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Background. Acute kidney injury (AKI) is a frequent complication of decompensated cirrhosis with increased mortality. Tra-
ditional biomarkers such as serum creatinine are not sensitive for detecting injury without functional change.We hypothesize that
urinary exosomes potentially carry markers that differentiate the type of kidney injury in cirrhotic patients. Methods. *is is a
prospective, single-center, and observational study of adult patients with cirrhosis. *e patient groups included healthy normal
controls, compensated cirrhosis with normal kidney function, decompensated cirrhosis with normal kidney function, and
decompensated cirrhosis with AKI. Data were extracted from the electronic health record including etiology of liver disease,
MELD score, history of decompensation, Child-Turcotte-Pugh score, history of AKI, and medication exposures. Urine samples
were collected at the time of consent. Urine exosome protein content was analyzed, and proteomic data were validated by
immunoblotting. Statistical analysis included partial least squares-discriminant analysis coupled with variable importance in
projection identification. Results. Eighteen cirrhotic subjects were enrolled, and six healthy control subjects were extracted from
our biorepository. Urine exosomes were isolated, and 1572 proteins were identified. Maltase-glucoamylase was the top dis-
criminating protein confirmed by western blotting. Conclusions. Patients with cirrhosis and AKI have upregulation of renal brush
border disaccharidase, MGAM, in urinary exosomes which may differentiate the type of kidney injury in cirrhosis; however, the
clinical significance of this requires further validation.

1. Introduction

Acute kidney injury (AKI) occurs in approximately 20% of
hospitalized patients with cirrhosis [1, 2]. AKI in hospital-
ized cirrhotic patients is frequently progressive, severe, and
an independent negative predictor of mortality [3].*emost
common cause of AKI in cirrhosis is hemodynamic, ac-
counting for 70% of cases. Acute tubular necrosis (ATN)

accounts for 30% of cases, and postrenal causes are rare
accounting for less than 1% of cases. Hepatorenal syndrome
(HRS) is hemodynamic without an identifiable kidney injury
or disease and occurs in approximately 20% of cirrhosis
patients [4, 5].

Serum creatinine (Scr) is the most widely used bio-
marker to assess kidney function and identify kidney injury.
However, Scr is suboptimal in cirrhotic patients for
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numerous reasons including decreased liver production,
muscle wasting with diminished stores, increased volume of
distribution, and protein calorie malnutrition. Average Scr
values are lower in cirrhotic patients compared to the
general population, resulting in delayed diagnosis of AKI
based on the current definition of AKI [6]. Additionally, Scr
is a biomarker of kidney function and is not a sensitive injury
marker. Novel biomarkers of kidney injury have emerged to
improve detection of AKI and aid in differentiating the
etiology of AKI. Kidney damage biomarkers including
kidney injury molecule-1 (KIM-1), neutrophil gelatinase-
associated lipocalin (NGAL), interleukin-18, liver fatty acid
binding protein (L-FABP), insulin like growth factor
binding protein-7 (IGFBP-7), and tissue inhibitor of
metalloproteinase-2 (TIMP-2) may be elevated prior to an
increase in Scr enhancing detection of kidney damage
without functional change [7]. Studies have demonstrated
that these biomarkers may differentiate the etiology of AKI
[8, 9]. Improved biomarkers for detecting and differentiating
AKI represent important unmet clinical need in patients
with cirrhosis.

Exosomes are nanovesicles that are released from living
cells as a mechanism of intercellular communication [10].
*e protein content of exosomes has been shown to be
remarkably modified under pathological or stress conditions
[11–13]. In the kidney, exosomes are delivered to urine from
all cell types [14, 15], and urinary exosomes can potentially
be considered as the biochemical signature of the subject.
Since urinary exosomes are not routinely assayed, they may
provide additional unrecognized information on protein
biomarkers of AKI in patients with cirrhosis.

*e aim of this study was to evaluate urinary exosome
proteomics in patients with cirrhosis and AKI compared to
healthy subjects. We hypothesized that the urinary exo-
some protein content differs in patients with compensated
or decompensated cirrhosis experiencing AKI compared to
normal healthy control subjects. Furthermore, we postu-
lated that differential urinary exosomal protein content
would offer insight into mechanisms of kidney injury in
cirrhosis.

