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Abstract

We examine bidirectional brain-machine interfaces that control external devices in a closed loop by decoding motor cortical
activity to command the device and by encoding the state of the device by delivering electrical stimuli to sensory areas.
Although it is possible to design this artificial sensory-motor interaction while maintaining two independent channels of
communication, here we propose a rule that closes the loop between flows of sensory and motor information in a way that
approximates a desired dynamical policy expressed as a field of forces acting upon the controlled external device. We
previously developed a first implementation of this approach based on linear decoding of neural activity recorded from the
motor cortex into a set of forces (a force field) applied to a point mass, and on encoding of position of the point mass into
patterns of electrical stimuli delivered to somatosensory areas. However, this previous algorithm had the limitation that it
only worked in situations when the position-to-force map to be implemented is invertible. Here we overcome this limitation
by developing a new non-linear form of the bidirectional interface that can approximate a virtually unlimited family of
continuous fields. The new algorithm bases both the encoding of position information and the decoding of motor cortical
activity on an explicit map between spike trains and the state space of the device computed with Multi-Dimensional-
Scaling. We present a detailed computational analysis of the performance of the interface and a validation of its robustness
by using synthetic neural responses in a simulated sensory-motor loop.
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Introduction

While the idea of connecting brains to machines has surfaced

time and again [1,2], the concept of a brain-machine interface

(BMI) has developed as a mainstream research topic only more

recently, building on progress in understanding how movement

plans are encoded in motor cortical signals. Two main approaches

have emerged. One approach is based on decoding motor cortical

signals as a proxy for the intended state of motion [3,4] or for

muscle activations [5]. The other view [6] is based on decoding

high-level motor goals from neural activity in areas such as the

posterior parietal cortex, and to communicate this goal to an

external artificial controller in charge of its execution. In both

approaches the focus of the BMI is on decoding neural signals. It is

only more recently that attention has been devoted to the dual

problem of encoding in the brain information about the state of

motion of external devices by using electrical stimulation [7–9].

This progress naturally calls for closing the loop between

encoding and decoding, by combining in the same system a

decoding interface that maps neural activities into commands to

the external device and an encoding interface that maps the state

of the device into neural signals using electrical stimulation [10].

Such closed-loop systems are potentially important both for

clinical applications and as neuroscientific research tools for

investigating neural plasticity by coupling a pattern of stimuli with

the evoked responses through an external system with known

dynamical properties.

Here, we present the findings of a computational investigation

of a novel brain-machine interface architecture that proposes an

explicit set of rules to coordinate the decoding and the encoding

components of the interface. This set of rules implements control

policies based on the closed-loop interaction between the motor

commands expressed by neural activity and their sensory

consequences, which are fed to the brain as encoded information

about changes of state of the controlled device. These control

policies are inspired by the physiological interaction between

descending cortical signals and the activity of central pattern
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generators, where the descending commands modulate the timing

and shape of the trajectories that emerge from the interaction

between the limbs, the neural control system (including its

voluntary components) and the environment [11–17].

A feedback control policy is a function that seeks to attain a goal

while reacting to unexpected circumstances. Sutton and Barto [18]

define such a policy in more formal terms as ‘‘a mapping from

perceived states of the environment to actions to be taken when in

those states’’ given a predefined goal. Translated into mechanical

terms and in the framework of movement control, a motor-control

policy can be represented as a force field: a force (the action) that,

for a given goal, the control system generates as a function of the

observed state of motion of the controlled object. Force fields have

the inherent property that any field shape can be produced or

approximated by summation of other force fields. This is an

important prerequisite for modularity, as it provides a simple

mechanism to build a repertoire by combining a set of primitive

elements [19,20] [19,20]. A key requirement to that effect is, for

the primitive policies, to be mathematically equivalent to basis

functions with structure rich enough to approximate other policies

of arbitrary form. Another important aspect of force fields is that

the concept of ‘‘behavior’’ is not reduced to a particular trajectory

of the controlled element, but includes a whole family of

trajectories. The interaction between the field and the controlled

object generates a family of trajectories, one for each point of the

state space. The control system may select a particular trajectory

by setting an initial state and letting the dynamical interactions

between controlled system and environment shape the temporal

evolution of movement.

In recent work, we took inspiration from this view of biological

motor control to first conceptually propose [10] and then

implement in anesthetized rats [21] a bidirectional BMI capable

of generating a force field with a given desired structure acting

upon the controlled mechanical system. In the first implementa-

tion of this approach, we developed a method based on linear

decoding of recorded motor cortical activities into force vectors

applied to a point mass and encoding the position of the point

mass into patterns of electrical stimuli delivered to the somato-

sensory cortex. A major limitation of this previous algorithm was

that it could only approximate invertible force fields - that is

invertible position-to-force maps.

Here we overcome this limitation by introducing a new form of

bidirectional interface, which we call the non-linear dynamic brain-

machine interface (ndBMI) that approximates a virtually unlimited

family of fields. The interface coordinates the information encoded

by the electrical stimulation and the output decoded from the

recorded signals so as to establish an initial force field structure as a

map between the position of the device and the force applied to it.

We should stress that this approach does not need to be limited to

represent a static field. Instead, the force may be expressed as a

function of velocity, acceleration or any combination of state

variables that are encoded for example by motor cortical activity

[22]. Here we focus on static fields for computational simplicity.

The force field structure, being encoded in the stimulus-response

relation of a neuronal population, can then be modulated by brain

activities, including volitional commands impinging upon the

recorded neurons from other brain regions. Indeed the desired

behavior of this bidirectional interface is similar to the one

exhibited by spinal and supraspinal reflex mechanisms that, at the

same time, permit to the brain to modulate the force field by

generating new families of trajectories.

In the following, we first describe in detail the algorithms that

we developed for calibrating the encoding and decoding compo-

nents of the interface to approximate non-linear desired force

fields and for letting the ndBMI evolve to control a simple

simulated mechanical system. We then test and validate the

ndBMI using neural activity of populations of neurons in a

simulated sensory-motor cortical system. We analyze how this

interface approximates a desired dynamical behavior associated

with non-linear field acting upon a simple mechanical system. We

consider two force fields: a radially convergent force field used to

represent reaching tasks and a dipole force field used for

representing obstacle avoidance in manipulation and navigation

tasks. We evaluate the performance of the ndBMI in generating

trajectories by simulating different kinds of configurations of the

stimulating and recording electrodes. Finally, we explore the

computational issue of controlling the operation of this interface by

volitional commands.

Materials and Methods

We begin by summarizing the structure of our ndBMI, which is

illustrated in Figure 1. The ndBMI controls an external device (in

our case a simple simulated mechanical system) and is constructed

by closing the loop between two components: the sensory interface

and the motor interface. The sensory interface maps some or all of the

state parameters of the external device (in our case only the

position of the device) into one of a set of possible patterns of

electrical stimulation delivered to a cortical sensory area. The

result of this operation is that the activity evoked in this sensory

area is made to encode the state parameters of the device. The

motor interface takes neural recordings from a motor cortical

region and translates them into a force applied to the object. This

force F is applied to the device which then evolves to the next

state. The brain is informed about the value of the next state by

the sensory interface and generates a new appropriate motor

cortical response, and so on in a closed loop.

The algorithms calibrate the interface so that, in absence of any

voluntary intention to change the behavior, the interface

approximates a given desired force field (i.e. a function w(x)
expressing the force that we would apply to the device when it is in

state x). In the force fields implemented here, this force was

designed to drive the device toward an equilibrium state. The fact

that the force to be applied is decoded from the actual neural

activity (and not only directly from the desired force field) leaves

open the possibility to modulate at will the actions implemented by

the ndBMI (for example to deliberately shift the position of the

equilibrium point of the device) when the brain expresses

additional voluntary components of motor cortical activity.

The algorithms base both the conversion of information about

the state of the device into brain activity elicited by stimulation and

the decoding of motor cortical activity into a set of forces needed

to accomplish the task on an explicit map between spike trains and

the state space of the device computed with Multi-Dimensional-

Scaling (MDS).

The neural data that are used to construct and run the ndBMI

consist of stimulus-response pairs of a given electrical stimulation

pattern applied in sensory cortex and the associated neural

population response recorded in motor cortex. They are divided

into two groups: calibration data, which serve to set the

parameters of the sensory and motor interfaces so that they

approximate the desired force field, and test data, which serve to

operate the interface and test its ability to control the considered

external device.

In the following we report a detailed description of the

algorithms for calibrating and running the interface, and of the

external mechanical system controlled by the interface. We

developed and tested this interface by using synthetic neural

BMIs That Approximate Force Fields
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responses generated by simple descriptive model of cortical

responses of a cortical motor region (here supposed to be the

part of the primary motor cortex (M1) that controls whisking in

rats) following a simulated electrical stimulation applied to the

whisker region of primary somatosensory cortex (S1). These

simulations, which we also describe in the following sections, were

chosen to mimic this particular sensory-motor cortical system

because this is the one we used in previous experimental work on

linear bidirectional interfaces [21].

