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Abstract: The existing sandwich structure of the aircraft cabin demonstrates a good sound insulation
effect in medium and high frequency bands, but poor in the low frequency band. Therefore, we pro-
pose an infinite new lightweight broadband noise control structure and study its sound transmission
loss (STL). The structure is an orthogonally rib-stiffened honeycomb double sandwich structure with
periodic arrays of shunted piezoelectric patches, and demonstrates lighter mass and better strength
than the existing sandwich structure. The structure is equivalent according to Hoff’s equal stiffness
theory and the effective medium (EM) method. Using the virtual work principle for a periodic
element, two infinite sets of coupled equations are obtained. They are solved by truncating them in
a finite range until the solution converges. The correctness and validity of the model are verified
by using simulation results and theoretical predictions. Eventually, a further study is performed on
the factors influencing the STL. All the results demonstrate that the STL in low-frequency can be
improved by the structure, and the sound insulation bandwidth is significantly broadened by adding
shunted piezoelectric patches. The structure can provide a new idea for the design of broadband
sound insulation.

Keywords: broadband sound insulation; honeycomb; sandwich composites; shunted piezoelectric
patches

1. Introduction

The classical sandwich structure is composed of two parallel plates and reinforced by
a group of spatially periodic rib-stiffeners, which are widely used in the fields of spaceflight
and aviation [1–6]. At present, many scholars have studied the acoustic characteristics of
classical sandwich structures. Mead [7] found that the harmonic flexural wave propagating
freely in an infinite periodically supported beam should be regarded as a wave group with
components of different phase velocity, direction, and wavelength. Mace [6] derived a
response expression of an infinite fluid loaded stiffened plate to a general excitation. Xin
and Lu [8] quantified the influence of different factors, such as different propagation paths,
the spacing of stiffeners, and incident angles, on the transmission of a wave across an
infinite fluid-loaded sandwich structure.

Honeycomb sandwich plates have the advantages of light weight, good strength,
and high stiffness. At present, many scholars have carried out extensive research on
the dynamic and static analysis of honeycomb sandwich structures. Kelsey et al. [9]
deduced the theoretical expressions of the shear modulus of honeycomb sandwich cores.
Kobayashi et al. [10] studied the elastoplastic bending behavior of honeycomb sandwich
panels. Kunimo et al. [11,12] studied the buffer characteristics of bare honeycomb cores
under lateral crushing loads using experimental and theoretical methods respectively. Due
to the complexity of such structures, it is necessary to simplify the structure to a certain
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extent. There are three common equivalent methods which are the equivalent-plate theory,
the honeycomb-plate theory, and the sandwich theory. However, there are few structures
that combine the classical sandwich structure with the honeycomb sandwich plate.

Due to the advantages of honeycomb sandwich plates, this paper attempts to com-
bine the classical sandwich structure with it to explore whether there is a better sound
absorption effect.

Although the existing sandwich structure has a good sound insulation effect in middle
and high frequency bands, the STL in low frequency is still not improved. To improve the
sound insulation effect of low frequency, it is necessary to increase the thickness of cavity or
the mass of plate, which will increase the mass of aircraft, which is not feasible. Forward [13]
first proposed the piezoelectric shunt technique, and Hagood and Von Flotow [14] found
that a piezoelectric patch connected with a resistive-inductive circuit can reduce vibration.
Reducing structural noise transmission and radiation by utilizing the single piezoelectric
shunt is possible, which is addressed by some work undertaken more than ten years
ago [15–18]. In recent years, periodic piezoelectric shunts have attracted extensive attention
in the field of sound control. Zhang et al. [19] developed EM method for the calculation of
STL and found that the metamaterial plate with shunted piezoelectric patches has much
higher STL than the unshunted case in the coincidence region and mass-law region of
sound transmission. Casadei et al. [20] studied the application of periodic arrays of shunted
piezoelectric patches in controlling the radiated noise of a finite plate in a closed cavity
and found that the associated noise and vibration are significantly attenuated. Therefore,
in this work, the periodic arrays of shunted piezoelectric patches are introduced into the
orthogonally rib-stiffened sandwich structure to improve the low-frequency STL. Based
on the use of a single shunted piezoelectric patch for structural stabilization and wave
cancellation at a single frequency, extensions have been developed to design more complex
shunting circuits to extend the effectiveness over broader frequency bands, using, e.g.,
multimodal shunts [21–25]. Bricault [26] found that when several modes of a square
aluminum plate are damped simultaneously using a piezoelectric patch shunted with a
negative capacitor circuit, the low-frequency acoustic radiation of the plate is reduced.