2. Materials and Methods

*is is a prospective, single-center, and observational study
of adult patients with cirrhosis. All patients for the study
were recruited from the UC San Diego Health system
between July 1, 2013, and June 1, 2014, and provided in-
formed consent. Patients were eligible for inclusion if they
had a diagnosis of cirrhosis and were able to provide a urine
sample. Cirrhosis was determined by liver biopsy, cross-
sectional imaging, or clinically (via identification of a
decompensation event as determined by a hepatologist).
Data were extracted from electronic health records in-
cluding demographics, anthropometrics, vital signs,
comorbid medical problems, etiology of cirrhosis, com-
plications of cirrhosis (ascites, varices, hepatic encepha-
lopathy, and hepatocellular carcinoma), history of AKI or
chronic kidney disease, and medication exposures within
30 days of enrollment. Only patients with complete clinical

data and laboratory tests within 30 days of enrollment were
eligible for inclusion in this study. Patients were catego-
rized into groups as follows:

(1) Group 0: normal healthy controls
(2) Group 1: compensated cirrhosis (Child-Turcotte-

Pugh class A, MELD <10) with no history of AKI
and normal kidney function

(3) Group 2: decompensated cirrhosis (Child-Turcotte-
Pugh class B or C) with no history of AKI and
normal kidney function

(4) Group 3: decompensated cirrhosis (Child-Turcotte-
Pugh class B or C) and AKI

Normal kidney function was defined as an estimated
GFR> 60ml/min/1.73m2 (MDRD formula), no albumin-
uria and no history of AKI. AKI was defined according to
AKIN criteria: Scr rise of 0.3mg/dl in 48 hr or 50% rise in Scr
from baseline [16]. Patients with AKI were recruited during
admissions and consultations from the inpatient hepatology
service if they had blood and urine specimens obtained
during the episode of AKI. A fourth group of healthy
controls was extracted from a healthy normal biorepository
at the UCSDO’Brien Center for AKI Research at the UC San
Diego School of Medicine. *is work was approved by the
Institutional Review Board of the University of California,
San Diego.

2.1. Urine Sampling and Processing for Exosome Isolation.
Urine was centrifuged at 3000×g for 30min. *e super-
natant pH was adjusted to 7, aliquoted and frozen at −80°C.
Exosomes were prepared using polyethylene glycol- (PEG-)
induced precipitation [17]. *e PEG-mixed urine samples
were kept at room temperature for 2 hours and spun at
10,000×g for 30minutes. *e pellet was resuspended in
10mM Tris with 1mM EDTA-Na salt. *is step was re-
peated twice to remove impurities. One-dimensional SDS-
PAGE of the exosome proteins was conducted prior to in-gel
trypsinization to prevent confounding [18].

2.2. Proteomic Analysis. *e gel was cut to 1mm × 1mm
and destained 3 times using 100 µL of 100mM ammonium
bicarbonate for 15minutes, followed by 100 µL of aceto-
nitrile (ACN) for 15minutes [19]. *e supernatant was
lyophilized, and the resulting pellet was reduced with
200 µL of 100mM ammonium bicarbonate-10mM DTT
and incubated at 56°C for 30minutes. After removing the
liquid, gel pieces were added to 200 µL of 100mM am-
monium bicarbonate-55mM iodoacetamide. *is was
incubated at room temperature for 20minutes in the dark.
*e supernatant was removed and washed with 100mM
ammonium bicarbonate for 15min. *en, 100 µL of ACN
was added to dehydrate the gel pieces, and the solution was
lyophilized. Ice-cold trypsin (0.01 µg/µL) in 50mM am-
monium bicarbonate solution was then added to cover the
gel pieces for the digestion process and set on ice for
30minutes. Once rehydration was complete, fresh 50mM
ammonium bicarbonate was added to replace excess
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trypsin and left overnight at 37°C. Extraction of the
peptides was done twice by the addition of 50 µl of 0.2%
formic acid and 5% ACN and vortexed for 30minutes at
room temperature. After removing the supernatant, 50 µl
of 50% ACN-0.2% formic acid was added to the sample,
vortexed again for 30minutes at room temperature. *is
supernatant was removed and combined with the previous
supernatant from the first extraction. Samples were ana-
lyzed using Eksigent nano-LC-Ultra® 2D with cHiPLC-
nanoflex system (Eksigent, AB SCIEX Dublin, CA, USA) in
a trap-elute mode in combination with tandem mass
spectroscopy using the QExactive mass spectrometer
(*ermo Fisher Scientific, San José, CA, USA) with elec-
trospray ionization [17].