Summary of the Algorithmic Function of the Interface
The mechanical system that the interface controls is simply a

point mass moving on a plane towards a target equilibrium region

(see section Simulation of the mechanical system used as external device).

This target region is defined as a zone around the equilibrium

point of the approximated force fields, whose dimension is a

parameter of the simulation. We thus start each run of the

operation of the interface by setting the system at an initial position

x0 with zero velocity. From this initial position, the interface

simulation algorithm proceeds as follows.

First, the sensory interface computes the electrical stimulus ~ss
corresponding to the sensory region that contains the current

position x0 of the external device using the following equation:

~ss~ arg min x0{jik kð Þ; i~1, . . . ,M ð1Þ

where ji is the center of the sensory region i, M is the number of

the stimulation patterns (therefore is also the number of sensory

regions), and . . .k k is the Euclidean distance norm on the device’s

position plane.

The interface applies the electrical stimulus ~ss to the sensory

cortical area and records a response ~rr from the motor cortical area.

The motor interface derives, from the motor cortical responses ~rr,

the force F using the algorithm described in section Calibration of the

motor interface.

The interface applies the force F to the mechanical system and

lets it evolve for a fixed amount of time until it reaches the next

position x1 as described in section Simulation of the mechanical system

used as external device. Between successive stimuli, the force (i.e. the

output of the interface) is assumed to remain constant.

The procedure is repeated until the point mass reaches the

target region.

The task is considered to be completed when the point mass

reaches the target region (this situation is termed a ‘‘convergent’’

trajectory) or when the number of iterations of the process reaches

a maximum value of 50 iterations (we termed this situation a ‘‘non-

convergent’’ trajectory). After the task is completed, we start the

process again by starting the evolution of the system at rest (0

velocity) from another random initial position x0.

Operating the ndBMI as described above requires the

calibration of the parameters of the sensory and motor interfaces.

This is described next.

Calibration of the Sensory Interface
To calibrate the sensory interface we constructed a map from

the position of the external device to a corresponding electrical

stimulation. The final product is a partition of the position space of

the external device into a set of ‘‘sensory regions’’, each being

associated to a particular electrical stimulus. The calibration of the

sensory interface was implemented as follows.

Figure 1. Schematic of the closed-loop non-linear dynamic (ndBMI) Brain-machine Interface. The neural signal recorded from a motor
region of the brain is decoded by the motor interface into a point in the position-space of the controlled device. The force F to be applied to the
external device is computed by first mapping the recorded motor cortical activity into a virtual point xv in the position space of the device. This
virtual point corresponds to the most likely position of the device given the observation of the activity of the motor cortical region. Then, the force F
is derived by calculating the desired force field in this virtual point F~w(xv). Once this force is applied, the device evolves to the next position x. The
sensory interface provides information to the brain about the new position of the device by delivering stimulation to a sensory area. Once it receives
this information, the brain generates a consequent motor cortical response which is again translated into a force, in a closed loop.
doi:10.1371/journal.pone.0091677.g001
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Assume that we applied a set of M electrical stimuli

S~ s1, . . . ,sMf g. We recorded N ‘‘calibration responses’’ of each

of the M electrical stimuli (total M|N responses):

R ~ ri,j

� �
i~1, . . . ,M; j~ 1, . . . ,N ð2Þ

Each response ri,j consists of a sequence of spike times for each

of the recorded neurons in a simulated 0{600 ms post-stimulation

window (we chose this window length because it matched that

used in our previous real neurophysiological implementations of a

linear bidirectional BMI [21]. However, using such a long

response integration window is by no means necessary. We

verified on the current algorithm with simulated data (results not

shown) and on the previously published linear algorithm by

running the interface offline from real cortical spike trains that we

recorded [21], it was possible to reach near-maximal performance

with response windows as short as 50 ms). We then calculated the

matrix of spike train distances between all pairs of neural responses

across all stimuli,

D ~ dk,l½ � k ~ 1, . . . ,M | N; l ~ 1, . . . ,M | N ð3Þ

D is a symmetric matrix with zero diagonal and indexes k,l
that run over all possible stimulus-response pairs. To compute

distances between multiple-neuron spike trains, we used the

metric described by Houghton and Sen [23], to which we refer

for full details. In brief, this metric first convolves the spike

trains in the time domain using exponential kernels (whose

decay time constant tc represents the temporal sensitivity of the

metric and is a free parameter of the analysis) to obtain the

response time vector of each individual neuron. It then

computes the multi-neuron spike train distance using a vector

norm computed after rotating these single neuron vectors by an

angular free parameter h that determines the sensitivity of the

metric to neuron-to-neuron differences [23]. The free param-

eter h can vary between h~0 (corresponding to pooling all

spike train without taking into account the identity of which

neuron fired which spike) and h~p=2 (corresponding to

considering a labeled-line code [24,25] in which the identity

of which neuron fired each spike is fully taken into account). In

the analysis presented here, we set the two free parameters of

the metric to tc~20 ms and h~p=2 because we found that these

parameters empirically maximized the performance of the

interfaces.

We used MDS to construct a system of points in the position

domain of the mechanical system (in this case it was a 2-

dimensional domain) that preserves the spike train distances:

X ~ xi,j

� �
with xi,j

� �
~ ½x1,i,j ,x2,i,j �T ð4Þ

Where i,j runs over the indexes of the M|N calibration

responses. To perform the non-metric multidimensional scaling

operation, we used the ‘‘mdscale’’ function in MATLAB by

choosing the metric scaling ‘‘strain’’ as the goodness-of-fit criterion

to minimize, which is a criterion equivalent to that used in classical

MDS.

We multiplied these vectors of positions by a factor f to make

them fit within a box of the size of the position space:

~XX~ ~xxi,j

� �
~f :X ð5Þ

Finally we computed the averaged positions across calibration

trials to each given stimulus pattern to obtain the so called

‘‘calibration site’’:

ji~
1

N

XN

j~1

~xxi,j i~1, . . . ,M ð6Þ

These M calibration sites were then used to partition the

position space into M sensory regions, by associating each point of

the position space to the nearest calibration site j1 according to

Equation 1.

Calibration of the Motor Interface
The purpose of the motor interface is to decode each neural

response of the test data set into a force vector. We did this in two

steps: first, the motor neural response ~rr recorded in the considered

test trial (the one to be converted into a force) was mapped (by a

function that we called W and whose computation is explained

below) to a virtual point xv~W ~rrð Þ in the position space of the

device. This virtual point corresponds to the most likely position of

the device given the observation of the activity of the motor

cortical region. Then, the force to be applied to the device was

derived by calculating the desired force field in this virtual point.

If w xð Þ is the desired force field to be approximated by the

interface, then the motor interface derives the output force to be

applied to the external device as F~w(W ~rrð Þ~xv). We call the

point xv ‘‘virtual’’ because it is not necessarily reached by the point

mass (it is, in principle, different from the actual position of the

controlled device). This virtual point is only used as an

intermediate step to evaluate the force intended by motor cortical

activity. Any voluntary perturbation or addition of neural activity,

intended for example to shift the equilibrium target point of the

controlled external device, will act by shifting the position of this

virtual point so as to create the perturbation in force necessary to

modulate the behavior according to the volitional command (see

section Addition of volitional control to shift at will the position of the target

region).

We implemented two slightly different algorithms that translate

the current test response ~rr into a force. Both algorithms begin with

measuring (using the spike train metric described above) the

distances between the currently recorded spike train ~rr and all the

responses in the calibration trials. These distances are stored in a

matrix ~DD:

~DD ~ ~ddi,j

h i
i~1, . . . ,M; j ~ 1, . . . ,N ð7Þ

The algorithms are detailed as follows:

Single-point decoding algorithm. For each stimulus we

computed ~ddi
avg, that is the average (across calibration trials to a

given stimulus) of the distances between the current spike train ~rr
and the spike trains obtained during calibration (the complete

separation between the set of calibration and test trials has the

purpose of preventing over-fitting). Following [23,26] the averag-

ing over calibration trials to a given stimulus was performed with a

bias exponent of {2 that under-weights outliers:

BMIs That Approximate Force Fields
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~ddi
avg~(

1

N

XN

j~1

(~ddi,j)
{2)

{1
2 ð8Þ

We decoded the stimulus that evoked the recorded spike train ~rr
as the stimulus ~ssdec whose calibration responses gave the smallest

average distance with the current spike train ~rr:

~ssdec~ arg mini
~ddi

avg

� �
; i~1, . . . ,M ð9Þ

The force vector applied to the external device (i.e. the

dynamical system) was computed as the force value given by the

considered force field at the location of the calibration site

corresponding to the decoded stimulus:

F~w xvð Þ with xv~j~ssdec
ð10Þ

Multiple-points decoding algorithm. We first identified the

smallest spike-train distance from the current spike train ~rr.