With excellent mechanical properties, composite materials have been applied in the
field of acoustics by many scholars. For example, Anish et al. [27] used improved higher
order shear deformation theory (IHSDT) to investigate the influence of additional mass
and openings on the free vibration analysis of laminated composite sandwich skew plates.
Talebitoti and Zarastvand [28] analytically modeled the aerospace composite structure and
predicted the acoustic transmission of the infinitely long, doubly curved shell. In addition,
they found that current structures with curvature showed better acoustic and mechanical
properties, especially at lower frequencies.

On the basis of the foregoing, we develop a new lightweight broadband noise control
composite structure which is an orthogonally rib-stiffened honeycomb double sandwich
structure with periodic arrays of shunted piezoelectric patches. The validation of the
theoretical model is demonstrated by comparing the theoretical results with the results
of the finite element simulation software (COMSOL), and the validity of the theoretical
model is verified by comparing the sound transmission loss of the structure with and
without the shunted piezoelectric patches. Based on the existing classical orthogonally rib-
stiffened sandwich structure with good sound insulation in the middle and high frequency
bands, the characteristics of light weight and excellent mechanical properties of honeycomb
sandwich panels are combined. The periodic arrays of shunted piezoelectric patches
are also introduced to improve the sound insulation effect at low frequency. This study
is expected to improve the design of the traditional sandwich structure and its sound
insulation effect.



Materials 2022, 15, 490 3 of 15

2. Theoretical Modelling
2.1. Description of the Research Structure

Figure 1 presents a schematic diagram of the research model, which is an infinite
two-dimensional sandwich structure. Figure 1a is the side view of a periodic element of
the research structure. It can be seen from the figure that the structure consists of two
parallel honeycomb sandwich structures pasted with periodic arrays of shunted piezoelec-
tric patches on the inner side, and the two parallel honeycomb sandwich structures are
reinforced by an orthogonally rib-stiffened core which has two periodic uniform spacings
of lx and ly in the x- and y-directions, respectively. The geometric parameters of the research
structure are the wall thickness of the honeycomb core cell o, side length of the honeycomb
core cell a0, thickness of facing skin t0 (assuming that both skins are of same each other),
height of honeycomb core h0, thickness of x- and y-wise stiffeners tx and ty, height of
orthogonal rib-stiffeners d, length and width of piezoelectric patches lp, and thickness of
piezoelectric patches hp.
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Figure 1. Schematic diagram of an orthogonally rib-stiffened honeycomb double sandwich structure
with periodic arrays of shunted piezoelectric patches: (a) Side view of a periodic element of the
research structure; (b) Honeycomb structure; (c) Orthogonal rib-stiffeners.

The two parallel honeycomb sandwich structures are placed in an infinite air space. A
right-handed Cartesian coordinate system (x, y, z) is established on the upper surface of the
top honeycomb sandwich plate. The positive directions of the x-axis and y-axis are along
the two directions of the orthogonal stiffeners respectively, and the positive direction of the
z-axis is vertical downward.

A plane sound wave Pinc varying harmonically in time is incident upon the top
honeycomb sandwich plate of the structure with azimuth angle θ and elevation angle
ϕ, inducing a bending wave that propagates along the plate. The bending wave can
be transmitted from the top plate to the bottom plate through two paths: the airborne
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path through the middle sound field and the structure-borne through the orthogonal
stiffeners. In addition, the tensile, torsional, and bending motions of the stiffeners and their
corresponding inertial effects are also considered in the proposed model.

