
Review Article
Regulation of Stem Cell Properties of Müller Glia by JAK/STAT
and MAPK Signaling in the Mammalian Retina

Krista M. Beach,1 Jianbo Wang,1 and Deborah C. Otteson1,2

1Department of Basic Sciences, College of Optometry, University of Houston, Houston, TX, USA
2Department of Biology and Biochemistry, University of Houston, Houston, TX, USA

Correspondence should be addressed to Deborah C. Otteson; dotteson@central.uh.edu

Received 4 November 2016; Accepted 21 December 2016; Published 17 January 2017

Academic Editor: Chuanwei Yang

Copyright © 2017 Krista M. Beach et al.This is an open access article distributed under theCreative CommonsAttribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In humans and other mammals, the neural retina does not spontaneously regenerate, and damage to the retina that kills retinal
neurons results in permanent blindness. In contrast to embryonic stem cells, induced pluripotent stem cells, and embryonic/fetal
retinal stem cells, Müller glia offer an intrinsic cellular source for regenerative strategies in the retina.Müller glia are radial glial cells
within the retina that maintain retinal homeostasis, buffer ion flux associated with phototransduction, and form the blood/retinal
barrier within the retina proper. In injured or degenerating retinas,Müller glia contribute to gliotic responses and scar formation but
also show regenerative capabilities that vary across species. In themammalian retina, regenerative responses achieved to date remain
insufficient for potential clinical applications. Activation of JAK/STAT andMAPK signaling by CNTF, EGF, and FGFs can promote
proliferation and modulate the glial/neurogenic switch. However, to achieve clinical relevance, additional intrinsic and extrinsic
factors that restrict or promote regenerative responses ofMüller glia in themammalian retinamust be identified.This review focuses
on Müller glia and Müller glial-derived stem cells in the retina and phylogenetic differences among model vertebrate species and
highlights some of the current progress towards understanding the cellular mechanisms regulating their regenerative response.

1. Introduction

In humans and other mammals, the retina, like most other
regions of the central nervous system (CNS), does not
spontaneously regenerate; and damage to the retina or neu-
rodegenerative disease that kills retinal neurons results in
permanent blindness. Worldwide, more than 12% of people
over the age of 40 have visual impairment or blindness caused
by age relatedmacular degeneration and glaucoma, two of the
neurodegenerative diseases affecting the retina [1, 2]. As life
expectancy continues to increase, the increasing prevalence
of blinding neurodegenerative disease is reducing productiv-
ity and quality of life and imposing significant economic as
well as social burdens to individuals, their families, and soci-
ety. Current therapies can slow progression and delay vision
loss but cannot restore lost vision. Consequently, there is
increasing interest in identifying approaches for therapeutic
retinal regeneration.

A variety of stem cells, including embryonic stem cells
(ESCs), induced pluripotent stem cells (iPSCs),mesenchymal

stem cells, and fetal-derived neural and retinal stem cells,
are currently under investigation for regeneration and sub-
sequent transplantation of retinal neurons (see reviews in [3–
10]). With advancements in gene editing using CRISPR/Cas9
technologies and the ability to expand cells in culture prior
to differentiation, extrinsic sources such as ESCs and iPSCs
are promising for developing strategies to correct preexisting
genetic defects in vitro [11]. However, there are potential ethi-
cal concerns with the use of ESCs or progenitors from embry-
onic or fetal tissues, making them less attractive for thera-
peutic regeneration. Further, extrinsic stem cells will require
surgical transplantation and integration of new neurons into
existing circuitry. Although the retina is normally an immune
privileged tissue, retinal damage and degenerative disease
compromise the blood/retinal barrier, allowing ingress of
immune cells [12–15]. Therefore, transplantation therapies
may also require immunosuppression for long-term viability
of the engrafted cells. An intrinsic retinal stem cell would
alleviate concerns of integration and immune response and
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Figure 1: Retinal structure and cellular organization. (a) Diagram shows organization of retinal neurons and Müller glia. The cell bodies
of rod (purple) and cone (red) photoreceptors are in the outer nuclear layer (ONL) and the photoreceptor outer segments (OS) contain
the photopigments that absorb light. Rod and cone bipolar (blue), horizontal (yellow), and amacrine (white) cells are in the inner nuclear
layer (INL), with retinal ganglion cells (green) located in the ganglion cell layer (GCL). Between the nuclear layers are the outer and inner
plexiform layers (OPL, IPL) containing the synaptic terminals. Müller glia (black) have cell bodies located in the INL and extend processes
throughout the retina. (ILM, OLM). (b, c, d) Photomicrographs of adult mouse retina. (b, c) Müller glia are immunostained for glutamine
synthetase (magenta) revealing their radial processes that extend the full thickness of the retina. The Müller glial endfeet form the inner
limiting membrane (ILM) and outer limiting membrane (OLM) (arrows). (d) Photomicrograph showing histology of adult mouse retina
stained with toluidine blue, showing retinal lamina and overlaid with a diagram of a Müller glial cell. Arrows indicate glial endfeet at ILM
and OLM. Scale bar = 50 microns in (b), (c), (d).