~xxdec~ arg mini,j
~ddi,j

� �
; i~1, . . . ,M j~1, . . . ,N ð11Þ

We then computed the force vector F using the force field

equation at the location xv where the closest calibration trial is

projected on the domain of the external device by the MDS

projection:

F ~ w xvð Þwith xv ~ ~XX (~xxdec) ð12Þ

The advantage of the Single-point algorithm is its robustness to

outliers. The appeal of the Multiple-points decoding algorithm is

that its repertoire of forces is not limited only to the values of the

desired field at the center of each sensory region, but instead it

takes full advantage of the variability associated with individual

calibration activities to offer a larger spread of output forces and a

potentially richer interface dynamics. However, as we shall see in

Results, both algorithms gave nearly identical performance on the

simulated data used here.

Simulation of the Mechanical System used as External
Device

The external device controlled by the ndBMI is a simple

simulated mechanical device, i.e. a simulated point-mass moving

within a viscous fluid. The point mass is subject to two forces: the

force derived from the neural activity F and a drag force due to

the viscosity B:

A:€xxzB: _xx~F ð13Þ

In the above equations, x~½x1,x2�T indicates the position of the

point mass on a plane and the values of mass A and viscosity B
were set to 10 Kg and 13N:s=m , respectively. We simulated this

dynamics equation for a period of 1s using standard numerical

integration algorithms, see [21] for details.

The Force Field
The calibration procedure establishes a force field as a relation

between the position of the device and the force applied to it in the

absence of external volitional commands. Because of the stochastic

character of the neural responses to the electrical stimuli, the field

is an approximation of a desired position-to-force mapping.

The force field established by the calibration procedure is

effectively a biomechanical ‘‘platform’’ upon which influences of

the environment and of the volitional commands operate to shape

the actual motion of the controlled device. In addition to the

volitional and environmental influences, the motion of the device

is also affected by neural noise. Therefore the state of motion of

the device is effectively a random variable affected by a

combination of deterministic and stochastic processes. The

challenge for the volitional commands is to guide the device to

the desired goals despite the influences of uncontrolled perturbing

forces.

Here, we consider two different types of force field that are

significant for the generation of motor behaviors: a Gaussian force

field wG xð Þ and a Dipole force field wDip xð Þ (see Figure 2).

In a Gaussian force field the forces converge toward a central

equilibrium point implementing the concept of a single attractor

and of the goal of reaching a fixed position.

This convergent field wG xð Þ is the gradient of a Gaussian

bivariate function [27]:

wG xð Þ~{K :(x{r):e
{

(x{r)T :(x{r)

s2 ð14Þ

with K ~ 2:6, s ~ 25, r ~
0

0

� �
.

A Dipole force field wDip xð Þ is obtained as a linear summation of

a Gaussian force field wG xð Þ with a Divergent force field wDiv xð Þ:

wDip xð Þ~ wG xð ÞzwDiv xð Þ ð15Þ

The divergent field wDiv xð Þ is obtained by summing a repulsive

and an attractive field, and has the expression:

wDiv xð Þ~{K1
: x{r1ð Þ:e

{
x{r1ð ÞT : x{r1ð Þ

s2
1

zK2
: x{r2ð Þ:e

{
x{r2ð ÞT : x{r2ð Þ

s2
2

ð16Þ

with

K1~1:8, s1~37:5, r1~
10

0

 !
,

K2~{4:7, s2~18:75, r2~
{10

0

 !

Note that both fields are non-linear and non-invertible (i.e. each

value of force is generated at multiple points in the domain). A

Dipole force field was introduced in robotics to represent

movement planning in the presence of obstacles [28]. The

repulsive forces of the divergent field are centered on an object

BMIs That Approximate Force Fields
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that must be avoided by the moving point mass while the attractive

forces are centered on the target to reach.

Simulated Neural Data
Our ndBMI is designed to encode information about the state of

the device by electrical stimulation of a sensory area and to use, in

a closed loop, recordings of neural activity in motor cortex to drive

the external device. Testing our ndBMI algorithm on synthetic

data thus required simulating neural responses in a motor area

immediately following electrical stimulation in a sensory area. We

therefore simulated spiking responses of neural populations from

the primary whiskers motor cortex M1 of rats in response to

electrical microstimulation of the whisker ‘‘barrel’’ field of primary

somatosensory cortex. This model is based on the empirical

observation that a focal activation of S1 causes a relatively

localized activation of M1 [21,29,30]. While our model simulates

in a simplified way the net effect of S1 activation on M1 responses,

it is a descriptive model which does not make any specific

assumption about the mechanisms generating these responses.

In the model, we assumed that the stimulation and recording

electrodes are organized into two different arrays placed in S1
and M1 and arranged in a square matrix with the same shape

and number in each of the two regions. We assumed that the

electrical activation of each stimulation sites in S1, at a given

electrical intensity, evoked a certain average number of spikes per

trial on each electrode in M1. The average number of spikes of

each M1 electrode in response to each electrical stimulus was

modeled by a bivariate Gaussian with parameters height h
(expressed in units of average spikes per trial, and representing in

an abstract way the ‘‘intensity’’ of the stimulation) that peaks in

the corresponding M1 recording site (Figure 3) and spatial spread

s (in units of inter-electrode distance among recording elec-

trodes). The topography of the position of the centers of

activation in simulated responses from M1 to different stimuli

in S1 matched that of the simulated stimulating electrodes in S1.

By indexing with a and b the electrode positions in the horizontal

and vertical directions respectively (both for stimulating and

recording array, that in our model have the same geometry), the

spike rate at each electrode a,b following activation of a given

stimulation site s indexed by as,bs can be thus be expressed as

follows:

spkcount(a,b)
s ~

h

2ps
exp

ja{asj2zjb{bsj2

2s2

 !
zspont ð17Þ

where spkcounts is a matrix with the same dimensions as the

electrode array expressing the trial-averaged spike count output

(in units of spikes/trial in the response time window used to run

the interface). The term spont denotes the amount of spontaneous

(not stimulus-induced) firing and was set to zero unless otherwise

stated.

The topographic stimulus-response arrangement implemented

in our simulations is observed to some extent in real data [29] and

is useful for visualizing the results of our algorithms. It is important

to note that the assumption that the topography of stimulation in

the sensory area is preserved by the activity of the motor area is

not crucial to the function of the algorithm. The algorithm does

not require this assumption because it computes the spatial

configurations in the force field space on the basis of the distances

between neural activities elicited in different conditions rather than

from distances on the cortical surface.

Unless otherwise stated, the spike trains were generated, for

each pair of stimulus and recording sites, by drawing randomly

interspike intervals from an exponential Poisson distribution of

interspike intervals with a mean equal to the average number of

spikes recorded in that electrode in response to that stimulus. As a

consequence, the spike times are distributed with a Poisson

distribution with time-independent firing rates.

In our simulations, we considered seven different sets of

electrical stimuli used to encode information in the sensory area.

The different stimulus sets are obtained by varying, from one

Figure 2. The two ideal force fields to be approximated by the ndBMI. The force fields map each point belonging to the position space into
a force. In this study we used two different force fields representing the desired control policies: a Gaussian force field (A) and a Dipole force field (B).
Both the force fields converge towards an equilibrium point that represents the goal in a reaching task. The figure shows the force fields represented
by arrows of different lengths superimposed by the corresponding colored-code potential fields.
doi:10.1371/journal.pone.0091677.g002

BMIs That Approximate Force Fields

PLOS ONE | www.plosone.org 6 March 2014 | Volume 9 | Issue 3 | e91677



stimulus to the next, the number and location of the stimulated

electrodes, as well as the intensity of stimulation. Stimulations of

multiple electrodes are simulated as sum of responses that would

have been evoked by stimulating each electrode individually. The

different stimulus set used to generate each data set are

summarized in Table 1 and also sketched in Figures 4. Investi-

gating the behavior of the ndBMI when using stimulus sets with

such different information characteristics, is useful to better

understand how the sensory interface works.

We note that the above model of neural firing, as well as the

above algorithm that we developed for the interface, assumes a

stable relationship between stimulation of S1 and activity evoked

in M1. However, in later Sections we investigate by numerical

simulations both how the interface behaves when the S1-M1 map

is changed by voluntary perturbations (Section ‘‘Addition of

Figure 3. Examples of stimulus-response S1-M1 model used to run the interface. We report some examples of trial-averaged neural
responses by our model M1 in response to selected patterns of stimulations of S1. Here we plot responses for the case in which recording electrodes
are arranged in a 3|3 grid (as in the stimulus set number 6 that has 32 elements (see Table 1) and was used in most of the simulations). As explained
in the main text, the spikes evoked by stimulating each S1 electrode are modeled by bivariate Gaussian distributions that peak in the corresponding
M1 recording sites. (A) The average number of simulated spikes recorded from the electrodes in M1 and evoked by stimulating a single electrode in
S1 (stimulated electrode is represented by a superimposed black ‘‘x’’). (B) Average number of simulated M1 spikes evoked by stimulating couples of
electrodes in S1 (again the pair of stimulated electrodes is indicated by the superimposed black ‘‘x’’). In both panels, the color scale indicates the
mean spike count expressed in units of mean spike count per trial, and the responses were shown for only one of the possible four levels of intensity
in which each electrode could be stimulated in stimulus set number 6 (see Table 1).
doi:10.1371/journal.pone.0091677.g003

Table 1. Schematic description of the stimulus set used to generate each response data set.