2.2. Equivalent Characteristics of the Structure

Honeycomb sandwich structures have been widely used in the fields of spaceflight
and aviation because of their light weight and excellent sound insulation performance.
Due to the complexity of such structures, a certain degree of simplification and equivalence
are often required in the analysis. In this work, the honeycomb sandwich structures are
equivalent using Hoff theory. According to Hoff theory, the honeycomb sandwich plate is
equivalent to an isotropic shell with different thickness from the original sandwich plate,
which is shown in Figure 2. The formulas of equivalent mechanical parameters are as
follows [29,30]:

υeq = υ f (1)

Heq =
√

t2
0 + 3(h0 + t0)

2 (2)

Eeq =
2E f t0

Heq
(3)

ρceq =
2√
3

o
a0

ρc (4)

ρeq =
k(2t0ρ f + h0ρceq)

Heq
(5)

where Ef, υf, and ρf are the Young’s modulus, Poisson ratio, and density of the facing skin
of honeycomb sandwich structures, respectively. Eeq, υeq, ρeq, and Heq are the Young’s
modulus, Poisson ratio, density, and height of the equivalent plate, ρceq is density of the
honeycomb core after equivalence, ρc is the density of the material of honeycomb core, and
k is a modified parameter, which is 1.5.
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Figure 2. Schematic diagram of the equivalent transformation.

The research structure shown in Figure 1 has spatial periodicity, so only the periodic
elements shown in Figure 3 need to be studied. The upper and lower plates have the same
structure layouts, and the inner side of each plate contains a rows and a columns of periodic
shunted piezoelectric patch arrays which are composed of a2 pieces of piezoelectric patches.
The basic unit of the periodic shunted piezoelectric patch structure is shown in the red
box in Figure 3, and the top view of the basic unit is shown in Figure 4. The basic unit is
divided into two regions. The region pasted with shunted piezoelectric patch is denoted by
A, while the single layer region is denoted by B. The length and width of the substrate are
lb1 and lb2, respectively, and the side length of the square shunted piezoelectric patch is lp.

In order to analyze the sound insulation characteristics of the structure, the equivalent
physical parameters of the whole structure must be calculated by the EM method first. The
calculation process of equivalent parameters can be divided into the following steps.
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Figure 3. Detail view of a periodic element of the research structure (the top plate is transparent).
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First, the effective material parameters of a single piezoelectric patch with external
shunt circuit need to be determined. The piezoelectric patch can be treated as an isotropic
plate, and the Young’s modulus and Poisson ratio of it are Ep,i and υp,i respectively. Their
formulas are as follows [31]:

Ep,i =
hp,i(1+sZiCp,i)

hp,isE
11,i(1+sZiCp,i)−sZid2

31,i Ap,i

υp,i = −
sE

12,i(1+sZiCp,i)−sZid2
31,i Ap,ih

−1
p,i

sE
11,i(1+sZiCp,i)−sZid2

31,i Ap,ih
−1
p.i

(6)

where i represents the ith piezoelectric patch (i = 1, 2, . . . , a2), ω = 2πf is the angular
frequency and s = jω is the Laplace operator (j =

√
−1). Ap,i and hp,i denote the area

and thickness of the ith shunted piezoelectric patch respectively. d31,i and sE
11,i are the

ith piezoelectric constant and piezoelectric patch compliance coefficient respectively, Zi
is the impedance of the shunting circuit connected to the piezoelectric patch. The three
components of the corresponding parameter are denoted by subscripts 1, 2, and 3. The
direction of vector is along the three coordinate axes. The inherent capacitance of ith
piezoelectric patch under constant stress is denoted by Cp,i, which can be expressed as:

Cp,i =
Ap,iε

T
33,i

hp,i
(7)

where εT
33,i is the dielectric constant of the ith piezoelectric patch under constant stress.
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Second, the equivalent surface density and equivalent dynamic bending stiffness of
regions A and B of the unit cell shown in Figure 4 are given by:

σj(x, y) =
{

σA,j = ρeq,j Heq,j + ρp,jhp,j, (x, y) ∈ A
σB,j = ρeq,jHeq,j, (x, y) ∈ B

Dj(x, y) =


DA,j =

Eeq,j H3
eq,j

12(1−υ2
eq,j)

+
Ep,i

[
(Heq,j+2hp,i)

3−H3
eq,j

]
24(1−υ2

p,j)
, (x, y) ∈ A

DB,j =
Eeq,j H3

eq,j

12(1−υ2
eq,j)

, (x, y) ∈ B

(8)

where ρp,j is density of the shunted piezoelectric patch, while j = 1 and 2 represent the
upper and lower periodic plate.

