
possible values applied to the cell state. The output gate in
LSTM decides what value can be in the output by employing
the sigmoid activation function and tanh activation function
to the cell state. The LSTM layer with 100 memory units is
added after the convolutional layers to predict the classifica-
tion labels in our model. The features extracted by the convo-
lutional layer is given as an input to the LSTM layer for
classification. In many NLP tasks, CNN and LSTM are com-
bined into a hybrid model to improve the accuracy of the
classification [36]. This hybrid model has produced surpris-
ing results in text classification. The LSTM model includes
dropout layers and regularisation techniques to reduce the
overfitting problem.

2.3.3. CNN-Bidirectional LSTM. The bidirectional LSTM +
CNN hybrid model is used for DNA sequence classification.
The model uses CNN for feature extraction and bidirectional
LSTM for classification. The bidirectional LSTM contains
two RNN, one to learn the dependencies in the forward
sequence and another to learn the dependencies in the back-
ward sequence [37]. The architecture of the bidirectional
LSTM is given in Figure 8.

3. Results and Discussion

The proposed models are experimented with using the Tesla
P100 GPU processor with a RAM size of 16280MB. The
dataset consists of 66,153 inputs divided into training, valida-
tion, and testing ratio of 70%, 10%, and 20%, respectively.
The training set consists of 46307, and the validation set con-
sists of 6615, and the testing set consists of 13231 samples.
The maximum sequence length is 2000, and the vocabulary
size is 8972. In the training phase, the binary crossentropy
function is used as the loss function. This loss function calcu-
lates the error between the actual output and the target label,
on which the training and update of the weights are done. We
tested the CNN, CNN-LSTM, and CNN-bidirectional LSTM
by varying the values of different hyperparameters like filters,
filter size, the number of layers, and the embedding dimen-
sion. Grid search cross validation is the most widely used
parameter optimisation method to select the best parameters
for the model. The best parameters of all three models are the
numbers of filters 128, 64, and 32 in each layer. The size of
the filter is 2 × 2, training batch size of 100, training epochs
of 10, embedding dimension of 32, and K-mer size of 6.
The classification models are evaluated using different classi-
fication metrics like accuracy, precision, recall, F1 score, sen-
sitivity, and specificity. The above-said metrics are calculated
from the confusion matrix by obtaining True PositiveGene
(TPGene), True NegativeGene (TNGene), False PositiveGene
(FPGene), and False NegativeGene (FNGene). The confusion
matrix for the proposed label encoding and K-mer encoding
is shown in Figure 9.
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Based on the above classification states, the formulas for
the different metrics are given below:

Accuracy = TPGene + TNGene
TPGene + TNGene + FPGene + FNGene

,

Specificity =
TNGene

TNGene + FPGene
,

Sensitivity =
TPGene

TPGene + FNGene
,

Precisio =
TPGene

TPGene + FPGene
:

ð3Þ

Among the actual positive sequences, sensitivity is the
proposition of a sequence defined as positive by the model.
Because of the high sensitivity, a few positive cases are
expected to be false negatives. The F1-score is the average
of recall and precision. Precision is the percentage of docu-
ments positively identified as positive by the model. Specific-
ity specifies how well the model determines the negative
cases. Figure 10 shows the accuracy of CNN and the hybrid
models CNN-LSTM and CNN-Bidirectional LSTM. CNN
offers higher accuracy only when the DNA sequences are
encoded using label encoding. At the same time, LSTM and
bidirectional LSTM provide more accuracy when DNA
sequences are encoded using K-mer. We found that all the
testing accuracies in the label encoding method are less than
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Figure 11: Training and validation accuracy curve for Label and K-mer encoding.
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the training accuracy. In the case of K-mer encoding, the
testing accuracy rates are more significant than the training
accuracy. The results show that the use of the encoding
method plays a vital role in classification accuracy.
Figure 11 shows that the accuracy of the CNN model
increases for each epoch and continues to remain the same
after epoch 10, whereas the accuracy of CNN-LSTM using
K-mer encoding drops and increases at every epoch. It
remains unstable throughout the training phase. The loss
values for training and testing data for all three models,

namely, CNN, CNN-LSTM, and CNN-Bidirectional LSTM
with label encoding and K-mer encoding, are shown in
Figure 12.

