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Machine learning-based prediction of COVID-19 diagnosis
based on symptoms
Yazeed Zoabi 1, Shira Deri-Rozov1 and Noam Shomron 1✉

Effective screening of SARS-CoV-2 enables quick and efficient diagnosis of COVID-19 and can mitigate the burden on healthcare
systems. Prediction models that combine several features to estimate the risk of infection have been developed. These aim to assist
medical staff worldwide in triaging patients, especially in the context of limited healthcare resources. We established a machine-
learning approach that trained on records from 51,831 tested individuals (of whom 4769 were confirmed to have COVID-19). The
test set contained data from the subsequent week (47,401 tested individuals of whom 3624 were confirmed to have COVID-19). Our
model predicted COVID-19 test results with high accuracy using only eight binary features: sex, age ≥60 years, known contact with
an infected individual, and the appearance of five initial clinical symptoms. Overall, based on the nationwide data publicly reported
by the Israeli Ministry of Health, we developed a model that detects COVID-19 cases by simple features accessed by asking basic
questions. Our framework can be used, among other considerations, to prioritize testing for COVID-19 when testing resources are
limited.
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INTRODUCTION
The novel coronavirus disease 2019 (COVID-19) pandemic caused
by the SARS-CoV-2 continues to pose a critical and urgent threat
to global health. The outbreak in early December 2019 in the
Hubei province of the People’s Republic of China has spread
worldwide. As of October 2020, the overall number of patients
confirmed to have the disease has exceeded 39,500,000, in >180
countries, though the number of people infected is probably
much higher. More than 1,110,000 people have died from
COVID-191.
This pandemic continues to challenge medical systems world-

wide in many aspects, including sharp increases in demands for
hospital beds and critical shortages in medical equipment, while
many healthcare workers have themselves been infected. Thus,
the capacity for immediate clinical decisions and effective usage
of healthcare resources is crucial. The most validated diagnosis
test for COVID-19, using reverse transcriptase polymerase chain
reaction (RT-PCR), has long been in shortage in developing
countries. This contributes to increased infection rates and delays
critical preventive measures.
Effective screening enables quick and efficient diagnosis of

COVID-19 and can mitigate the burden on healthcare systems.
Prediction models that combine several features to estimate the
risk of infection have been developed, in the hope of assisting
medical staff worldwide in triaging patients, especially in the
context of limited healthcare resources. These models use features
such as computer tomography (CT) scans2–6, clinical symptoms7,
laboratory tests8,9, and an integration of these features10.
However, most previous models were based on data from
hospitalized patients, thus are not effective in screening for
SARS-CoV-2 in the general population.
The Israeli Ministry of Health publicly released data of all

individuals who were tested for SARS-CoV-2 via RT-PCR assay of a
nasopharyngeal swab11. During the first months of the COVID-19
pandemic in Israel, all diagnostic laboratory tests for COVID-19
were performed according to criteria determined by the Israeli

Ministry of Health. While subject to change, the criteria
implemented during the study period included the presence
and severity of clinical symptoms, possible exposure to individuals
confirmed to have COVID-19, certain geographical areas, and the
risk of complications if infected12. Except for a small minority who
were tested under surveys among healthcare workers, all the
individuals tested had indications for testing13. Thus, there was no
apparent referral bias regarding the vast majority of the subjects
in the dataset used in this study; this contrasts with previous
studies, for which such bias was a drawback14. In addition, all
negative and positive COVID-19 cases this dataset were confirmed
via RT-PCR assay11.
In this paper, we propose a machine-learning model that

predicts a positive SARS-CoV-2 infection in a RT-PCR test by asking
eight basic questions. The model was trained on data of all
individuals in Israel tested for SARS-CoV-2 during the first months
of the COVID-19 pandemic. Thus, our model can be implemented
globally for effective screening and prioritization of testing for the
virus in the general population.

RESULTS
Baseline model
For the prospective test set, the model predicted with 0.90
auROC (area under the receiver operating characteristic curve)
with 95% CI: 0.892–0.905 (Fig. 1a). Using predictions from the
test set, the possible working points are: 87.30% sensitivity and
71.98% specificity, or 85.76% sensitivity and 79.18% specificity.
Figure 1b presents the PPV (positive predictive value) of a
COVID-19 diagnosis against sensitivity, with auPRC (area under
the precision-recall curve) of 0.66 with 95% CI: 0.647–0.678.
The metrics from all ROC curves appearing in this study
were calculated and are found in a supplementary excel file
(Supplementary Data 1).
Ranking of the most important features of the model are

summarized in Fig. 2. Presenting with fever and cough were key to
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predicting contraction of the disease. As expected, close contact
with an individual confirmed to have COVID-19 was also an
important feature, thus corroborating the disease’s high transmis-
sibility15 and highlighting the importance of social distancing. In
addition, male sex was revealed as a predictor of a positive result
by the model, concurring with the observed sex bias16,17.