would provide an alternative strategy to complement the use
of extrinsic stem cells.

Müller glia are intriguing candidates for intrinsic retinal
stem cells. Müller glia are radial glial cells within the retina
and are generated from the same lineage as retinal neurons. In
the mature retina, Müller glia maintain retinal homeostasis,
buffer ion flux associated with phototransduction, and form
the blood/retinal barrier within the retina proper. Although
they contribute to gliotic responses and scar formation
following retinal injury, Müller glia also show regenerative
capabilities that vary across species. This review focuses on
Müller glia and Müller glial-derived stem cells in the retina
and the phylogenetic differences among model vertebrate
species and highlights current progress towards understand-
ing and harnessing their regenerative response.

2. Retinal Structure and the Origin of
Müller Glia

The retina is a thin layer of neural tissue located at the poste-
rior pole of the eye. It consists of (a) photoreceptors (rods and
cones) that convert light stimuli into neurochemical signals,
(b) threemajor classes of interneurons (horizontal, amacrine,
and bipolar cells) that perform initial information processing,
(c)Müller glia that perform amultitude of support functions,
and (d) projection neurons (retinal ganglion cells) that extend
axons through the optic nerve and optic tract to convey the

visual image information to higher processing centers within
the brain [16–18]. The retinal cells are organized in a highly
ordered laminar structure (Figure 1), which allows identifica-
tion of cell types by position, morphology, and gene expres-
sion. The retina is developmentally part of the CNS. Lineage
analysis has shown that the multipotent retinal progenitors
thatmake up the embryonic retinal neuroepitheliumgenerate
all types of retinal neurons, as well as the Müller glia [16, 19,
20]. Apart from its importance in vision, the neural retina
serves as amodel system for studying theCNS, as it is the only
portion of the central nervous system located outside of the
cranium and can be noninvasively imaged and functionally
tested in vivo. The process of retinal regeneration recapit-
ulates many aspects of retinal development, with similar
patterns of gene expression, cell fate specification, and the
order of neurogenesis.

3. Müller Glia: Stem Cells for
Retinal Regeneration in Fish

The initial evidence for the stem cell characteristics of Müller
glia came from research to discover the cellular source of
ongoing neurogenesis and regenerative responses in the reti-
nas of fish.The capacity for neurogenesis in themature retinas
of fish appears to be teleologically related to their overall pat-
tern of indeterminate growth and the associated continuous
growth of their eyes. Eye growth in fish results in large part
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from a general expansion/stretching of the retina, leading to
decreasing retinal density for most types of retinal neurons
within the central retina [21]. There is also ongoing neuroge-
nesis, which occurs at two sites: (1) the circumferential ger-
minal zone (CGZ), where a population of retinal progenitors
persists and continually adds concentric rings of newneurons
to the retinal margin, and (2) the central retina, where new
rods are added continually to the existing photoreceptor
mosaic [22]. Neurogenesis of rod photoreceptors in the fish
retina begins after hatching and continues throughout life
[23–28], with new rod photoreceptors generated from a pop-
ulation of slowly proliferating, PAX6-expressing progenitors
within the inner nuclear layer (INL) [29]. These INL progen-
itors arise from theMüller glia and continue to divide as they
migrate to the outer retina to become rod precursors, which
subsequently differentiate into rod photoreceptors [26, 28,
29]. Ongoing neurogenesis in the fish retina appears to keep
theMüller glia poised to respond to retinal damage by initiat-
ing intrinsic neurogenic programs.