3.1. Model Comparison and Analysis. The proposed method
is compared with the different techniques to prove the
robustness of the model: the proposed models, namely,
CNN, CNN-LSTM, and CNN-Bidirectional LSTM. The
CNN and CNN-bidirectional LSTM provide better accuracy
of 93.16% and 93.13%, respectively. The achieved accuracy is
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obtained in classifying the six different classes. The models
considered for the performance analysis from the literature
are trained to classify up to three categories. The model
[24] proposed by the authors is for classifying binary classifi-
cation with an accuracy of 88.99%. In [12], the author has
presented the model to classify five types of the chromosome
by using the XGboost algorithm with an accuracy of 88.82%.
In [11], the SARS-Cov2 cells are classified using the CNN,
which obtained an accuracy of 88.82%. The comparative
analysis is shown in Figure 13. The above experimental
results clearly show that the proposed model works well for
the DNA sequence classification. The 1D-CNN works well
to classify DNA sequence classification to find the valuable

pattern from the text data. It is found that the CNN model
is extracting the features, which is very useful for the classifi-
cation algorithm to classify the actual classes with an accu-
racy of 93.16%. The CNN bidirectional LSTM provides the
next better accuracy with 93.13%, which has the advantages
of holding the long-term dependencies compared to the
CNN models by encoding sequence using the K-mer
technique.

Further, the experiments carried out different class labels
a, b, c, d, e, and f provided in Table 3. CNN with label encod-
ing offers a better precision rate for the classification of class
“a.” The CNN LSTM provides better precision than CNN
and CNN-Bidirectional LSTM. This condition becomes
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Figure 13: Performance analysis of proposed method with various state-of-the-art methods.

Table 3: Models performance concerning different class with Label and K-mer encoding.