Training using unbiased features
The data that were reported by the Israeli Ministry of Health has
limitations and biases. For instance, symptom reporting was more
comprehensive among those who tested positive for COVID-19,
and validated with a directed epidemiological effort13. Thus,
mislabeling of symptoms among those who tested negative for
COVID-19 is expected. This is reflected in the proportion of
persons who were COVID-19 positive from the total number of
individuals who were positive for each symptom. Accordingly, we
identified features with biased reporting (headache 96.2%, sore
throat 92.3% and shortness of breath 92.4%) and symptoms with
balanced reporting (cough 27.4% and fever 45.9%). Mislabeling of
symptoms may also arise from an underestimation and under-
reporting of symptoms among persons who tested negative.

If we train and test our model while filtering out symptoms of
high bias in advance, we obtain an auROC of 0.862, with a slight
change in the SHAP (SHapley Additive exPlanations) summary plot
(Fig. 3).

DISCUSSION
The unique pathogenesis mechanisms of SARS-Cov-2, and the
related spectrum of symptoms are the subject of many ongoing
studies. The model we built provides initial COVID-19 test
screening based on simple clinical signs and symptoms. Improv-
ing clinical priorities may lower the burden currently faced by
health systems18, by facilitating optimized management of
healthcare resources during future waves of the SARS-Cov-2
pandemic. This is especially important in developing countries
with limited resources.
This research is not without shortcomings. We relied on the

data reported by the Israeli Ministry of Health, which has
limitations, biases and missing information regarding some of
the features. For example, for patients labeled as having had
contact with a person confirmed to have COVID-19, additional
information such as the duration and location (indoors/outdoors)
of the contact was not available. Some symptoms (such as lack of
smell and taste) were identified as being very predictive of a
COVID-19 infection by previous studies19, but were not recorded
by the Israeli Ministry of Health. We showed that training and
testing a model while filtering out symptoms of high bias in
advance still achieved very high accuracy. We also note that all the
symptoms were self-reported, and a negative value for a symptom
might mean that the symptom was not reported. It is therefore
important to assess the model’s performance in the circumstance
that more values are unreported or missing rather than with
negative values. To simulate a less biased condition, in our
prospective test set, we randomly selected negative reports of all
five symptoms at a time, and removed the negative values. When
applied to these simulated test sets, the model still showed
promising results (Fig. 4), thus reinforcing our confidence in the
model.
While differences in reporting symptoms is a possible limitation

of our model, all the persons tested (except for a small minority
who were tested under surveys of healthcare workers) had
indications for testing13. This implies that there was no referral
bias for the vast majority of the subjects in this dataset. The main
symptoms in the Israeli Ministry of Health guidelines were cough
and fever, and we believe that these symptoms are hard to miss
even in those who were negative to SARS-Cov-2. Moreover, we
assume that the relatively large sample size helped overcome
biases related to the COVID-19-negative group.
We highlight the need for more robust data to complement our

framework, while also acknowledging that self-reporting of
symptoms is always subject to bias. As the COVID-19 pandemic
progresses, ongoing recording and sharing of robust data
between public organizations and the scientific community are
crucial. In parallel to increasing understanding of the contribution
of various symptoms to diagnosing the disease, additional
symptoms might be integrated into future models.
In conclusion, based on nationwide data reported by the Israeli

Ministry of Health, we developed a model for predicting COVID-19
diagnosis by asking eight basic questions. Our framework can be
used, among other considerations, to prioritize testing for COVID-19
when testing resources are limited. In addition, the methodology
presented in this study may benefit the health system response to
future epidemic waves of this disease and of other respiratory
viruses in general.

Fig. 1 Model performance. a ROC curves of the predictive model
on the prospective test set. The light band around the curve
represents pointwise 95% confidence intervals derived by boot-
strapping. b A plot of the precision (positive predictive value, PPV)
against the recall (sensitivity) of the predictor for different thresh-
olds. The light band around the curve represents pointwise 95%
confidence intervals derived by bootstrapping.
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Fig. 3 Performance using only balanced features. a ROC curve and b SHAP beeswarm plot for the prospective test set through training,
using only balanced features.