Data
set

Number of
patterns Description s

Peak response
amplitude (h) f factor

Electrodes
grid

1 4 In each stimulus, each of four different stimulus
sites is activated with one intensity level.

0.5 5 [35.24–37.85] 262

2 12 Each stimulus site is activated at one of three intensity levels. 0.5 2–5–8 [21.61–27.54] 262

3 8 Stimulus sites are activated either individually or
in contiguous pairs at one intensity level.

0.5 5 [23.08–21.66] 262

4 24 Stimulus sites are activated individually or
in contiguous pairs at three intensity levels.

0.5 2–5–8 [15.79–19.70] 262

5 23 = 8 4 stimulation electrodes 6 2 electrical intensities 0.5 5–10 [8.27–6.85] 262

6 25 = 32 8 stimulation electrodes 6 4 electrical intensities 1 10–20–30–40 [2.94–2.85] 363

7 27 = 128 16 stimulation electrodes 6 8 electrical intensities 1 10–20–30–40
–50–60–70–80

[1.25–1.31] 565

For each data set (1 to 7) we describe the stimulus set, we report the parameters spatial spread (s), peak response amplitude h (reported in units of mean spike count
per trial and varied to model the different amplitudes of stimulation), the value of the scaling factor f and the geometry of the grid of both stimulated and recording
electrodes. We use square grids of electrodes, but for stimulation we only use the ‘‘external’’ sites, located on the perimeter of the array. The recording electrodes are all
used. So for data set 5, the matrix of electrodes is 2|2 and we use all of them. For data set 6, the grid is 3|3, and since we do not stimulate with the central one, we
use 8 stimulation electrodes, while all 9 recording electrodes are used. The grid used in data set 7 is 5|5 and we do not stimulate with the 9 internal electrodes.
doi:10.1371/journal.pone.0091677.t001
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volitional control to shift at will the position of the target region’’)

and when the map between S1 stimulation and M1 recorded

responses is altered after calibration by a deterioration of the

selectivity and quality of the recorded neural responses (Sections

‘‘Deteriorating the simulated quality of neural responses to

investigate the robustness of the algorithm’’ and ‘‘Robustness

analysis of the ndBMI system’’).

Deteriorating the Simulated Quality of Neural Responses
to Investigate the Robustness of the Algorithm

To evaluate the robustness of the ndBMI to degradation of the

quality of responses, we generated neural activities with different

amount of information about the electrical stimuli. We used

several different ways to deteriorate such responses.

The first alteration of the quality of neural responses decreases

the information about stimuli available at one or more electrodes.

This was achieved by ‘‘flattening’’ the stimulus-to-stimulus

Figure 4. Results of the calibration procedure to set-up the Sensory Interface using different data sets. The goal of the calibration
procedure is to define the ‘‘sensory regions’’ by partitioning the position space of the controlled device. (A) from left to right: i) a representation of
the evoked spike activity, ii) a color-coded scheme of the recorded spike activity, iii) a graphical representation in the 2D domain of the results of the
multidimensional scaling of the distance metric for each spike train, iv) the sensory regions obtained using a nearest neighbor algorithm. We tested
this procedure also by using three different stimulation intensities (B), a combination of the stimulation electrodes obtained by co-stimulating
neighboring electrodes (C) and by combining the co-stimulation with three stimulus intensities (D).
doi:10.1371/journal.pone.0091677.g004
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variations in trial-averaged spike count (spkcounts) to each

stimulus s without changing the overall averaged spike count in

response to all stimuli (spkcount), as follows [31]:

spkcounts,c~spkcountszc spkcount{spkcountsð Þ;

c[ 0,1½ �
ð18Þ

For c~0 the spike counts are equal to the original ones and all

original stimulus information is available, while for c~1, each

stimulus triggers the same spike count and information is zero.

The second simulated alteration of the neural responses tested

the effect of the statistics of neural firing and consisted in

generating spike trains with a Gamma distribution of interspike

intervals (rather than with an exponential distribution like for the

Poisson process), as follows:

P(t)~
1

C(k)hk
s

:tk{1: exp {
t

hs

� �
; hs~

1

spkcounts
:k

ð19Þ

This distribution fits cortical interspike interval distributions well

[32]. For any value of the so called shape parameter k, it produces

a mean inter spike interval equal to (k:h)~(1=spkcounts) with an

amount of trial-to-trial spike count variance that depends on k.

The case k~1 corresponds to the Poisson process (variance equal

to mean), whereas values of k lower than (respectively higher than)

one generate trains with a higher (respectively lower) variance than

the one of the Poisson process. Studying the performance of the

algorithm as a function of the shape parameter k therefore allows

us to investigate the specific role of neural variability in the

interface.

The third simulated alteration of neural responses tested the

effect of spontaneous activity upon the performance of the

interface. This was achieve by setting to a non-zero value the

term spont of spontaneous firing in Eq. 17.

The fourth simulated deterioration consisted in simulating a

‘‘misplaced’’ recording electrode (of coordinates a0,b0) unable to

record a response modulated by the simulation (this can happen

for example, because the recording electrode is placed outside the

region modulated by the stimulus, or because the electrode is

highly corrupted by noise). The average spike count recorded in

the misplaced recording electrode topographically matched to the

considered stimulation electrode was set to be constant across all

stimuli (and equal to the grand average number of spikes recorded

across all electrodes and stimuli) and was expressed by the

following equation:

spkcount(a0 ,b0)
s ~avgr ð20Þ

for each possible stimulus s, where avgr is the grand average

number of spikes recorded across all electrodes and stimuli.

The fifth simulated deterioration mimicked a situation in which

a stimulation site s0 was made ineffective by triggering uniform

responses across all recording sites (again equal to the grand

average number of spikes recorded across all sites and stimuli), as

follows:

spkcount
(a,b)

s0 ~avgr ð21Þ

for each possible electrode position a,b.

Since the responses generated by stimulating this electrode do

not have any spatial specificity and do not change with stimulus

intensity, this electrode encodes no information.

Quantification of the Trajectories and Performance
Evaluation

For each simulation, we started by placing the point mass at an

initial position x0. Then we let the interface run for up to 50 time

steps. We randomly chose 24 different initial positions along a

square centered in the origin with side equal to 0.8 times the

dimension of the position space and for each of these 24 positions,

we performed 10 repetitions, obtaining a total of 240 trials.

To measure how well our data sets and algorithms approximate

the ideal force field, we introduce a metric called within-trajectory

position error (abbreviated to wtpe) that measures the average

distance, across all time steps, between each convergent trajectory

(as defined in section Summary of the algorithmic function of the interface)

and the ideal trajectory obtained by simulating the mechanical

system under the influence of the desired force field and in the

absence of noise. If a trajectory goes from time step 1 to Ntr with

Ntr indicating the number of steps needed to converge for a given

trial tr, xi
tr is the position of the point mass at time step i for a

given trial tr, and xi
id is the position of the point mass at that time

step in the ideal force field, then wtpe is the averaged error:

wtpe~
1

Ntr

XNtr

i~1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(xi

tr{xi
id )2

q
ð22Þ

High (respectively low) values of wtpe denote bad (respectively

good) convergence performance of the system.

Significance of variations in wtpe were assessed using one-way

ANOVA (Pv0:01) followed by the comparison between a

reference condition and all the others using a multiple comparison

test with Tukey’s honestly significant difference criterion based on

the Studentized range distribution.

Results

We used the simulated cortical responses to illustrate the

behavior of the ndBMI and investigate its performance in a

number of different conditions.

Calibration of the Sensory Interface on Simulated Data:
The Sensory Interface Captures the Geometry of the
Simulated Motor Cortical Activity Evoked by Stimulation
of Sensory Cortex

The first step to set up the ndBMI is the calibration of the

sensory interface using the training set (i.e. calibration data) of

simulated neural data. In this work we generated the training set

using N~30 trials for each stimulation pattern. This process

defines the M regions of space corresponding to each stimulation

pattern s1, . . . ,sMð Þ by projecting (using MDS) motor cortical

responses into the position plane in a way that preserves the

original spike train distances of neural responses to different

stimuli.

To illustrate the relationship between the spatial distribution of

the information encoded by electrical stimulation and the

geometry of the sensory regions, we first ran the calibration

procedure using 4 different sets of simulated spike trains (Table 1

and Figure 4), each with a different stimulation geometry. The
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corresponding sensory interfaces and the partitions of the position

space of the external device are reported in Figure 4.

Note that these first 4 data sets used to illustrate the properties of

the sensory interface are slightly different from those used in the

next sections to test the behavior of the ndBMI, but we chose to

start from these 4 data sets because they illustrate very clearly the

relationships between information encoded by stimulation and the

partition into sensory regions made by the interface.