Retinal regeneration in fish has been studied for over 50
years [30–34]. A variety of traumatic, surgical, neurotoxic,
or phototoxic injuries have been used to induce regenerative
neurogenesis, and the outcome is a fully laminated retina,
albeit with some relatively minor organizational differences,
and a restoration of circuitry and function [34–39]. Although
multiple studies had reported clusters of mitotically active
cells in the INL following retinal injury [40, 41], the source
of the new retinal cells was not identified as Müller glia
until 2007 [40–42]. Regardless of the injury paradigm, there
appear to be several stages to the retinal response [43]. There
is an initial, nonproliferative stage that occurs during the
first 2 days after injury, during which Müller glia transiently
upregulate expression of the intermediate filament, glial fib-
rillary acidic protein (GFAP), a key marker of gliosis [44, 45].
The gliotic response of Müller glia is not prominent, and the
subsequent, regenerative response in zebrafish begins with an
initial, limited proliferation of the Müller glia and generation
of a pool of Müller glial-derived progenitors in the INL [46–
49]. The Müller glial-derived progenitors continue to prolif-
erate, forming columns of dividing cells that span the retinal
layers and, around 7 days after injury, differentiate into retinal
neurons [46, 50–52]. Interestingly, the switch from gliosis
to proliferation is critical for the regenerative response in
zebrafish, as blocking injury-induced proliferation of Müller
glia, using 5-fluorouracil or morpholinos against PCNA,
enhances the gliotic response, resulting in robust and persis-
tent upregulation of GFAP, and prevents injury-induced neu-
rogenesis [45].Müller glial-derived progenitors are capable of
regenerating all neuronal cell types in an injured retina and
restoring visually guided behaviors [34–36, 38, 39, 53–58].
Although early studies suggested that only those subpopula-
tions of neurons that were lost as a result of the initial injury
were regenerated [49, 59, 60], recent evidence shows that,
even in cases of localized injury to one cell type [e.g., pho-
totoxic injury to photoreceptors or N-methyl-D-aspartate
(NMDA) injury to retinal ganglion cells], additional cell types
can be produced [48].

4. Müller Glia: Gliosis and Injury Response in
Mammals and Birds

In warm blooded species, spontaneous regeneration by
Müller glia does not occur to any appreciable extent in vivo,
leading to questions about the designation of Müller glia as
retinal stem cells in these species, particularly in mammals
[64]. In the mammalian retina, the primary glial response
to retinal injury is gliosis, which is characterized by robust
upregulation of GFAP, limited (if any) proliferation, cellular
hypertrophy, and formation of glial scars (reviewed in [65,
66]; see also [67–72]). In posthatch birds, there is a slightly
more robust response to retinal injury, with gliosis accom-
panied by a limited neurogenic response that declines with
age [64, 73–75].

Evidence for neurogenesis byMüller glia in vivo following
acute retinal injury has been demonstrated in posthatch
chick, rat, andmouse [62, 64, 71, 73–77] but requiresmanipu-
lation of various exogenous factors (see below) or overexpres-
sion of neurogenic or proneural genes such as Ascl1a [78, 79]
and Atoh7 [80, 81]. Intraocular injection of selective neuro-
toxins that kill either photoreceptors or ganglion/amacrine
cells in the adult rodent eye generates large numbers of reac-
tive Müller glia but little proliferation [62, 82]. The prolifera-
tive response is enhanced by intraocular injection of a variety
of extrinsic growth factors, including CNTF, EGF, FGF1,
FGF2, and insulin in posthatch chickens [73–75] and in
rodents [62, 71, 83, 84].However, the overall extent of the neu-
rogenic capacity of mammalian or avian Müller glia is low,
even with growth factor stimulation, and, in the mammalian
retina, low numbers of neuronal cells are generated and the
majority of proliferating progenitors fail to survive in the long
term [62]. A better understanding of the mechanisms that
promote the proliferative and neurogenic responses is needed
before clinically relevant levels of regeneration are achieved in
vivo.