2.3. Data Management. *e SEQUEST search engine
(*ermo Scientific Proteome Discoverer software, version
1.4) was used in the analysis. *e protein database for tryptic
peptide sequences for Homo sapiens from the National
Center for Biotechnology Information (NCBI) was used to
compare our experimental MS/MS spectra. To identify
peptide sequences and related proteins, we used previously
published criteria [17]. To assess statistical significance,
separate target and decoy searches and calculation of clas-
sical score-based false discovery rates (FDRs) were used.
Finally, we filtered the SEQUESToutput data to assign a final
score to proteins. Minimum values of correlation score
(Xcorr) of 1.5, 2.0, 2.25, and 2.5 were chosen for single-,
double-, triple-, and quadrupole-charged ions, respectively.
Previously published parameters were utilized to guarantee a
high stringency [20], and the false-positive peptide ratio was
less than 3%.

2.4. Statistical Analysis. *e normalized spectral abundance
factor (NSAF) was used to calculate the relative abundance
of polypeptides [21]. Log transformation and scaling of
peptide counts were performed prior to statistical analysis.
MetaboAnalyst 2.0 web portal (http://www.metaboanalyst.
ca) was used to perform Student’s t-test, partial least squares
discriminant analysis (PLS-DA), and variable importance in
projection (VIP) with an a priori p< 0.05 [22]. *e ratio of
individual protein to total concentration was evaluated using
the paired Student’s t-test for each group. PLS-DA and VIP
were used to identify discriminatory proteins [23]. We se-
lected proteins with a false discovery rate (FDR) of ≤10% to
validate using western blotting.

2.5. Western Immunoblotting and Quantification. *e an-
tibody against MGAM was purchased from Proteintech
Group, Inc., (Chicago, IL, USA) and was used to resolve
100 μg of protein from urine exosomes of each subject. After
separation, the proteins were transferred to nitrocellulose
paper, blocked, incubated with primary antibody overnight
before washing with Tris-buffered saline, incubation for 1 h
with HRP-secondary antibody conjugate, and visualized by
developing as described in previous publications from our
laboratory [24, 25]. ImageJ software (NIH) was used to

quantify western immunoblot bands [24] and plotted
(GraphPad Prism, San Diego, CA, USA).

3. Results

3.1. Clinical Characteristics of Cirrhosis and Healthy Control
Subjects. Six patients in each group with complete clinical
data were analyzed and compared to six healthy controls.
Demographics and etiology of liver disease are summarized
in Table 1. As anticipated according to study design, Child-
Turcotte-Pugh and MELD scores varied significantly be-
tween patient groups.

3.2. Proteomic Analyses of Urine Exosomes from Cirrhotic
Patients and Healthy Controls. In total, across all 4 groups,
1572 unique proteins were identified. *ere were 360 pro-
teins that were common to all groups. We found 83 unique
exosomal proteins for group 0 (controls), 250 for group 1, 84
for group 2, and 212 for group 3 (Figure 1). We further
conducted multivariate PLS-DA on proteins, which showed
clear separation between healthy control group and different
subgroups of cirrhotic subjects, as shown in Figure 2.
Compensated and decompensated cirrhotic subjects without
kidney injury (groups 1 and 2) showed considerable overlap
while cirrhotic subjects with AKI (group 3) showed clear
separation from the other cirrhotic subjects and healthy
control subjects. A separate ANOVA of proteins between the
four groups showed that 126 proteins were significantly
altered (p< 0.05), of which 13 reached the false discovery
rate (FDR) cutoff of <10% (Table 2). Maltase-glucoamylase
(MGAM) was the top discriminant protein with a VIP score
of 4.35 for the entire study cohort.

3.3. Maltase-Glucoamylase Protein Is Increased in Decom-
pensated Cirrhotic Urine Exosomes. *e proteomic data
showed a higher concentration of MGAM in the urine
exosomes of decompensated cirrhotic patients, with and
without kidney injury (groups 2 and 3). *is was the single
most discriminating protein among all the four groups with
a VIP score of 4.35 (Figure 3). Confirmatory western
blotting of these exosomes demonstrated detectable protein
only in cirrhotic patients with kidney injury (group 3)
(Figure 4).