Data set 1 was generated by using a simple configuration, in

which each stimulation pattern was constituted by the activation of

only one of the stimulating electrodes. In this case, the sensory

interface produced 4 well-separated regions that represent very

well the geometry of the clusters of the 2D-projected spike trains

(Figure 4A middle). The positions of the calibration sites are well-

spread over the work space along two orthogonal lines obtaining

similar-sized sensory regions (Figure 4A right).

We then considered a second data set that used the same single-

electrode stimulation patterns of the first data set, but that in

addition presented three different intensity stimulation levels (low,

medium and high). This stimulus set had 12 different stimuli and,

as a consequence, there were 12 sensory regions. The addition of

the stimulus amplitude variable that modulated the response in the

motor region changed the geometry of the sensory regions in

several interesting ways (Figure 4B). The increase of the evoked

spike activity with stimulation was encoded as an increment of the

distance from the center of the workspace along the two main

diagonals. The algorithm generated sensory regions that were

organized such that increasing stimulation intensities resulted in

increasing distances from the center. Thus, while the position of

the electrode was encoded as an angle from the origin of the plane,

the amplitude of stimulation was encoded as a radial distance from

the origin.

To investigate the effect on the geometry of the sensory interface

of inserting more complex stimulation patterns into the stimulus

set, we created a data set with new stimuli made with the

simultaneous stimulation of neighboring electrodes (data set 3).

This resulted in a total of 8 distinct stimulus patterns (Figure 4C).

In paired stimulations, we assumed that the same current pattern

was simultaneously delivered through two neighboring electrodes.

For each combination of two electrodes, the evoked spike trains

were projected by the algorithm into the portions of space left by

the projections of the spike trains evoked by each single electrode

of the couple. Thus, the spatial configuration of the sensory

Figure 5. Evolution of variables of the ndBMI system for a single simulated trajectory. (A) Temporal evolution in terms of simulation steps
of variables describing the behavior of the system for a single trajectory: for each step from top to bottom are represented the two components of
the actual position and velocity of the simulated point mass, the sensory region where the actuator is, the delivered stimulation pattern and the force
applied to the dynamical system. (B) Heat maps describing the recorded neural activity in terms of mean spike count for each recording electrodes in
6 different points of the trajectory. (C) A representation of the selected trajectory with a reference to the 6 points depicted in (B) superimposed to the
sensory regions.
doi:10.1371/journal.pone.0091677.g005
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regions reflected the combination of the electrodes in the

stimulating array.

We finally tested the algorithms by using all the 24 different

stimulation patterns described above (data set 4). The generated

sensory regions reflected the spatial configuration of the electrodes

and the intensity of the stimulation patterns (Figure 4D). For

simplicity in the following sections we will run the interface

using only stimulus set made of individual electrode

stimulations.

Non-linear Dynamic BMI System: Dependence of
Performance upon the Density of Stimulation Patterns

We next tested the dynamical behavior of the ndBMI and its

ability to control and interact with the external device, by first

constructing the sensory and motor interfaces as described above,

and then evaluating the trajectories of the point mass controlled by

the ndBMI on a separate test dataset.

We tested two different ndBMIs that implemented two types of

desired control policy of the external object and corresponding to

two different force fields. The first was a Gaussian force field with

all the forces converging toward a single equilibrium point

Figure 6. Performance of the ndBMI depends on the resolution of the sensory interface. (A) An illustration of one of the data sets used in
this study (data set 6) which is obtained by stimulating 8 electrodes organized in a 3|3 square grid with 4 different electrical amplitudes. (B,D) The
actual trajectories (lines colored in red-tonality) obtained with the Multiple-points algorithm and the ideal trajectories (black lines) superimposed to
the sensory regions (areas colored in blue-tonality) for a Gaussian force field (top) and Dipole force field (bottom). (C,E) bar chart of the average
difference (i.e. error) calculated as the difference between the ideal and the actual trajectory for each trial simulated by using the Single-point (blue)
and the Multiple-points (red) decoding algorithm. The * denotes that wpte depended significantly on the number of stimuli (Pv0:01 one-way
ANOVA) and is placed in correspondence of the number of stimuli for which wpte was significantly different from the ‘‘reference’’ condition with 32
stimuli (Tukey multiple comparison test Pv0:01).
doi:10.1371/journal.pone.0091677.g006

BMIs That Approximate Force Fields

PLOS ONE | www.plosone.org 11 March 2014 | Volume 9 | Issue 3 | e91677



(Figure 2A). The second was a Dipole force field obtained by linear

superposition of the previous force field with a divergent one

(Figure 2B).

We used the test set of simulated neural responses to test the

ability of the ndBMI to drive a simulated point-mass moving in a

viscous fluid, with the goal of reaching an equilibrium target

region (indicated by a white dotted circle) around the center of the

field. The performance was evaluated by initially placing the mass

at rest in a given location and then following its trajectory along

the neurally generated force field. An example of the convergent

behavior of the BMI in one single trajectory is shown in Figure 5,

where we show how the neural activity, the decoded forces and the

stimulation patterns evolve with time to accompany the evolution

of the position and velocity of the simulated point mass from a

peripheral position to the equilibrium target region.

To evaluate how the behavior of the ndBMI depends on the

resolution of the information encoded by electrical stimulation, we

evaluated how the performance of the ndBMI is affected by the

spatial density and number of stimulus patterns available in the set.

We generated three different sets of data (see Table 1) by

combining a variable number of stimulating electrodes (i.e. 4, 8

and 16 stimulating electrodes) with different stimulation intensities.

Figure 6 shows the behavior of the system obtained with a

Gaussian force field (middle panel) and with a Dipole force field

(bottom panel). As described previously, we first used the

calibration data to compute the sensory regions associated with

each stimulation pattern. These sensory regions (reported as blue-

tonality filled regions in Figure 6) followed a pattern fully

consistent with the rules of thumb described in the previous

section. We then used the test data to run the interface starting

from 24 different initial positions. The trajectory generated by the

interface (red-tonality lines in Figure 6) were compared with the

‘‘ideal trajectories’’ (black lines) obtained by simulating the point

mass in the exact desired force field (the one that is defined in

equation 14 and 15 and that would be generated by the ndBMI in

case of infinite spatial resolution of the information encoded by the

electrical stimulation and a noiseless neural motor activity). We

run the system 10 times from each starting position, thus obtaining

240 trajectories.

We evaluated the interface with both the Single-point and the

Multiple-points decoding algorithms for computing the force to be

applied to the point mass (see section Material and Methods).

The analysis of the performances showed that an increase of the

number of the stimulus patterns and, consequently, of the number

of sensory regions, made the actual trajectories of the controlled

device more similar to the ‘‘ideal’’ trajectories of the desired force

field. The advantage of having more sensory regions was more

pronounced for the Dipole force field than for the Gaussian force

field. For the Gaussian force field there was no gain in increasing

the sensory regions from 8 to 32 but the trajectory error decreased

significantly when increasing the number of sensory regions to 128

(Figure 6C). For the Dipole force field, there was a significant

decrease in the trajectory error both when increasing the sensory

regions from 8 to 32 and from 32 to 128 (Figure 6E). This suggests

that the gain of having a large number of sensory regions (and thus

of patterns of electrical stimulations eliciting different neural

responses) is more relevant when implementing more complex

force fields and control policies. We also found out that the

performance of the system for these simulation conditions was very

similar with both the Single-point and the Multiple-point different

decoding algorithms.

Figure 7. Performances of the ndBMI when reducing information about the stimulation pattern. (A,C) Ideal (black lines) and actual (red-
tonality lines) trajectories of the Multiple-points algorithm superimposed to the sensory regions (blue-tonality areas) by using data set 6 and two
different force fields simulated by progressively reducing the amount of available information represented by c, with c~½0, 0:3, 0:5, 0:7, 0:9�. (B,D)
Bar chart of the wpte between the ideal and actual trajectories calculated for different value of c. The * denotes that wpte depended significantly on c
(Pv0:01 one-way ANOVA) and is placed in correspondence of the values of c for which wpte was significantly different from the ‘‘reference’’
condition with c~0 (Tukey hsd Pv0:01).
doi:10.1371/journal.pone.0091677.g007
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Robustness Analysis of the ndBMI System
In a complex system, such as a bidirectional BMI, stability and

robustness are crucial features that concern all the elements

constituting the information flow, from the recorded electrophys-

iological signals to the design of the actuators [33]. We tested the

robustness of the presented algorithm by investigating its

performance in a number of simulated scenarios in which the

same degree of degradation of the stimulus-response properties

was applied to both calibration and test data.

In all the following tests of the robustness of the interface

reported in this subsection, for simplicity we concentrated on the

middle-resolution stimulation set (i.e. data set 6, consisting of 32

stimulation patterns). As in the previous section, we run the

interface starting from 24 initial positions and computing 10

trajectories of the neurally driven point mass for each of the 24

starting points. Again, we tested the interface with both the

Gaussian and the Dipole force fields.