Third, according to the EM method, the equivalent surface mass density and equivalent
dynamic bending stiffness of the periodic plate can be written as [19]:

σeq,j = ασA,j + (1− α)σB,j

Deq,j =
DA,jDB,j

(1−α)DA,j+αDB,j

(9)

where α represents the ratio between the total area of region A and the total area of the
basic unit, given by:

α =
lp

2

lb1lb2
(10)

2.3. Analysis of Sound Transmission and Panel Vibration

Under the excitation of a harmonic plane sound wave, the responses of the upper and
lower plates of the sandwich structure can be expressed by a spatial harmonic expansion,
as follows [5,8,31,32]:

wj(x, y, t) =
+∞

∑
m=−∞

+∞

∑
n=−∞

αj,mne−i[(kx+2mπ/lx)x+(ky+2nπ/ly)y−ωt] (11)

where subscripts j = 1 and 2 denote the upper and lower periodic plates. The (m, n)th
harmonic wave components in the two plates have the same wavenumbers
(kx + 2mπ/lx, ky + 2nπ/ly) but different amplitudes:

αj,mn =
1

lxly

∫ lx

0

∫ ly

0
wj(x, y, t)ei[(kx+2mπ/lx)x+(ky+2nπ/ly)y−ωt]dxdy (12)

The wavenumbers kx + 2mπ/lx > 0, ky + 2nπ/ly > 0 stand for positive-going harmonic
waves in the x- and y-direction and vice versa. The (m, n)th space harmonic wavenumber
in the z-direction is denoted by kz,mn, which is given by [33,34]:

kz,mn =

√(
ω

c0

)2
−
(

kx +
2mπ

lx

)2
−
(

ky +
2nπ

ly

)2
(13)

The pressure waves become evanescent waves when (ω/c0)2 < (kx + 2mπ/lx)2 + (ky + 2nπ/ly)2,
and then the expression is replaced by:

kz,mn = i

√(
kx +

2mπ

lx

)2
+

(
ky +

2nπ

ly

)2
−
(

ω

c0

)2
(14)

2.4. Motion Analysis of Periodic Panels and Stiffeners

There is a strong constraint imposed by the orthogonal rib-stiffeners on the motions of
the plates. Thus, to accurately simulate the acoustic behavior and vibration of the research
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structure, the influence of torsional moments, bending moments, and tensional forces
imposed on the connected plates should be taken into account. To represent these forces
and moments, as can be seen from Figure 5, (Q+

x , M+
x , M+

Tx) and (Q+
y , M+

y , M+
Ty) are applied

to denote the impacts at the interface between the upper plate and x/y-wise stiffeners.
Moreover, (Q−x , M−x , M−Tx) and (Q−y , M−y , M−Ty) denote the loads at the interfaces between
the lower plate and x/y-wise stiffeners, which is similar to the interface between the upper
plate and is not shown for brevity. For detailed formulas of these forces and moments, the
reader can refer to the literature [8,31,35].
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2.5. Application of Virtual Work Principle in Solving the Formulations

Based on one periodic element, coefficients α1,mn and α2,mn can be determined by
applying the virtual work principle [5,8,33,36]. According to the virtual work principle, the
expressions of virtual placements of the upper and lower plates are given by:

δwj = δαj,mne−i[(kx+2mπ/lx)x+(ky+2nπ/ly)y] (j = 1, 2) (15)

where δ is the Dirac delta function.
In one period of the structure, the equations governing the vibration responses of the

periodic plates are:

Deq,1∇4w1 + σeq,1
∂2w1
∂t2 − P1(x, y, 0) + P2(x, y, h1) = 0

Deq,2∇4w2 + σeq,2
∂2w2
∂t2 − P2(x, y, h1 + d) + P3(x, y, h1 + d + h2) = 0

(16)

where P1(x, y, 0), P2(x, y, h1), P2(x, y, h1 + d), and P3(x, y, h1 + d + h2) are the sound pressure
in the top, middle, and bottom sound field, respectively. For detailed formulas of these
sound pressure, the reader can refer to the literature [5,8,31].