5. Mechanisms Regulating Gliosis
versus Neurogenesis: JAK/STAT versus
MAPK Signaling

Promoting clinically relevant levels of regeneration from
Müller glia in the mammalian or human retina will require
suppression of gliosis and enhancement of their proliferative
and neurogenic responses. Multiple signaling molecules and
their downstream signal transduction cascades have been
implicated in regulating the injury and regenerative responses
in the retina, including notch [85–88], tumor necrosis factor
alpha (TNF-𝛼) [89], transforming growth factor beta (TGF-
𝛽) [84, 90–92], insulin [70, 73], midkine (MDKN) [93–95],
ciliary neurotrophic factor (CNTF) [75, 92, 96–99], epider-
mal derived growth factor (EGF) [62, 74, 84, 100], and fibrob-
last growth factors (FGFs) [62, 75, 101, 102].Many of these sig-
naling pathways converge on JAK/STAT (Janus kinase/signal
transducer and activator of transcription) and MAPK
(mitogen-activated protein kinase) signal transduction cas-
cades (Figure 2). Retinal injury stimulates release of a variety
of cytokines and mitogens, including EGF, FGF1, FGF2, and
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Figure 2: Summary diagram of JAK/STAT and MAPK signal transduction. (a) To activate JAK/STAT signaling, CNTF binding to the GPI
linked CNTFR𝛼 initiates recruitment of LIFR𝛽 (L) and GP130 (G) to form the hexameric CNTF receptor complex. Recruited LIFR𝛽 and
GP130 are phosphorylated on their cytoplasmic domain by JAK1/2. Activated JAK1/2 phosphorylate STAT3𝛼, which forms homodimers that
translocate to the nucleus. pSTAT3 homodimers bind to DNA and activate transcription of target genes, such as Gfap, to initiate gliosis. (b)
TheMAPK signaling pathway can be activated downstream of ligand binding to receptor tyrosine-kinases (RTKs) by growth factors including
HB-EGF, EGF, FGF1, and FGF2 or by activation of CNTFR by CNTF. In both pathways, adaptor proteins such as GBR2 recruit SOS to the
activated receptor, and subsequent activation of SOS leads to phosphorylation of RAS,MEK, and finally ERK1/2. Activated ERK1/2 translocate
into the nucleus and phosphorylate several transcription factors involved in cell proliferation, cell survival, and cell differentiation.

CNTF, which have been implicated in various aspects of glial
activation and proliferation [103–106]. However, endogenous
expression levels of growth factors and cytokines following
injury are insufficient to promote significant proliferation of
mammalian Müller glia. Injury-induced proliferation can be
enhanced by intraocular injection of EGF, FGF1, FGF2, and
CNTF, either alone or in various combinations with each
other or with insulin [62, 70, 73–75, 92, 98, 101, 107]. All
of these factors can activate intracellular signal transduction
cascades via JAK/STAT and/or MAPK signaling pathways.
Therefore, examination of these signaling pathways and how
their activation relates to gliosis and retinal regeneration in
fish, birds, and mammals is important to begin to under-
stand the mechanisms contributing to the differential injury
responses.

Intracellular signaling through the JAK/STAT pathway is
activated by receptor binding of a variety of ligands, including
cytokines (e.g., interleukins [108], interferons [109], and
CNTF [110]), growth factors (e.g., EGF [111], FGF [112]), and
hormones (growth hormone [113], thyrotrophin stimulating
hormone [114]). In JAK/STAT signaling, ligand binding to
cognate receptors results in phosphorylation of receptor-
associated JAK1/2, which causes rapid (withinminutes) phos-
phorylation of STAT3 and a delayed (within hours) phospho-
rylation of STAT1 [115, 116]. Phosphorylated STAT3 (pSTAT3)
and pSTAT1 form homodimers or heterodimers via phos-
photyrosyl peptide interaction of their SH2 (Src homology 2)
domains, resulting in translocation to the nucleus, binding to
DNA at the consensus binding sequence TTCC[C/G]GGAA,
and transcription of target genes [116].
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CNTF can activate MAPK signaling downstream of its
receptor; however activation of MAPK signaling more typ-
ically occurs downstream of receptor tyrosine-kinase activa-
tion by a variety of ligands, including EGF, FGFs, and insulin.
In theMAPK signaling cascade, binding of a signaling ligand
to its receptor causes a series of sequential phosphorylation
reactions. Each step in the cascade can be performed by mul-
tiple proteins, making the cascade both diverse and complex
(see reviews in [117, 118]). Briefly, phosphorylation of the
cytoplasmic domains of the cytokine receptors causes adaptor
molecules to recruit proteins that activate RAS (rat sar-
coma oncogene), which phosphorylates RAF (rapidly accel-
erated fibrosarcoma), which phosphorylates MAPK kinases
(including MAPK/ERK kinases 1 and 2; a.k.a. MEK1/MEK2),
which phosphorylate MAPKs, including extracellular signal-
regulated protein kinase (ERK), c-Jun-N-terminal kinase
(JNK), and protein 38 (p38). Phosphorylated MAPK translo-
cates to the nucleus and phosphorylates a variety of transcrip-
tion factors that activate target gene transcription.