The first degradation scenario was simulated by progressively

reducing the amount of available information about the stimula-

tion pattern that it was possible to extract from the evoked neural

response. This degradation was implemented by flattening the

different response profiles between stimuli, modulated by the

parameter c (see section Deteriorating the simulated quality of neural

responses to investigate the robustness of the algorithm). This parameter,

when varied from c~0 (maximal information) to c~1 (minimal

information) progressively reduced the stimulus modulation of all

motor cortical responses. Modulating c can be thought as

modulating the effectiveness of the stimulation and recording

electrode implant in eliciting selective responses. Figure 7A,C

shows the trajectories collected using the Gaussian and Dipole

force fields with 5 different values of c~½0, 0:3, 0:5, 0:7, 0:9�. The

corresponding mean error between the actual and ideal trajecto-

ries for each value of c is shown in Figure 7B,D. This analysis

shows that both Single-point and Multiple-points algorithms are

relatively robust, for both force fields, to the degradation of the

response. The mean trajectory error remained relatively stable as c
is increased. The interface implementing the Gaussian force field

was particularly robust, at its performance deteriorated (Pv0:01)
from the reference c~0 value when c§0:5 with a small effects

and with a large deterioration effects for c~0:9 (corresponding to

90% deterioration of response selectivity). The performance of the

Dipole force field interface deteriorated significantly (Pv0:01) for

c~0:6 and above, with particularly large deterioration effects

reached for c§0:7.

The second simulated alteration of the neural responses tested

the effect of the statistics of neural firing and consisted in

generating spike trains with a Gamma distribution of interspike

intervals, rather than with a Poisson process as in all the other

simulations. The Gamma distribution has a so called ‘‘shape’’

parameter k that determines the spike count variance [32]. The

case k~1 corresponds to the Poisson process (variance equal

mean), whereas values of k lower than (respectively higher than)

one tend to generate trains with a higher (respectively lower)

variance than the one of the Poisson process. When implementing

the interface on simulated data with different values of k and thus

with varying degrees of variance (Figure 8), we found that the

performance of the Gaussian force field interface was relatively

insensitive to the firing statistics, with significant (P,0.01)

deviations from the Poisson case observed for very regular firing

statistics (k~1:5, 2; Figure 8A,B). The performance of the Dipole

force field interface was more affected by firing statistics, with a

particularly marked decrease of performance for processes with

k~0:1 (Figure 8C,D). (Note that values of k below 0.5 are

extremely uncommon in cortical neurons [32]; therefor the value

of k~0:1 should be interpreted as a case of an extremely irregular

Figure 8. Performances of the ndBMI by using a data set generated from a Gamma Interval process with different values of the
shape parameter k. (A, C) Ideal ad actual trajectories superimposed to the sensory regions obtained by using data generated by using five different
values of the shape parameter (k~0:1, 0:5, 1, 1:5, 2) of a Gamma interval process used to set the inter-spike intervals of the simulated spike trains.
We ran the interface using the Gaussian (A) and Dipole (C) force fields with the Multiple-points algorithm. (B, D) Average within-trajectory position
error across the three different conditions shows how the error decreases by increasing the regularity of the spiking of the M1 neurons. The * denotes
that wpte depended significantly on k (Pv0:01 one-way ANOVA) and is placed in correspondence of the values of k for which wpte was significantly
different from the ‘‘reference’’ condition with k~1 (Tukey hsd Pv0:01).
doi:10.1371/journal.pone.0091677.g008
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firing processes with variability much higher than that of a typical

cortical neuron).

The third simulated alteration of neural responses tested the

effect of adding spontaneous firing. We found that the Gaussian

force field interface performance was again extremely robust to

this alteration. It decreased only by a relatively small amount (less

than 20%) even when adding a level of spontaneous activity that

was more than twice larger than the peak response to the maximal

simulated electrical stimulation amplitude (this stimulus provoked

a peak activity of 40 spikes/trial in these simulations). The Dipole

force field interface was also relatively robust to introduction of

spontaneous activity of 40 spikes/trial (as large as the peak of the

increase of response to the most effective stimulus, Figure 9C,D)

but was less robust than the Gaussian force field to values of

spontaneous activity much larger than the peak response

(Figure 9A,B).

We then tested two other scenarios, in which we simulated that

one of the recording electrodes (Figure 10B,F) or one of the

stimulating electrodes (Figure 10C,G) were not effective. In the

former scenario, we simulated a misplaced recording electrode

that records activity outside the region affected by stimulation (and

thus reported a constant number of spikes regardless the stimulus

delivered). In the latter scenario, we simulated an ineffective

stimulating electrode that failed to elicit any spatially localized

modulation of responses in the recording electrodes. The Gaussian

force field interface was extremely robust (no significant decrease

in performance) in both the simulated scenarios. In contrast, the

Dipole force field interface exhibited a decrease in performance

(increase in wpte error) in both the simulated scenarios of electrode

degradation. For the Dipole Field, the error with a defective

recording electrode was 40% larger than the one of the clean

simulation (Figure 10H).

As previously stated in the above simulations the same degree of

degradation was applied to calibration and test data. However, a

situation that may be encountered in real experiments is when the

recording or stimulation system works well during calibration but

then degrades during testing. This may be the case with alterations

in signal quality during chronic recordings. We simulated this

situation by first calibrating the interface on uncorrupted data

(c~0) and then testing the interface on corrupted data (cw0). The

performance of the interface in this scenario is reported in

Figure 11. It is interesting to compare this case of corruption of

neural signal only during testing with the previously reported case

(see Figure 7) in which the same corruption was present both

during calibration and during testing. With respect to this previous

case, in the case of corruption during testing only we found a mild

decrease of performance of the interface for moderate values of

corruption (c in the range 0.3–0.7), probably because of the

mismatch between the neural firing properties between calibration

and testing. However, for extreme values of corruption (c~0:9)
the interface was more robust when degradation happened only

during testing. This, in our view, happened because its sensory

regions, being computed from non-degraded activity, were of high

quality for all values of c (see Figure 11). For large degradation of

Figure 9. Performances of the ndBMI by adding different level of spontaneous activity to the stimulus-related activity. (A, C) Ideal
and actual trajectories superimposed to the sensory regions generated by adding to the stimulus-evoked activity of data set 6, two different levels of
spontaneous activity in terms of trial-averaged spike count (i.e. 40 and 100 spikes/trial). We tested the interface by using the Gaussian force field and
the Dipole force field with the Multiple-points decoding algorithm. (B, D) Average within-trajectory position error across the 3 different levels of
added spontaneous activity tested with the two different decoding algorithms. The * denotes that wpte depended significantly on spont (Pv0:01
one-way ANOVA) and is placed in correspondence of the values of spont for which wpte was significantly different from the ‘‘reference’’ condition
with spont~0 (Tukey hsd Pv0:01).
doi:10.1371/journal.pone.0091677.g009
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neural responses, the beneficial effect of the uncorrupted sensory

regions outweighed the negative effect of the mismatch between

calibration and testing firing statistics.

Addition of Volitional Control to Shift at will the Position
of the Target Region

In the above simulations, we considered a neural system whose

motor cortical response properties depended only upon the

specific pattern of electrical stimulation to the sensory region. In

this configuration is that the BMI implements, in an essentially

automated way, only the particular behavior (for example,

reaching a fixed target region chosen at the stage of calibration)

implied by the desired force field that was programmed into the

sensory and motor interfaces. This raises the question of how the

brain may control and modulate at will the operation of the

interface, for example by shifting or reaching the target regions at

will. We addressed this issue by simulating the presence (during

test trials) of a volitional control input aiming to shift the

equilibrium position of the point mass from the original

equilibrium point of the force field set during calibration to a

new location. In fact, if w(x) is the force fields programmed by the

calibration of the BMI, a simple change may be imposed by a

transformation x?x0~xzu where u is a component introduced

by volitional activity impinging upon the recorded population

from structures outside the pathway between stimulation and

recording arrays. Accordingly, the force field is changed by

volition to w0(x)~w(xzu): To describe how we can introduce

such a volitional modulation, let us consider the case in which, as

described above, calibration is made on data that do not contain

any volitional component. After the calibration, the sensory

interface maps a position x into a pattern of stimulation that

evokes neural activity with a spike count output spkcountstim(x).
This is the neural response caused by the stimulation array as