The virtual work principle requires that

δ ∏
pr

+δ ∏
xr

+δ ∏
yr

= 0, (r = 1, 2) (17)

where subscripts pr, xr, and yr represent the virtual works of the panel elements, the x-wise
rib-stiffeners, and the y-wise rib-stiffeners, respectively. For detailed formulas of these
virtual works, the reader can refer to the literature [8,31].
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It can be obtained by solving (17) that[
Deq,1(α

2
k + β2

l )
2 − σeq,1ω2 − ω2ρ0

ikz,kl
+

ω2ρ0 cos(kz,kld)
kz,kl sin(kz,kl d)

]
lxlyα1,kl −

ω2ρ0
kz,kl sin(kz,kl d)

lxlyα2,kl

+
+∞
∑

n=−∞

[
RQ1 − iα3

k RM1 − iβlαkβnRT1
]
lxα1,kn +

+∞
∑

n=−∞

[
−RQ2 + iα3

k RM2 + iβlαkβnRT2
]
lxα2,kn

+
+∞
∑

m=−∞

[
RQ3 − iβ3

l RM3 − iαkαmβl RT3
]
lyα1,ml +

+∞
∑

m=−∞

[
−RQ4 + iβ3

l RM4 + iαkαmβl RT4
]
lyα2,ml

=

{
2Ilxly when k = 0&l = 0
0 when k 6= 0 ‖ l 6= 0

(18)

[
Deq,2(α

2
k + β2

l )
2 − σeq,2ω2 − ω2ρ0

ikz,kl
+

ω2ρ0 cos(kz,kl d)
kz,kl sin(kz,kl d)

]
lxlyα2,kl −

ω2ρ0
kz,kl sin(kz,kl d)

lxlyα1,kl

+
+∞
∑

n=−∞

[
−RQ2 + iα3

k RM2 + iβlαkβnRT2
]
lxα1,kn +

+∞
∑

n=−∞

[
RQ1 − iα3

k RM1 − iβlαkβnRT1
]
lxα2,kn

+
+∞
∑

m=−∞

[
−RQ4 + iβ3

l RM4 + iαkαmβl RT4
]
lyα1,ml +

+∞
∑

m=−∞

[
RQ3 − iβ3

l RM3 − iαkαmβl RT3
]
lyα2,ml = 0

(19)

where RT1, RT2, RT3, and RT4 are torsional moment coefficients, RM1, RM2, RM3, and
RM4 are bending moment coefficients, and RQ1, RQ2, RQ3, and RQ4 are tensional force
coefficients. For a detailed derivation of these parameters, the reader can refer to the
literature [8,31]. The expressions of αm and βn are as follows:

αm = kx +
2mπ

lx
βn = ky +

2nπ
ly

(20)

Formulas (18) and (19) form an infinite set of coupled equations. In order to obtain the
solution, the equations need to be truncated, namely the sum-index (m, n) should be limited
in the finite ranges of m = −k̂ ∼ k̂ and n = −l̂ ∼ l̂. Thus, the infinite coupled equations
can be grouped into a finite order matrix form (i.e., 2KL, where K = 2k̂ + 1, L = 2l̂ + 1) as
shown below: [

T11 T12
T21 T22

]
2KL×2KL

{
α1,kl
α2,kl

}
2KL×1

=

{
Fkl
0

}
2KL×1

(21)

For the detailed derivation of (21), refer to the literature [8,33,35,36].

2.6. Sound Transmission Loss

The sound transmission coefficient can be expressed as follows:

τ(ϕ, θ) =
∑+∞

m=−∞ ∑+∞
n=−∞ |ξmn|2Re(kz,mn)

|I|2kz
(22)

which is dependent on the elevation angle ϕ and azimuth angle θ, where I denotes the
amplitude of incident sound pressure, Re(kz,mn) denotes the real part of kz,mn, and ξmn is a
relevant coefficient, which is given by:

ξmn = −ω2ρ0α2,mn

ikz,mn
eikz,mn(h1+h2+d) (23)

The sound transmission loss (STL) may be defined as the inverse of the power trans-
mission coefficient in decibels scale [37].

STL = 10 log10

(
1

τ(ϕ, θ)

)
(24)
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3. Parametric Investigation and Discussions
3.1. Basic Parameters and Design of External Circuit

For the structure shown in Figure 1, 16 pieces of piezoelectric patches (i.e., a = 4) are
pasted on the inner sides of each plate, and it is assumed that they are connected with
the identical shunting circuit shown in Figure 6, respectively. The circuit is an equivalent
negative capacitance shunting circuit, which is composed of an adjustable resistor (Ra), a
fixed resistor (Rf), an operational amplifier (OA), and a capacitor (C), where Rf consists of
the external shunt resistance and internal resistance of the PZT (piezoelectric transducer)
patch. The equivalent negative capacitance can be written as [31]

− Ceq = −
R f

Ra
C (25)
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Figure 6. Equivalent negative capacitance circuit.