Model class
Label encoding K-mer encoding

a b c d e f a b c d e f

CNN

Accuracy 0.93 0.99 0.92 0.99 0.99 0.99 0.93 0.99 0.93 0.99 0.99 0.99

Precision 0.90 0.97 0.77 0.99 1.00 0.99 0.89 0.97 0.94 1.00 0.99 0.99

F1 0.94 0.93 0.5 0.99 0.99 0.99 0.94 0.96 0.49 0.99 0.99 0.99

Sensitivity 0.98 0.90 0.37 0.99 0.99 0.99 0.99 0.96 0.33 0.99 0.99 0.99

Specificity 0.86 0.99 0.98 0.99 1.00 0.99 0.84 0.99 0.99 1.00 0.99 0.99

CNN-LSTM

Accuracy 0.93 0.99 0.92 0.99 1.00 0.99 0.93 0.99 0.93 0.99 0.99 0.99

Precision 0.89 0.98 0.82 0.99 1.00 0.99 0.89 0.94 0.93 0.98 0.99 0.99

F1 0.94 0.95 0.49 0.99 1.00 0.99 0.94 0.95 0.48 0.99 0.99 0.99

Sensitivity 0.98 0.93 0.35 0.99 1.00 0.99 0.99 0.96 0.32 0.99 0.99 0.99

Specificity 0.85 0.99 0.99 0.99 1.00 0.99 0.84 0.99 0.99 0.99 0.99 0.99

CNN-bidirectional LSTM

Accuracy 0.93 0.99 0.92 0.99 0.99 0.99 0.93 0.99 0.93 0.99 0.99 0.99

Precision 0.89 0.95 0.84 0.93 0.98 0.99 0.89 0.98 0.94 0.99 0.99 0.99

F1 0.94 0.82 0.40 0.96 0.99 0.99 0.94 0.96 0.48 0.99 0.99 0.99

Sensitivity 0.99 0.72 0.26 0.99 0.99 0.99 0.99 0.95 0.33 0.99 0.99 0.99

Specificity 0.84 0.99 0.99 0.99 0.99 0.99 0.84 0.99 0.99 0.99 0.99 0.99
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inverse with K-mer encoding for other classes. We conclude
that when the class samples are high, CNN with label encod-
ing offers a high precision rate, and when the class samples
are less, CNN with K-mer encoding provides a higher preci-
sion rate. The recall value for all the models with K-mer
encoding is high irrespective of class labels. If a high recall
rate is preferred for a classification model, then K-mer cod-
ing can be used. A higher sensitivity rate of 99.95% is
obtained for class “a” with CNN–bidirectional LSTM model
with label encoding. Thus, to obtain higher recall and sensi-
tivity value for class with more sample, bidirectional LSTM
with label encoding will be a good choice. CNN with label
encoding offers a higher specificity rate for all the class irre-
spectively of class size.

4. Conclusion

This paper compared three deep-learning methods, namely,
CNN, CNN-LSTM, and CNN-bidirectional LSTM, with label
encoding and K-mer encoding. We found that CNN with
label encoding outperforms the other models but surprising;
the testing accuracies are low. K-mer encoding is the best
method for obtaining good testing and validation accuracy.
This dataset cannot be evaluated only with accuracy metrics.
Other metrics like precision, recall, sensitivity, and specificity
also have to be considered. For a class with high samples,
CNN with label encoding offers a high precision rate, and
for a class with lower samples, CNN with K-mer encoding
provides a higher precision rate. The recall value for all the
models with K-mer encoding is high irrespective of class
labels. If a high recall rate is preferred for a classification
model, then K-mer encoding can be used. To obtain higher
recall and sensitivity value for class with more sample, bidi-
rectional LSTM with label encoding will be a good choice.
CNN with label encoding offers a higher specificity rate for
all the class irrespectively of class size. Thus, the encoding
methods are selected based on the number of samples in
the class and based on the required metrics to evaluate the
model.

Data Availability

The data used to support the findings of this study are avail-
able at “The National Centre for Biotechnology Information
(NCBI)” (https://www.ncbi.nlm.nih.gov).

Conflicts of Interest

The authors declare that there is no conflict of interest
regarding the publication of this paper.

References

[1] V. Nayak, J. Mishra, M. Naik, B. Swapnarekha, H. Cengiz, and
K. Shanmuganathan, “An impact study of COVID-19 on six
different industries: automobile, energy and power, agricul-
ture, education, traveland tourism and consumer electronics,”
Expert Systems, pp. 1–32, 2021.

[2] S. Shadab, M. T. Alam Khan, N. A. Neezi, S. Adilina, and
S. Shatabda, “DeepDBP: deep neural networks for identifica-

tion of DNA-binding proteins,” Informatics in Medicine
Unlocked, vol. 19, article 100318, 2020.

[3] D. A. Benson, I. Karsch-Mizrachi, D. J. Lipman, J. Ostell, and
E. W. Sayers, “GenBank,” Nucleic Acids Research, vol. 38, Sup-
plement 1, pp. 46–51, 2010.

[4] M. Momenzadeh, M. Sehhati, and H. Rabbani, “Using hidden
Markov model to predict recurrence of breast cancer based on
sequential patterns in gene expression profiles,” Journal of Bio-
medical Informatics, vol. 111, article 103570, 2020.

[5] S. Solis-Reyes, M. Avino, A. F. Y. Poon, and L. Kari, An Open-
Source k-mer Based Machine Learning Tool for Fast and Accu-
rate Subtyping of HIV-1 Genomes, bioRxiv, 2018.

[6] M. A. Karagöz and O. U. Nalbantoglu, “Taxonomic classifica-
tion of metagenomic sequences from Relative Abundance
Index profiles using deep learning,” Biomedical Signal Process-
ing and Control, vol. 67, article 102539, 2021.

[7] S. Deorowicz, “FQSqueezer: k-mer-based compression of
sequencing data,” Scientific Reports, vol. 10, no. 1, pp. 578-
579, 2020.

[8] M. Suriya, V. Chandran, and M. G. Sumithra, “Enhanced deep
convolutional neural network for malarial parasite classifica-
tion,” International Journal of Computers and Applications,
pp. 1–10, 2019.