6. CNTF Activation of JAK/STAT and Gliosis

Among the factors that can activate JAK/STAT and MAPK
signaling, CNTF plays multiple roles in the retinal injury
response and particularly in activating the gliotic responses
of Müller glia. CNTF expression is upregulated inMüller glia
following a variety of retinal injuries in the zebrafish [98],
posthatch chicken [75], and mammals [103, 104, 106, 119].
Müller glia of all species express little, if any, GFAP in the
absence of injury, neurodegenerative disease, or other insults
[67, 120, 121]. However, intraocular injection of CNTF into
otherwise uninjured eyes of zebrafish [75], posthatch chick-
ens [92], mice [99], and rats [115] increases GFAP in Müller
glia,mimicking a gliotic response [98].Upregulation ofGFAP
by CNTF is mediated by STAT3 signaling via direct binding
of phosphorylated STAT3 (pSTAT3) dimers to the GFAP pro-
moter [99, 122, 123]. Consistent with a role in gliosis, STAT3
expression also increases inMüller glia following ouabain- or
light-induced injury in zebrafish [47, 98], and STAT3 phos-
phorylation is similarly increased in Müller glia following
injury to the avian [75] and mouse retina [124, 125].

7. JAK/STAT and MAPK Regulation of
Müller Glial Proliferation

In addition to activating JAK/STAT signaling, injury activates
MAPK signaling in Müller glia in zebrafish and mice [98,
126]. Various growth factors, including EGF, FGFs, and
insulin, activate MAPK signal transduction directly down-
stream of tyrosine-kinase receptors, whereas CNTF activates
MAPK via JAK activation of SHP2/RAS (Figure 2) [98, 127,
128]. Following a penetrating injury, combinatorial treat-
ments of insulin combined with either heparin binding EGF-
like growth factor (HB-EGF; an EGF-related but more potent
mitogen [129]) or FGF2 increase proliferation of Müller glia
in the zebrafish retina, an effect that is reduced by inhibition
of MAPK or JAK/STAT [74, 100, 101]. Similarly, in both avian
and mouse retinas, NMDA injury increases pERK and
pSTAT3 in Müller glia [74, 75, 115]. Proliferation of Müller

glia is increased by exogenous HB-EGF, FGF2, insulin, or
combinations of CNTF and FGF2, in NMDA injured, but
not in uninjured, retinas [75]. Although phosphorylation of
ERK1/2 and STAT is increased by these same factors, the
ability of CNTF/FGF2 to increase proliferation of Müller
glial-derived progenitors in NMDA injured chicken retinas
requires activation of JAK/STAT [74, 130]. Similarly, the pro-
liferative effects of CNTF can be blocked at the receptor level
by inhibition of the gp-130 coreceptor or postreceptorally by
inhibition of either JAK2 phosphorylation or STAT3 dimer-
ization/nuclear translocation [75, 99]. If JAK/STAT signaling
mediates both gliosis and proliferation of Müller glia in
response of CNTF or injury, a key question is how to promote
proliferation of Müller glia-derived stem cells to repopulate
areas of retinal degeneration, without also inducing gliosis.

8. Müller Glia In Vitro

Despite similarities between fish, birds, and mammals in the
Müller glial response to exogenous growth factors, modula-
tion of JAK/STAT and MAPK signaling in the mammalian
retina remains insufficient to stimulate clinically relevant
regenerative responses. There is evidence that both intrinsic
and extrinsic mechanisms contribute to inhibition of the
neurogenic/regenerative response ofMüller glia in the retinas
of higher vertebrates. Although regeneration in the fish retina
can occur throughout life, there is an age-associated decline
in the proliferative response of Müller glia to retinal injury
and exogenous mitogens in rodents [83, 131]. The genetic
background in different mouse strains also has significant
influence on the ability of Müller glia to proliferate in
response to injury and exogenous growth factors, although
specific genetic factors have yet to be identified [132]. Since
intraocular injection of exogenous factors can promote
Müller glial proliferation, it is likely that there are insufficient
endogenous levels of knowngrowth factors. In addition, there
are likely additional, unidentified factors that are required
to activate key signaling pathways or that actively inhibit
the proliferative and regenerative capacity in vivo. Consistent
with this, isolated mammalian Müller glia show increased
proliferation and neurogenic potential in vitro. This may
reflect the greater ability to manipulate exogenous factors
in vitro, as well as the removal of the Müller glia from any
local inhibitory signals. Thus, even though the ultimate goal
for using Müller glial-derived progenitors is to stimulate
neural regeneration in situ, the use of primary Müller glia
and permanent cell lines offers an opportunity to examine
mechanisms underlying their proliferative and regenerative
responses under more controlled conditions in vitro.