Thus, the impedance of each shunting circuit is given by

Zi =
1

−Ceq · s
(26)

where s = jω is the Laplace operator (j =
√
−1). In the research structure, the type of

piezoelectric patch is PZT_5H, and aluminum is selected as the material of the stiffeners
and honeycomb sandwich structures. The model physical parameters of the PZT patch and
the honeycomb sandwich structure are listed in Table 1.

Table 1. Properties of one periodic element.

Parameter Value Parameter Value

o (mm) 1 tx & ty (mm) 1
a0 (mm) 40 lb1 (mm) lx/4
t0 (mm) 1 lb2 (mm) ly/4
h0 (mm) 0.1 ρp (kg/m3) 7500
lx (mm) 4

√
3a0 + 4o lp (mm) 50

ly (mm) 6a0 + 2
√

3o hp (mm) 1
d (mm) 80 sE·11/(m2/N) 16.5 × 10−12

sE·12/(m2/N) −4.78 × 10−12 Ex & Ey (Gpa) 70
d31/(C/N) −2.74 × 10−10 ϕ (◦) 0
εT

33/(F/m) 3.01 × 10−8 θ (◦) 0
−Ceq (F) −0.3Cp Ef (Gpa) 70

Gx & Gy (Gpa) 27
ρx & ρy (kg/m3) 2700

3.2. Conditions for Model Application

The prerequisite for the establishment of the EM method is to meet the subwavelength
hypothesis [19,31]. It is known that the unit cell shown in Figure 4 meets the subwavelength
hypothesis through verification.
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In order to make the solution of infinite governing Equation (21) converge, sufficient
numbers of m and n need to be used. The description of the admissible criterion is when
the solution converges at a given frequency. It is convergent for all frequencies below that
frequency. Therefore, it is only necessary to determine the number of the truncations at the
highest frequency (i.e., 2000 Hz). Thus, the convergence check is carried out by calculating
STL at 2000 Hz, and then adding more terms to further calculate the corresponding STL
until the difference between two consecutive calculated values falls within the preset error
range (0.01 dB in this work), the solution can be considered convergent. Furthermore, at all
other frequencies below 2000 Hz, the corresponding number of terms is also suitable to
calculate STL.

The equations can be simplified to a finite size with m = −k̂ ∼ k̂ and n = −l̂ ∼ l̂
(k̂ = l̂ assumed) because of the symmetry of the research structure in x- and y-directions.
As can be seen from Figure 7, with the increase of the number of single modes, the solution
of STL at 2000 Hz gradually tends to converge. Therefore, when k̂ ≥ 20, at least 1681 terms
are required to make the solution converge at 2000 Hz.
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3.3. Model Validation

To demonstrate the validation of model, the theoretical values are compared with the
COMSOL Multiphysics 5.4 finite element simulation (FE) results. The acoustic-structure
coupling FE model of one periodic element in the model without PZT patches is established,
as shown in Figure 8. The research structure shown in blue is arranged in the air flow
field and the air cavities divided by the orthogonal rib-stiffeners in the middle sound
field contain the same medium as the external sound fields, in which all the interfaces
are simulated by the acoustic-structure boundaries. The perfectly matched layer (PML)
is used to approximate the two semi-infinite sound fields at the upper and lower of the
model respectively. In the x- and y-directions of the model, Floquet periodicity boundaries
are applied to approach the infinite sandwich structure. The structure is divided using
swept meshes.
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Figure 8. FE model of one periodic element without piezoelectric patches: (a) transparent model and
(b) mesh model.