Fig. 2 Important features. SHapley Additive exPlanations (SHAP) beeswarm plot for predicting COVID-19 diagnosis, showing SHAP values for
the most important features of the model. Features in the summary plots (y-axis) are organized by their mean absolute SHAP values. Each
point corresponds to an individual person in the study. The position of each point on the x-axis shows the impact that feature has on the
classifier’s prediction for a given individual. Values of those features (i.e., fever) are represented by their color.
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METHODS
Setting and study data
The Israeli Ministry of Health publicly released data of individuals who were
tested for SARS-CoV-2 via RT-PCR assay of a nasopharyngeal swab11. The
dataset contains initial records, on a daily basis, of all the residents who
were tested for COVID-19 nationwide. In addition to the test date and
result, various information is available, including clinical symptoms, sex
and a binary indication as to whether the tested individual is aged 60 years
or above. Based on these data, we developed a model that predicts COVID-
19 test results using eight binary features: sex, age 60 years or above,
known contact with an infected individual, and five initial clinical
symptoms.
The training-validation set consisted of records from 51,831 tested

individuals (of whom 4769 were confirmed to have COVID-19), from the
period March 22th, 2020 through March 31st, 2020. The test set contained
data from the subsequent week, April 1st through April 7th (47,401 tested
individuals, of whom 3624 were confirmed to have COVID-19). The
training-validation set was further divided to training and validation sets at
a ratio of 4:1 (Table 1).
The following list describes each of the dataset’s features used by the

model:

A. Basic information:

1. Sex (male/female).
2. Age ≥60 years (true/false)

B. Symptoms:

3. Cough (true/false).
4. Fever (true/false).
5. Sore throat (true/false).
6. Shortness of breath (true/false).
7. Headache (true/false).

C. Other information:

8. Known contact with an individual confirmed to have COVID-19
(true/false).

Development of the model
Predictions were generated using a gradient-boosting machine model
built with decision-tree base-learners20. Gradient boosting is widely
considered state of the art in predicting tabular data21 and is used by
many successful algorithms in the field of machine learning22.

As suggested by previous studies23, missing values were inherently
handled by the gradient-boosting predictor24. We used the gradient-
boosting predictor trained with the LightGBM25 Python package. The
validation set was used for early stopping26, with auROC as the
performance measure.
To identify the principal features driving model prediction, SHAP

values27 were calculated. These values are suited for complex models
such as artificial neural networks and gradient-boosting machines28.
Originating in game theory, SHAP values partition the prediction result of
every sample into the contribution of each constituent feature value. This
is done by estimating differences between models with subsets of the
feature space. By averaging across samples, SHAP values estimate the
contribution of each feature to overall model predictions.

Evaluation of the model
The model was scored on the test set using the auROC. In addition, plots of
the PPV against the sensitivity (precision–recall curve) were drawn across
different thresholds. Metrics were calculated for all the thresholds from all
the ROC curves, including sensitivity, specificity, PPV and negative
predictive value, false-positive rate, false-negative rate, false discovery
rate and overall accuracy. Confidence intervals (CI) for the various
performance measures were derived through resampling, using the
bootstrap percentile method29 with 1000 repetitions.

Ethics declarations
The Tel-Aviv University review board (IRB) determined that the Israeli
Ministry of Health public dataset used in this study does not require IRB
approval for analysis. Therefore, the IRB determined that this study is
exempted from an approval.

Table 1. Characteristics of the dataset and the features used by the
model in this study.

(#) Feature Total
n= 99,232

COVID-19
negative
n= 90,839

COVID-19
positive
n= 8393

n % n % n %

(1) Sex

Male 50,350 50.74 45,545 50.1 4805 57.2

Female 48,882 49.26 45,294 49.8 3588 42.7

(2) Age 60+

True 15,279 15.4 13,619 14.9 1660 19.7

False 83,953 84.6 77,220 85 6733 80.2

(3) Cough

True 14,768 14.88 10,715 11.8 4053 48.2

False 84,223 84.87 79,909 87.9 4314 51.4

(4) Fever

True 8122 8.18 4387 4.83 3735 44.5

False 90,868 91.5 86,237 94.9 4631 55.1

(5) Sore throat

True 1273 1.28 96 0.11 1177 14

False 95,062 95.8 88,059 96.9 7003 83.4

(6) Shortness of breath

True 930 0.94 71 0.08 859 10.2

False 95,405 96.14 88,084 96.9 7321 87.2

(7) Headache

True 1799 1.81 68 0.07 1731 20.6

False 94,536 95.27 88,087 96.9 6449 76.8

(8) Known contact with an individual confirmed to have COVID-19

True 5507 5.55 1455 1.6 4052 48.2

False 93,725 94.45 89,384 98.4 4341 51.8

Fig. 4 Performance on stimulated test sets. ROC curves showing
the performance of the model on stimulated test sets, in which we
randomly selected negative reports for all five symptoms at a time
and substituted them with blank values. The ROC curve for
the original test set is shown in blue. The orange and green curves
are ROC curves for randomly substituting 10% and 20%, respec-
tively, of the negative values for all five symptoms.
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Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
All the data used in this study were retrieved from the Israeli Ministry of Health
website11. The dataset was downloaded, translated into English, and can be accessed
at: https://github.com/nshomron/covidpred.

CODE AVAILABILITY
The model hyperparameters and the analytic code of the model required to
reproduce the predictions and the results are available at: https://github.com/
nshomron/covidpred.
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