4. Discussion

We conducted a proteomic analysis of the urinary exosome
content from patients with compensated cirrhosis,
decompensated cirrhosis, and decompensated cirrhosis with
AKI and compared them to healthy controls. *e proteomic
analysis of urinary exosomes in cirrhotic patients identified
several potentially important biomarkers of kidney injury,
most notably MGAM, a bifunctional enzyme. We found the
highest concentrations of MGAM in the urinary exosomes
of the patients with cirrhosis and AKI. Furthermore, MGAM
was increased in patients with cirrhosis but not to the extent
as those with AKI. MGAM was absent in the healthy control

Critical Care Research and Practice 3

http://www.metaboanalyst.ca
http://www.metaboanalyst.ca


group, highlighting its potential role for a biomarker of
critical illness.

*is study has several other important findings. First,
to our knowledge, this is the first report on descriptive
analysis of urinary exosome protein content in well-
characterized cirrhotic subjects. Second, this is the first
study to report increased tubular epithelial disaccharidase
in the cirrhotic-kidney injury paradigm. *e urine exo-
some proteomic data from the 4 different groups showed
MGAM upregulation in the cirrhosis AKI group to be
robust and consistent. Maltase is the major disaccharidase
in renal brush border membranes [26, 27], but the precise
function of this enzyme is not clearly elucidated; however,

a possible role for the related disaccharidases, sucrase-
isomaltase, and trehalase in sugar transport has been
postulated [28]. In ten mammalian species, disaccharides
related to MGAM have been found in renal brush border
[27]. Farquhar and colleagues have demonstrated that
maltase is present in the microvilli of the proximal con-
voluted tubule, perhaps functioning in glucose reab-
sorption and transport; and this absorptive capacity
decreases towards more distal portions of the nephron
[29]. MGAM was shown to be present in exosomes and
microparticles in a mouse model of nonalcoholic steato-
hepatitis (NASH) [30], a common cause of cirrhosis. Since
cirrhotic patients have several underlying conditions that

Table 1: Study subject demographics.

Variable Group 0, N � 6 Group 1, N � 6 Group 2, N � 6 Group 3, N � 6
Age (years) 28.7± 5.3 62.6± 7.2 58.5± 7.8 49.9± 7.5
Gender, M 6 6 6 6
Race/ethnicity
White 2 3 2 1
Black 0 0 1 0
Asian 3 2 2 0
Hispanic 1 0 1 5
Others 0 1 0 0
Height (cm) 174.8± 4.9 163.8± 11 168.4± 8.7 170.5± 10.2
Weight (kg) 83.23± 11.8 72.6± 15.9 78.2± 15.8 86.8± 23.7
BMI (kg/m2) 26.3± 4.1 27± 5.2 27.5± 4.6 29.6± 5.8
Etiology of liver disease NA
Hepatitis C 5 4 4
Alcoholic cirrhosis 0 1 2
Hepatitis C and alcohol 1 1 0
NASH 0 0 0
Hepatitis B 0 0 0
Autoimmune 0 0 0
Other 0 0 0
Child-turcotte-pugh score NA 5.2± 0.4 8.3± 1.8 10.1± 1.9
Child-turcotte-pugh class NA
A 5 4 0
B 0 2 3
C 0 0 3
Unable to classify 1 0 0
MELD score NA 7.5± 1.8 11.7± 4.3 21.2± 8.5
Cryoglobinemia NA 1 2 2
Spleen (cm) NA 12.2± 2.4 14.8± 4.1 16± 3.7
Diabetes 0 1 3 2
Hypertension 0 3 2 1
Systolic blood pressure (mmHg) 128.7± 8.3 127.6± 20.8 123.7± 17.3 110.1± 15.3
Diastolic blood pressure (mmHg) 72± 9.5 78± 8.2 74.4± 8 65.4± 9.7
Scr within 30 days (mg/dL) 0.84± 0.1 0.74± 0.14 0.74± 0.23 2.1± 1.4
Platelets (109 per liter) NA 146.4± 88.1 107.3± 67.8 85.2± 51.5
History of varices NA 1 4 2
History of variceal bleeding NA 0 1 0
History of TIPS NA 0 2 1
History of HRS
Type 1 NA 0 0 0
Type 2 NA 0 0 0
History of SBP NA 0 3 5
History of ascites NA 0 6 6
History of transplant
Liver NA 0 0 0
Kidney NA 0 0 0
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contribute to a decrease in Scr, the detection of AKI is
problematic. Additionally, the etiology of injury is often
unknown, and differentiating between hepatorenal syn-
drome and other etiologies of AKI is difficult. Further-
more, the pathophysiology of decompensated cirrhosis
with AKI is unclear as it may reflect hemodynamic changes
or inflammatory mediators in the case of acute on chronic
liver failure [31]. We reasoned that the structural and