described in Section Simulated neural data. Let us now assume that

during test trials the neural activity recorded from motor cortex

contains an additional component expressing a volitional com-

mand, for example due to inputs to the considered motor region

that do not originate from the sensory region stimulated by the

interface. For simplicity, we assume that the volitional component

is additive. In this case, the spike count obtained after electrical

stimulation is made of a stimulus-evoked component

spkcountstim(x) and of a volitional component spkcountvol(u) that

Figure 10. Performances of the ndBMI when simulating one malfunctioning recording and stimulation electrode. The actual
trajectories of the Multiple-points algorithm (red-tonality lines) and the ideal trajectories (black lines) superimposed to the sensory regions (blue-
tonality areas) by using data set 6 (i.e. 32 stimulating electrodes) and two force fields obtained by utilizing respectively (A, E) the original data set, (B,
F) a data set simulating a misplaced recording electrode and (C, G) a data set simulating an ineffective stimulating electrode. (D, H) Bar chart
representing the average within-trajectory position error (wtpe) of the trajectories obtained simulating a misplaced recording and ineffective
stimulating electrode compared with the one simulated by using the original data set. The * denotes that wpte depended significantly on the
malfunctioning electrodes conditions(Pv0:01 one-way ANOVA) and is placed in correspondence of the malfunctioning conditions for which wpte
was significantly different from the original data set (Tukey hsd Pv0:01).
doi:10.1371/journal.pone.0091677.g010
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is independent from the current state of the device and reflects

only the intention of the subject to modify the trajectory:

spkcount~spkcountstim xð Þzspkcountvol(u) ð23Þ

Consider now for simplicity the case of the Gaussian force field,

and suppose that the purpose of the voluntary addition is to move

the target equilibrium position to a new point different from the

center of the Gaussian force field. The addition of a volitional

constant firing rate term to motor cortical activity can be used to

shift the position of target region at will. To do so, it is enough to

Figure 11. Performance of the ndBMI when reducing information about the stimulation pattern only during the testing phase. (A,C)
Ideal (black lines) and actual (red-tonality lines) trajectories of the Multiple-points algorithm superimposed to the sensory regions (blue tonality
areas). Uncorrupted data were used during the calibration procedure (c~0) and corrupted data were used during the testing phase
(c~½0, 0:5, 0:7, 0:9�), (B,D) Bar chart of the average within-trajectory position error (wtpe) between the ideal and actual trajectories calculated for
different value of c. The * denotes that wpte depended significantly on c (Pv0:01 one-way ANOVA) and is placed in correspondence of the values of
c for which wpte was significantly different from the ‘‘reference’’ condition with c~0 (Tukey hsd Pv0:01).
doi:10.1371/journal.pone.0091677.g011

Figure 12. Performances of the ndBMI when adding a voluntary command and an external perturbation. Actual trajectories of the
Multiple-points algorithm (red-tonality lines) superimposed to the sensory regions (blue-tonality areas) obtained using data set 6 (32 stimulating
electrodes) obtained by adding (A) a voluntary input signal that drives the system toward 4 new equilibrium points (yellow dots) and (B) an external
perturbation in the form of skew-symmetric velocity dependent force field.
doi:10.1371/journal.pone.0091677.g012
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add a term which, if emitted in isolation (without noise and

without the firing rate emitted by the non-volitional part), would

lead to a force pointing toward the target from the equilibrium

point. In the case of the radial field as in the example, this is simply

computed as

spkcountvol uð Þ~spkcountstim({xu) ð24Þ

where xu is the volitional target position. In this way, the

translation of the total firing rate given by the motor interface

tends to provide a constant shift of the dynamics toward the

desired equilibrium point.

Figure 12A reports the trajectories that we obtained by adding a

volitional firing rate term (computed as described in equation 24

given the chosen position of the new wanted equilibrium point) to

an ndBMI with a Gaussian force field. We ran this algorithm using

the Multiple-points decoding algorithm. Since the spkcount
function is defined as constant over sensory regions rather than

having a different value for each point of the state space of the

actuator, we chose as volitional target positions only positions onto

which one or more of the calibration trials were projected. The

number of spikes due to the volitional input was generated in each

trial using a Poisson distribution with the average spike count

specified by spkcountvol(u), and added to the spikes generated by

the intrinsic sensory to motor area mapping described previously.

In each of the 4 panels of Figure 12A we report results for 4

different volitional components, which lead each to a different

desired equilibrium point (represented by a yellow dot in the

domain). In each of these 4 cases we generated a set of trajectories

originating from 16 different starting points. These trajectories

should be compared with those shown in the middle panel of

Figure 6B, which show trajectories with the same interface

parameters but without the addition of voluntary firing rate

component. In agreement with the intuition explained above, the

effect of the voluntary input is a shift of target toward different

locations surrounding the center of the workspace.

We further tested the stability of the volitional shift of target by

adding an external perturbation to the force field, in the form of a

skew-symmetric velocity dependent field:

F~
0 {b

b 0

	 

: _xx ð25Þ

The effect of this field is to apply a force orthogonal to the

movement and proportional to its instantaneous speed. Several

studies of motor learning [34,35] have employed this type of force

perturbations for challenging arm movement stability and

investigating adaptive control. The simulation results in

Figure 12B illustrate the stability of the volitional perturbation,

as the motion of the point mass converges toward the attractors

encoded by the volitional control despite trajectories are deflected

in a general counterclockwise pattern.

Discussion

Laying the Foundations for Bidirectional BMIs
The idea of controlling robotic devices by brain activities has

been driven by two different perspectives. One is the perspective of

providing people with severe form of paralysis with a new

‘‘channel to the world’’. The other is to provide researchers in

Neuroscience with a new family of experimental tools for

answering basic questions, such as how the known mechanism of

neuroplasticity may provide the physiological foundation for

learning and memory. While in the last decade there have been

substantial advances on both perspectives, most practical and

conceptual challenges remain widely open. Research in brain-

computer or brain-machine interfaces is attracting a growing

number of scientists from different disciplines and now forms a

sizeable scientific community. This community is actively explor-

ing all aspects that affect the information flow of a BMI system,

from improvements in the materials that are used to build the

electrodes to the development of new decoding algorithms that

more reliably transform the neural signals into motor commands

for an artificial limb.

In this context, the classical scheme of a brain-machine interface

includes neural sensors to record motor signals [36] and decoders

to extract the motor intents of the subject from the available neural

signals [4,37]. This approach, although successful [38], still

considers any sensory feedback as a separate channel, conceptually

divided from the decoding of motor command and necessary only

in cases where natural feedback is lacking. Another aspect that is

missing in this approach is that by directly translating motor

cortical signals into a desired movement trajectory, one ignores the

functionality of sub-cortical structures, such as the spinal cord, that

also participate in the natural production and control of motor

behavior. In recent years these two aspects have been explored in a

more systematic way obtaining systems and methodologies in

which closing the loop between the brain and the artificial object

becomes a fundamental aspect [8,9,39]. Also the possibility of

using the decoded signal to stimulate the spinal cord directly to

generate a movement is a topic that has been addressed [40]. To

explore how to bring together these two key research directions,

here we developed a proof of concept for a novel approach to

brain-machine interfaces. Our approach is based on two main

concepts: the interface creates a closed loop system in which brain

activities from a motor area are decoded into a force acting upon

the external device and the state of the external device is encoded

into an electrical stimulus delivered to a sensory area, and the

encoding and decoding components of the interface are set-up

concurrently, so as to approximate a desired force field of arbitrary

form.

The final output of the brain-machine interface is determined

by three factors, namely i) the encoding and decoding rules, ii) the

external environment, which contributes to establishing the state

of the controlled device, and iii) the inputs to the recorded neurons

other than those caused by the electrical stimulus. The latter

includes any random background activity impinging on the

recorded population as well as activities driven by volitional

commands. Thus, the resulting behavior is a combined effect of

the approximated field, neural noise, environmental influences

and voluntary control. In this respect, our approach extends the

more conventional BMI methods based only on decoding the

output activity as a desired state of the controlled device. In these

methods, the voluntary commands modulate the firing of the

output neurons under the assumption that these activities are the

only determinant of the state of motion of the external device. If a

perturbation takes place, it can only be detected by vision (or other

sensory stimuli) and corrected based on some high order voluntary

process. Instead, in our approach some aspects of the response to

external influences are encoded in the desired field and can be

modulated by higher order voluntary activity.

Force Fields as Motor Control Policies to Control
Dynamical Systems

In this new framework, our BMI does not translate a motor

intention into a particular movement, but rather into a specified
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‘‘dynamical behavior’’. By this term we mean a prescription of

how the controlled system, for example an artificial limb or in our

simpler implementation a point mass, interacts with the environ-

ment. The mechanical interaction between a control system and

its environment is governed by the exchange of power, specified by

effort and motion variables. The controller/environment interac-

tion takes two canonical forms [41,42], i.e. a) the environment

dictates the state of motion (position and velocity) and the

controller responds with a force (i.e. the controller is an impedance

and the environment an admittance), or b) the controller sets a

state of motion and the environment responds with a force.

Considerations on the passive mechanics of the musculoskeletal

system suggest that the first case is a more plausible description of

biological control policies [43]. In fact, earlier experimental studies

on spinalized frogs [15,44,45] and rats [46] demonstrated that

activation of spinal cord interneurons results in a field of forces

that drive the limb along different trajectories, depending on the

state of motion in which the limb is placed by the interaction with

the external environment. This is a natural description of motor

control, if one considers that muscles are spring-like elements

establishing (non-invertible) mappings from a limb’s state of

motion to a resulting viscoelastic force. Since forces are inherently

additive, the combined actions of multiple muscles result in the

summation of their force fields. Therefore, the description of

motor control policies as force fields has the important property of

providing a compositional mechanism for the generation of a large

repertoire of behaviors from the sum of a relatively small number

of force-field ‘‘primitives’’ [20].