[9] B. Jang, M. Kim, G. Harerimana, S. U. Kang, and J. W. Kim,
“Bi-LSTM model to increase accuracy in text classification:
combining word2vec CNN and attention mechanism,”
Applied Sciences, vol. 10, no. 17, p. 5841, 2020.

[10] M. F. Aslan, M. F. Unlersen, K. Sabanci, and A. Durdu, “CNN-
based transfer learning-BiLSTM network: a novel approach for
COVID-19 infection detection,” Applied Soft Computing,
vol. 98, article 106912, 2021.

[11] X. Zhang, B. Beinke, B. Al Kindhi, and M. Wiering, “Compar-
ing machine learning algorithms with or without feature
extraction for DNA classification,” 2020, http://arxiv.org/abs/
2011.00485.

[12] D. T. Do and N. Q. K. Le, “Using extreme gradient boosting to
identify origin of replication in Saccharomyces cerevisiae via
hybrid features,” Genomics, vol. 112, no. 3, pp. 2445–2451,
2020.

[13] H. Xu, P. Jia, and Z. Zhao, “Deep4mC: systematic assessment
and computational prediction for DNA N4-methylcytosine
sites by deep learning,” Briefings in Bioinformatics, vol. 22,
no. 3, pp. 1–13, 2021.

[14] C. M. Nugent and S. J. Adamowicz, “Alignment-free classifica-
tion of COI DNA barcode data with the Python package Alfie,”
Metabarcoding and Metagenomics, vol. 4, pp. 81–89, 2020.

[15] A. M. Remita and A. B. Diallo, “Statistical linear models in
virus genomic alignment-free classification: application to
hepatitis C viruses,” in 2019 IEEE International Conference
on Bioinformatics and Biomedicine (BIBM), San Diego, CA,
USA, November 2019.

[16] A. Lopez-Rincon, A. Tonda, L. Mendoza-Maldonado et al.,
“Classification and specific primer design for accurate detec-
tion of SARS- CoV-2 using deep learning,” Scientific Reports,
vol. 11, no. 1, pp. 1–11, 2021.

[17] M. M. Arruda, F. M. De Assis, and T. A. De Souza, “Is BCH
code useful to DNA classification as an alignment-free
method?,” IEEE Access, vol. 9, pp. 68552–68560, 2021.

[18] S. W. I. Maalik and S. K. W. Ananta, “Comparation analysis of
ensemble technique with boosting (Xgboost) and bagging
(Randomforest) for classify splice junction DNA sequence

11Computational and Mathematical Methods in Medicine

https://www.ncbi.nlm.nih.gov
http://arxiv.org/abs/2011.00485
http://arxiv.org/abs/2011.00485


category,” Jurnal Penelitian Pos dan Informatika, vol. 9, no. 1,
pp. 27–36, 2019.

[19] F. Hussain, U. Saeed, G. Muhammad, N. Islam, and G. S.
Sheikh, “Classifying cancer patients based on DNA sequences
using machine learning,” Journal of Medical Imaging and
Health Informatics, vol. 9, no. 3, pp. 436–443, 2019.

[20] F. Ben Nasr and A. E. Oueslati, “CNN for human exons and
introns classification,” in 2021 18th International Multi-
Conference on Systems, Signals & Devices (SSD), pp. 249–254,
Monastir, Tunisia, March 2021.

[21] A. Al-Ajlan and A. El Allali, “CNN-MGP: convolutional neu-
ral networks for metagenomics gene prediction,” Interdisci-
plinary Sciences: Computational Life Sciences, vol. 11, no. 4,
pp. 628–635, 2019.

[22] N. A. Kassim and A. Abdullah, “Classification of DNA
sequences using convolutional neural network approach,”
UTM Computing Proceedings Innovations in Computing Tech-
nology and Applications, vol. 2, pp. 1–6, 2017.