functional changes that cirrhosis and portal hypertension
bring about in kidney function vary in severity according
to the severity of cirrhosis. *ese differences between the
compensated and decompensated liver disease with kidney
injury can be understood by studying the downstream
products of the kidney, such as urine. Given the nephron
cell-state-specific cargo of the urinary exosome, we
hypothesized that urine exosome analysis holds key
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Table 2: Top discriminating proteins for AKI with false discovery rate< 10%.

GI number Protein name VIP score
4758712 Maltase-glucoamylase (Homo sapiens) 4.3529
5802984 UDP-GlcNAc:betaGal beta-1,3-N-acetylglucosaminyltransferase 1 (Homo sapiens) 3.5869
119703753 Keratin 6B (Homo sapiens) 3.5388
5031809 Immunoglobulin superfamily containing leucine-rich repeat (Homo sapiens) 3.3817
4506153 Prostasin preproprotein (Homo sapiens) 3.3263
88702793 Slit-like 2 (Homo sapiens) 3.2463
24234699 Keratin 19 (Homo sapiens) 3.0505
4506121 Protein Z, vitamin K-dependent plasma glycoprotein (Homo sapiens) 2.9283
9966777 Resistin (Homo sapiens) 2.8229
4503491 Epidermal growth factor (beta-urogastrone) (Homo sapiens) 2.715
89357932 Keratin 5b (Homo sapiens) 2.5725
156523970 Alpha-2-HS-glycoprotein (Homo sapiens) 2.4263
4557391 Complement component 8, beta-polypeptide preproprotein (Homo sapiens) 2.0704
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information that is relevant to the differentiation of AKI in
cirrhosis. *is report is the first step towards testing this
hypothesis.

*is study design had several limitations. First, the
number of subjects analyzed per group is small. A larger
sample size may have increased the robustness of these data
further, and additional proteins may have reached the
threshold of an acceptable FDR of <10%. However, despite
this small sample, these data demonstrating MGAM as a
unique exosomal protein in cirrhotic patients with AKI is
robust. Second, we used 1d gel electrophoresis to resolve the
exosome proteins prior to LC/MS-MS analysis that resulted
in identification of 1572 proteins overall. If we had con-
ducted direct exosome protein trypsinization instead of
following this method, perhaps the number of identified
proteins might have increased. In our experience, exosomes
are packaged with nonfull length peptides from proteolytic
action as well as endogenous peptides and may have con-
founded the analysis. By following the gel electrophoresis
method, we ensured that we only compared full-length
protein differences between groups.

In summary, we have characterized urine exosome
protein differences in healthy controls and compensated and
decompensated cirrhotic subjects with and without AKI by
proteomic methods. Work from the Knepper group shows
that many important renal proteins (e.g., aquaporins, pol-
ycystins, and podocin) are shed in the urine exosome
[32, 33]. Our current report adds MGAM to this group of
functionally important renal proteins identified in urine

exosomes. Our findings suggest that MGAM may differ-
entiate proximal tubular injury from other types of AKI in
cirrhotic patients. However, the clinical significance of
MGAM upregulation in cirrhosis subjects with AKI needs to
be established in future studies.
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[31] R. Hernaez, E. Solà, R. Moreau, and P. Ginès, “Acute-on-
chronic liver failure: an update,” Gut, vol. 66, no. 3,
pp. 541–553, 2017.

[32] T. Pisitkun, R.-F. Shen, and M. A. Knepper, “Identification
and proteomic profiling of exosomes in human urine,”
Proceedings of the National Academy of Sciences, vol. 101,
no. 36, pp. 13368–13373, 2004.

[33] P. A. Gonzales, T. Pisitkun, J. D. Hoffert et al., “Large-scale
proteomics and phosphoproteomics of urinary exosomes,”
Journal of the American Society of Nephrology, vol. 20, no. 2,
pp. 363–379, 2009.

8 Critical Care Research and Practice