Several Müller glial cell lines have been described:
ImM10, conditionally immortalized Müller glia from P10
mouse retinas [61, 133]; MIO-M1, spontaneously immor-
talized Müller glia from adult human retinas [134]; rMC-
1, SV-40 immortalized Müller glia from light-injured rat
retinas [135]; TR-MUL5, conditionally immortalized Müller
glia from rat [136]; andMU-PH1, conditionally immortalized
Müller glia from 2-month-old mice. Direct comparisons are
complicated by differences in the age and species of origin,
variable culture conditions, and the panels of genes that
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have been analyzed in different studies. However, in standard
culture conditions, all express at least some genes typical of
Müller glia in vivo (e.g., vimentin, Sox2), as well as nestin, an
intermediate filament typically associated with neural stem
cells. Only rMC-1 has robust GFAP expression, consistent
with its origin from light-injured retinas [135], although one
study also reported low levels of GFAP immunoreactivity in
MIO-M1 cells [137]. There are concerns that overexpression
of oncogenes will fundamentally change the identity and
cellular responses of Müller glial cell lines. The conditionally
immortalized cell lines, ImM10 (mouse) and TR-MUL5 (rat),
contain an inducible, temperature sensitive SV40T-antigen,
thereby allowing elimination of oncogene expression under
appropriate conditions.

There is a temporal change in cell cycle kinetics of
primary Müller glia, which initially proliferate slowly, even
in the presence of serum containing medium [133]. After
continued culture, primary Müller glia become more highly
proliferative, consistent with spontaneous immortalization
[133, 134]. Within the first two weeks in culture, Müller glia
change morphology and downregulate key genes associated
with glial function [e.g., glutamine synthetase (GS), cellular
retinaldehyde-binding protein (CRALBP/RLBP1)] [138]. We
observed reduced proliferation of ImM10 cells when grown
in serum-free medium with nonimmortalizing conditions,
although rates of proliferation increased and the differences
between immortalizing and nonimmortalizing conditions
diminished at higher passage numbers [133]. Thus, careful
comparative studies of cultured Müller glia with their in vivo
counterparts will be needed for final validation of any iden-
tified mechanisms regulating proliferation and neurogenic
competence.

Immortalized Müller glia can be induced to generate
cells expressing neuronal genes [61, 134, 139–142]. ImM10,
MIO-M1, andMU-PH1 generate neurospheres in response to
specific growth factors, typically a combination of epidermal
derived growth factor (EGF), fibroblast growth factor 2
(FGF2), and/or insulin (Figure 3(b)), and upregulate a variety
of genes typical of retinal progenitors, including Pax6 and
nestin [61, 134, 137, 139]. Using a variety of in vitro differentia-
tion protocols, Müller glial-derived progenitors from neuro-
spheres will alter theirmorphology to resemble cultured neu-
rons, showing condensed nuclei and long, branching neurite-
like processes (Figure 3(d)). Redifferentiated human Müller
glial-derived progenitors express markers of most retinal
cell types and have been shown to respond to light [137].
Transplantation of in vitro differentiated photoreceptors
fromMüller glial-derived progenitors partially restored light
response in a rat model of rapid photoreceptor degeneration,
as measured by increases in the a-wave of the elec-
troretinogram (a measure of photoreceptor function) [140].
Transplantation of in vitro differentiated Müller glia into rat
retinas, following pharmacological depletion of retinal gan-
glion cells, partially restored the negative scotopic threshold
response of the electroretinogram (an indicator of retinal
ganglion cell function) [139]. However, despite the presence
of the newly generated cells in their appropriate lamina and
evidence of some synapse formation with upstream neurons,
the new cells failed to extend axons into the optic nerve or

connect to visual centers in the brain. In all differentiation
paradigms reported, relatively large numbers of cells continue
to express glial genes and retain a glialmorphology. Addition-
ally, the number of neurons generated is relatively low, their
morphology is inconsistent, and gene expression profiles
have yet to demonstrate expression of all genes necessary for
specification and functional maturity of individual retinal
cell types.

9. JAK/STAT and MAPK in
Müller Glia In Vitro

There have been few systematic studies of the activity of spe-
cific signal transduction cascades inMüller glia in vitro. Since
activation of JAK/STATorMAPK signaling inMüller glia can
regulate gliosis and proliferation, we analyzed activation of
STAT3 and MAPK pathways in ImM10 cells by western blot.
There were no changes in total STAT3 or pSTAT3 in neuro-
sphere or differentiation cultures; and, unexpectedly, despite
the presence of both EGF and FGF2 in sphere formingmedia,
there was no change in pERK1/2 in neurospheres [143]. In
contrast, pERK1/2 increased in ImM10 cells in differentiation
conditions despite the absence of exogenous EGF or FGF2
[143]. However, EGF and FGF2 mRNA levels are upregulated
in differentiation cultures of ImM10 cells [61], suggesting that
endogenously produced factors contribute to activation of
MAPK signaling in these cells.