Figure 9 shows that there is a similar trend between the curve of theoretical calculation
and the curve of finite element simulation. Although there are visible discrepancies between
the simulation curve and the theoretical curve in the high frequency part, the corresponding
valley frequencies (such as those around 235.2 Hz, 645.4 Hz, and 825.3 Hz) and peak
frequencies (such as those around 215.1 Hz, 425.3 Hz, and 715.4 Hz) can match well. With
the increase of frequency, the calculation accuracy of the EM model decreases, resulting
in visible discrepancies at relatively high frequencies. Overall, the discrepancies between
the two curves is within an acceptable range. Therefore, the correctness of the theoretical
model can be demonstrated.
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3.4. Validity of the Research Structure

In order to verify the validity of the research structure, the orthogonal stiffened
sandwich structure with the same material parameters and geometric characteristics but
without piezoelectric patches is used as the comparison model. The parameters are shown
in Table 1.

A comparison of STL curves of the two models at 10–2000 Hz is shown in Figure 10.
It can be seen from the figure that the sound insulation of the research structure in the
whole frequency band is better than that of the comparison model without piezoelectric
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patches. In addition, the first valley frequency is moved from 236.5 Hz to 157.1 Hz, which
makes the sound insulation effect of the research structure in the low frequency range
significantly better than that of the structure without piezoelectric patches. This is because
piezoelectric patches transform the energy of noise and vibration into electrical energy,
which is then consumed by shunt circuits, thus improving the STL [19]. Therefore, by
introducing piezoelectric patches, the STL in low-frequency is improved and the sound
insulation bandwidth of the structure is broadened.
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4. Influence Law of Parameters

In the previous section, the correctness of the research model is verified. On this basis,
the factors affecting STL are further studied.

4.1. Influence of Incident Angles

According to the research structure, the effect of incident azimuth is negligible here.
Therefore, when the azimuth angle is constant at 0◦, the sound insulation curves with
incident angles of 0◦, 30◦, and 60◦ are studied in the range of 10–2000 Hz, and the results
are shown in Figure 11. The figure indicates that with the increase of incident angle, the STL
in the whole frequency band decreases gradually. This is because the waveform changes
when the sound wave incidents on the panel obliquely, resulting in the change of space
harmonic wavenumber in z-direction [31]. Finally, with the increase of acoustic incident
angle, the acoustic transmission coefficient increases. It can also be seen from Figure 11 that
the first valley frequency tends to move gradually to a higher frequency.

4.2. Influence of the Height of Honeycomb Core

To explore the influence of the height of the honeycomb core on sound insulation,
three cases of h0 = 1.05 mm, 2.05 mm, and 3.05 mm are selected on the premise that the
honeycomb core height of the upper and lower sandwich plates is equal. The STL curves of
the three cases are shown in Figure 12. The figure shows that when h0 is 1.05 mm, 2.05 mm,
and 3.05 mm, respectively, the corresponding first valley frequency is 157.1 Hz, 253.1 Hz,
and 253.3 Hz. It can be seen that with the increase of honeycomb core height h0, the first
valley frequency tends to move to a higher frequency. This is because the equivalent
dynamic bending stiffness and equivalent surface mass density of the equivalent plate
change as the height of honeycomb core increases [31]. Moreover, the movement of the first
valley frequency also leads to the gradual narrowing of the sound insulation bandwidth.
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5. Conclusions

This paper is concerned with the sound transmission loss (STL) of a new composite
structure, which is an orthogonally rib-stiffened honeycomb double sandwich structure
with periodic arrays of shunted piezoelectric patches. To explore the acoustic characteristics
of the structure, the research model needs to be equivalent according to Hoff theory
and the EM method. Following the two theories, the sandwich panels are treated as
homogeneous plates with equivalent surface density and equivalent dynamic bending
stiffness. Thus, the STL can be predicted efficiently. From the comparison of the curve of
theoretical calculation and the curve of finite element simulation, it can be found that the
corresponding valley frequencies and peak frequencies of the two curves can effectively
match, which can prove the correctness of the theoretical model. By comparing the STL
curves of the complete model and the comparison model without the piezoelectric patches,
it can be found that the research sandwich structure demonstrates a better sound insulation
effect at low frequencies. In addition, several conclusions are obtained through the study
of the influences of sound incident angles and height of honeycomb core on the research
structure. First, with the increase of incident angle, the STL in the whole frequency band
decreases gradually, and the first valley frequency has a tendency to move gradually
to a higher frequency. Second, as the height of the honeycomb core increases, the first
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valley frequency tends to move to a higher frequency, and the sound insulation bandwidth
gradually narrows.
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