[23] J. A. Morales, R. Saldaña, M. H. Santana-Castolo et al., “Deep
learning for the classification of genomic signals,” Mathemat-
ical Problems in Engineering, vol. 2020, Article ID 7698590, 9
pages, 2020.

[24] N. G. Nguyen, V. A. Tran, D. L. Ngo et al., “DNA sequence
classification by convolutional neural network,” Journal of Bio-
medical Science and Engineering, vol. 9, no. 5, pp. 280–286,
2016.

[25] A. Busia, G. E. Dahl, C. Fannjiang et al., A Deep Learning
Approach to Pattern Recognition for Short DNA Sequences,
bioRxiv, 2018.

[26] R. Rizzo, A. Fiannaca, M. La Rosa, and A. Urso, “A deep learn-
ing approach to DNA sequence classification,” in Computa-
tional Intelligence Methods for Bioinformatics and
Biostatistics. CIBB 2015. Lecture Notes in Computer Science,
vol 9874, C. Angelini, P. Rancoita, and S. Rovetta, Eds.,
pp. 129–140, Springer, Cham, 2016.

[27] O. B. K. Cengiz, R. Sharma, K. Kottursamy, K. K. Singh, and
T. Topac, “Multimedia technologies in the Internet of Things
environment,” in Studies in Big Data, vol. 79, R. Kumar, R.
Sharma, and P. K. Pattnaik, Eds., Springer, Singapore, 2021.

[28] R. Blagus and L. Lusa, “SMOTE for high-dimensional class-
imbalanced data,” BMC Bioinformatics, vol. 14, no. 1, 2013.

[29] D. Lebatteux, A. M. Remita, and A. B. Diallo, “Toward an
alignment-free method for feature extraction and accurate
classification of viral sequences,” Journal of Computational
Biology, vol. 26, no. 6, pp. 519–535, 2019.

[30] S. Thongsuwan, S. Jaiyen, A. Padcharoen, and P. Agarwal,
“ConvXGB: a new deep learning model for classification prob-
lems based on CNN and XGBoost,” Nuclear Engineering and
Technology, vol. 53, no. 2, pp. 522–531, 2021.

[31] V. Lahoura, H. Singh, A. Aggarwal et al., “Cloud computing-
based framework for breast cancer diagnosis using extreme
learning machine,” Diagnostics, vol. 11, no. 2, p. 241, 2021.

[32] H. Gunasekaran, “CNN deep-learning technique to detect
Covid-19 using chest X-ray,” Journal of Mechanics of Continua
and Mathematical Sciences, vol. 15, no. 9, pp. 368–379, 2020.

[33] G. De Clercq, “Deep Learning for Classification of DNA,”
2019.

[34] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient esti-
mation of word representations in vector space,” pp. 1–12,
2013, http://arxiv.org/abs/1301.3781.

[35] A. Sakalle, P. Tomar, H. Bhardwaj, D. Acharya, and
A. Bhardwaj, “A LSTM based deep learning network for recog-
nising emotions using wireless brainwave driven system,”
Expert Systems with Applications, vol. 173, article 114516,
2021.

[36] J. Cheng, Y. Liu, and Y. Ma, “Protein secondary structure pre-
diction based on integration of CNN and LSTM model,” Jour-
nal of Visual Communication and Image Representation,
vol. 71, article 102844, 2020.

[37] N. Mughees, S. A. Mohsin, A. Mughees, and A. Mughees,
“Deep sequence to sequence Bi-LSTM neural networks for
day-ahead peak load forecasting,” Expert Systems with Appli-
cations, vol. 175, article 114844, 2021.

12 Computational and Mathematical Methods in Medicine

http://arxiv.org/abs/1301.3781

	Analysis of DNA Sequence Classification Using CNN and Hybrid Models
	1. Introduction
	2. Methodology
	2.1. Data Collection
	2.2. Data Preprocessing
	2.3. Classification Models
	2.3.1. CNN
	2.3.2. CNN-LSTM
	2.3.3. CNN-Bidirectional LSTM


	3. Results and Discussion
	3.1. Model Comparison and Analysis

	4. Conclusion
	Data Availability
	Conflicts of Interest