During neonatal retinal development, CNTF has been
proposed to modulate a “molecular switch” that promotes
either a glial or neuronal cell fate via concentration dependent
activation of STAT3 versus MAPK signaling, respectively
[144, 145]. In rat P1 retinal explants and dissociation cultures,
low concentrations of CNTF (<50 ng/ml) increase the num-
ber of cells expressing neuronal genes via MAPK signaling,
whereas high concentrations (100 ng/ml) increase the num-
ber of cells expressing glial genes via STAT3 signaling [144].
Inhibition of STAT3 signaling abolishes CNTF’s repression of
photoreceptor markers in mouse retinal progenitor cell cul-
tures [146, 147], whereas inhibition of MAPK signaling abol-
ishes the increase in the number of cells expressing neuronal
markers in dissociation cultures of neonatal rat retina treated
with low concentrations of CNTF [144].

To test if low levels of CNTF could promote neurogenesis
in differentiation cultures of ImM10 cells, we analyzed gene
expression following addition of low concentrations of CNTF
(20 ng/ml) [61]. Consistent with our previous study, genes
associated with multiple neuronal types were detected in dif-
ferentiation cultures, including photoreceptors (Rhodopsin,
Opn1sw, andNr2e3), retinal ganglion cells (Sncg, L1Cam), and
bipolar cells (Prkca). However, addition of CNTFdid not alter
the overall patterns or levels of gene expression [143]. In addi-
tion, GFAPwas not detected in differentiation cultures, either
with or without CNTF, suggesting that there was no enhance-
ment of gliosis. Surprisingly, CNTF did not change phospho-
rylation of STAT3 or ERK in ImM10 cells, reflecting the fail-
ure of CNTF to activate either JAK/STATorMAPK signaling.
These findings suggest that the ImM10 cells in vitro respond
to CNTF differently than Müller glia in vivo. One potential
explanation is that the effects of CNTFmay require additional
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Figure 3: Morphology of mouseMüller glia in growth, neurosphere, and differentiation cultures in vitro. Conditionally immortalized mouse
Müller glia (ImM10 cell line) at different stages of in vitro differentiation as previously described [61]. (a) ImM10 cells in growth media
(Neurobasal, 2% fetal bovine serum, B27 supplement, and penicillin/streptomycin) under immortalizing conditions (33∘C, 50U/ml interferon
gamma) show typical morphology of cultured Müller glia. (b) ImM10 cells following 4 days in sphere forming medium (Neurobasal, B27
supplement, and modified G5 supplement with 20 ng/ml EGF, 20 ng/ml FGF2, and penicillin/streptomycin) in nonimmortalizing conditions
to prevent T-antigen expression (39∘C, without interferon gamma), showing typical nonadherent neurospheres. (c) Spheres at 1 day following
transfer to primingmedium (Neurobasal, G5 supplementmodified to contain EGF (20 ng/ml) butwithout FGF2, and penicillin/streptomycin;
nonimmortalizing conditions), neurospheres adhere to plate, and cells begin to migrate onto dish. (d) Following priming, ImM10 cells in
differentiationmedium (Neurobasal, B27, and pen/strep; nonimmortalizing conditions) for 2 days and stained with CalceinAM show variable
morphologies and include cells with distinct neuronal morphology (small cell body, multiple thin processes).

cells or factors not present in the cell line. Consistent with
this idea, stem cells fromdental pulp treatedwith conditioned
media from injured rat retinas upregulated rhodopsin expres-
sion in vitro, whereas those treated with conditioned media
from purified Müller glia did not [148].

The JAK/STAT and MAPK signaling pathways are impli-
cated in retinal cell fate choice, proliferation, and gliotic
hypertrophy after retinal injury and can be activated by a vari-
ety of growth factors including EGF, HB-EGF, FGF2, insulin,
and CNTF. The JAK/STAT pathway appears to mediate
both beneficial (proliferation) and detrimental (hypertrophy/
gliotic) aspects of the injury response in vivo (Figure 4).
Our findings that MAPK activation increased in ImM10

cells cultured under conditions that increased neuronal gene
expression are consistent with a role for MAPK signaling
in mediating a neuronal cell fate over glial fate choice. In
mammalian retinal injury, the gliotic response predominates
over the regenerative response, although the regenerative
response can be enhanced with the addition of exogenous
growth factors and cytokines that activate JAK/STAT and
MAPK signaling. Unfortunately, this enhancement is still
insufficient to make regeneration predominate over gliosis.