We have developed the computational analysis in parallel with

ongoing electrophysiological experiments [21]. For this reason, we

considered brain regions that are known a) to play functional role

in receiving sensory information and dispatching motor com-

mands and b) to have a pattern of interconnections. Furthermore,

cortical regions are significantly easier to access and manipulate

experimentally than the spinal cord or other subcortical regions.

We focus on the transformation that is carried out by the neural

circuits intervening between stimulation and recording arrays,

because we expect that the output of the recording array can also

be modulated by volitional influences. In a recent study [21] on

anesthetized rats we tested the first prototype of a bidirectional

BMI in which motor cortical activities were linearly mapped to

force vectors acting upon a simulated point mass and the position

of the point mass was encoded into an electrical stimulus delivered

to the somatosensory cortex. With this approach, we were able to

approximate a linear force field converging to a single equilibrium

location. However, a limiting constraint for that approach was the

requirement that the relation from position to force was invertible.

This was due to the fact that the approximation procedure first

defined the domain upon which the applicable forces were defined

and then the forces produced by each stimulation pattern were

mapped during the calibration to the locations at which these force

were to be applied. This approach drastically limited the

repertoire of feasible control policies, a limit that is now removed

by the current algorithm. Here, the position of the controlled

object maps to an electrical stimulus and the response to this

stimulus - which is also open to other inputs, such as volitional

activities - is decoded in the location at which the force is

calculated based on the predefined force field. Therefore, the

information flow from position to force never needs to be inverted.

The possibility to represent a broader repertoire of fields is of

essential importance since relevant motor behaviors and control

policies are not limited to force fields converging toward a single

equilibrium point. More generally, force fields also offer an

adequate description of the stretch reflex, first described by

Sherrington [47] and of spinal pattern generators. The latter

induce a cyclical motion of the limbs. Grillner and coworkers [16]

offered a compelling model of locomotion pattern in the lamprey,

and in both cases the rhythmic activity is sustained by a phase-shift

between the state of motion and the consequent forces.

In the current implementations we have only considered a fixed

force field, established by coordinating the calibration of the

sensory and motor interfaces. This approach however is open to

future developments in which, for example, multiple force fields,

with different structures, are implemented in parallel. In this case,

the voluntary activity could effectively generate a larger repertoire

of behaviors by establishing weighted combinations of these force

fields.

Limitations of the Simulated Neural Systems used to Test
the ndBMI

The performance and robustness of our new ndBMI was tested

and validated with a simple descriptive model of stimulation and

neural responses in the sensory-motor loop inspired by the cortical

sensory motor loop in the rat whisker system. The model captures,

in an idealized and simplified way, two observed features of

cortical responses: Poisson variability of spike train responses and

topographic organization between stimulated and evoked activity.

Poisson processes are simplified model of neural responses,

because they neglect any form of auto- and cross-correlation

among the spike trains. Yet this model is a relatively realistic one,

in that it correctly represents the approximate order of magnitude

of the trial-to-trial variance of cortical responses, which (like in the

Poisson model) is relatively close to its mean. An important

question for practical applications of this technique is whether the

simplified nature of the Poisson model may limit the inferences

that we can make about the performance of the algorithm on real

data. The first consideration is that the algorithms seem to be

remarkably robust; we found they were robust even to very large

degradations of the information carried by neural recordings. In

many respects, the assumptions of the Poisson model are

conservative with respect to the information content of neural

activity, as cortical responses often report sub-Poisson variance

[32,48], including in the animal models that we use for developing

bidirectional BMIs [21]. Moreover, autocorrelations and cross-

correlations of neural activity found in real data usually have small

effects on the information content, compared to what would be

expected if statistics followed the Poisson model [49–52].

Whatever the exact response statistics of the neurons under

consideration, it is important to bear in mind that the ndBMI

algorithms presented here do not rely at all on the assumption that

the data are distributed according to a Poisson distribution. They

can operate with correlated data and can capture information or

metric structure encoded by correlated firing, if present.

An organization of motor neural responses that preserves the

geometry of sensory stimulation patterns is also supported by data

in the sensory motor whisker system [29]. While the precision of

topography implemented in our simulations may be difficult to

obtain in experimental situations, we demonstrated a strong

robustness of the algorithm to loss of specificity of responses, and

the algorithms do not assume or rely on topography of responses at

all.

Therefore, although of course a full validation of the capabilities

and potentials of the algorithms presented here will require their

future testing on real data, our expectation is that the simulated

study presented has a sufficient realism to investigate and validate

the computational properties of our algorithms.
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Considerations on Volitional Control
In the prevalent BMI system models [4,6,37,38] neural activities

are decoded by some algorithm, which dictates the instantaneous

position of a controlled device, such as a robotic arm or a cursor

on a computer monitor. Here, we suggest that the brain activities,

instead of specifying a position, contribute to determine the force

vector that is applied to the device. We stress the word

‘‘contribute’’ instead of ‘‘dictate’’ because the net force generated

by the interface results from the combination of the volitional

command with the state-dependent component from the sensory

interface. In this study we have limited the analysis to demonstrate

through simulation that it is possible - in principle - for the

volitional activity to shape the force field so as to drive the device

to a desired target. In a physical implementation, this possibility

rests upon the ability of the brain to address by volitional activity

the neural population that is being recorded and to learn how to

shape the field according to the behavioral goal. This is of course a

major open challenge, whose possibility of success is supported by

the demonstrated ability of the brain to shape by volition the

activities of specific target neurons [53,54].

Our approach is based upon generating a field by closing the

loop between recording and stimulation. With this, we do not deny

the validity of having control system dynamics external to the

brain. On the contrary, while here we consider rather primitive

forms of external dynamics (a point mass in viscous fluid) more

advanced applications can be considered, including some external

controller. The issue of using neural or artificial controllers is

similar to the debate on whether using M1 activities to control the

dynamics of a robotic arm, instant by instant, or decode higher

level commands from the posterior parietal cortex and have a

robot implementing the desired goals. We feel that at this time it is

important to explore all these alternatives. The rationale for our

approach over one based on an external device is that we want to

consider the possibility for the brain to access within its volitional

centers, the same sensory information that, through the dBMI,

causes the activation of the recorded neurons.

The bidirectional interface proposed here can generate patterns

of automatic sensory-motor responses in a way analogous to spinal

[55] and supraspinal [56] reflex mechanisms. With this approach,

we are implicitly assuming that the alert brain would be able to

modulate the output of the interface, thus adding a volitional

decision-making component to the picture. This assumption does

not rest on blind faith, but on a repertoire of examples in which

the brain learned to focally control the output of individual

neurons and neuronal populations for the operation of external

device [3,4,37]. In these previous examples, brain activities were

directly decoded into some state variable, like the desired position

of a manipulator or of a cursor. Here, instead, we propose that the

volitional neural activities modulate the field established by the

bidirectional interface. We demonstrated in one example that this

may lead to effective control over the desired position of the target.

However, this volitional signal combined with the field encoded by

the interface does not only establish a target position but effectively

a whole family of trajectories. Furthermore, the field properties

offer a mechanism to ensure stability of the resulting motions,

which can reach the desired target in spite of external perturbing

forces acting on the controlled device. The repertoire of possible

behaviors is not limited to movements directed toward an

equilibrium position. We have shown that the inherently additive

nature of force fields allows the programming of combinations of

multiple goals, such as reaching a target while avoiding an

obstacle. Furthermore, the structure of the force field can be

shaped to drive the controlled device in cyclical and other

behaviors. Ultimately, what we are proposing in this example is to

move one step forward toward the implementation of bio-mimetic

control mechanisms, by reproducing a structure of control

processes that is analogous to the interaction between brain and

spinal cord in vertebrates. This interaction is based on the seamless

integration of voluntary commands with a peripheral neurome-

chanical structure. As a result our movements are endowed with

adaptive properties that emerge from the coupling of neural

information processing with the physical properties of the

environment and of the musculoskeletal apparatus.

In some ways, our approach is an attempt at effectively

emulating the spinal cord in the portion of the brain that connects

the recording and stimulating electrodes. While we have already

obtained some experimental validation of this approach [21], we

do not suggest that we are ready for clinical application. At this

time, we are merely proposing to coordinate the input and output

interfaces based on a shared goal, the generation of a force field to

be modulated by central activities. Would such a system eventually

disrupt the normal operation of the brain? Indeed, it would not be

wise to take over brain regions that are normally functional. The

brain machine interface has been proposed as a paradigm for

severely paralyzed stroke and spinal cord injury survivors. Looking

at a future application of our system, as of any other BMI, it will be

critically important to avoid interference with functional structures

of the sensory-motor apparatus.
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