10. Other Mechanisms

Although activation of JAK/STAT and MAPK signaling by
CNTF, EGF, and FGFs can promote proliferation and the
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Figure 4: The proposed involvement of CNTF, JAK/STAT, and MAPK signaling in gliosis and neural regeneration by Müller glia in
mammalian retina. Retinal injury (lightning bolt) kills retinal cells (gray cells) and stimulates release of growth factors, including CNTF,
resulting in limited cell division of Müller glia (MG). In the absence of exogenous growth factors, increased JAK/STAT signaling (lower
arrows) in activated MG promotes gliosis (bright green), resulting in glial scars, but neurons are not regenerated. Activation of MAPK and
JAK/STAT signaling by exogenous factors, including EGF, FGF2, and insulin (upper arrows), produces proliferative progenitors (light green),
which can regenerate some retinal neurons (in gray shaded oval), such as amacrine cells [62] and photoreceptors [63]. Some undifferentiated
progenitor cells (light green) persist following resolution of the regenerative response. Even with exogenous factor stimulation, mammalian
retinas fail to restore all lost cells.

glial/neurogenic switch, these signal transduction pathways
do not act in isolation. Rather, they function within the
context of a wide variety of other cellular mechanisms that
contribute to the retinal injury response and regeneration
in various contexts. Extensive discussion of all the cellular
mechanisms regulating the injury and regenerative responses
ofMüller glia is beyond the scope of this article; several recent
reviews can provide more information [22, 64, 149–154]. In
addition to its roles in regulating gliosis and cell fate specifica-
tion, CNTF is also implicated in neuroprotection and axonal
outgrowth through activation of the MAPK, JAK/STAT,
and/or PI3K (phosphatidylinositol-3 kinase) pathway [155–
159]. Other pathways that are important in regulating cell
cycle reentry and exit, gliosis, neurogenesis, and differentia-
tion ofMüller glia following retinal injury include the follow-
ing: notch [85, 87, 160] and WNT signaling [161, 162]; activa-
tion of a variety of signal transduction cascades byTNF-𝛼 [87,
89], TGF-𝛽 [163], and BMP/SMADs [84, 91, 164]; regulation
of cell cycle by ccnd1 and p27(kip1) [83, 85, 165]; microRNAs
[78, 166–168]; and the effects of transcriptional regulators
that regulate retinal development, such as the proneural gene
Ascl1a [79, 142, 162] and the neurogenic gene Atoh7 [80, 81,
141]. Thus, expanding our understanding of how multiple
pathways integrate to regulate the injury and regenerative
responses of Müller glial will be important for continued
progress in the field.

Analysis of retinal regeneration in fish has identified a
variety of signaling molecules and their downstream signal
transduction cascades that have shown promise for enhanc-
ing regenerative responses of Müller glia and warrant contin-
ued study. One intriguing, yet understudied, molecule that
plays a role in retinal neurogenesis and regeneration in zebra-
fish is midkine (MDKN) [169]. MDKN is a heparin binding
protein that interacts, either directly or indirectly, with a
number of receptors, including ALK, LRP, notch, and pro-
tein tyrosine phosphatase-zeta (PTP-𝜉), to modulate down-
stream signal transduction cascades [94, 169–174]. Binding
of MDKN, or the structurally related pleiotrophin, to PTP-
𝜉 blocks its phosphatase activity, resulting in increased phos-
phorylation of a variety of tyrosine-kinase receptors and their
substrates and potentiating downstream signal transduction
cascades [94]. In zebrafish, MDKNa/MDKNb are expressed
in both retinal progenitors and Müller glia and are upregu-
lated following retinal injury [93, 95]. Morpholino inhibition
of MDKNa reduces proliferation of Müller glial-derived
progenitors and limits regeneration of rod photoreceptors
following light damage in zebrafish [93]. Much less is known
about MDKN in the mammalian retina, although it is neu-
roprotective for rod photoreceptors following light damage
in mice [175] and rats [176]. We found that Mdkn mRNA is
upregulated in ImM10 cells under differentiation condition
in vitro [61]. Given the pleiotropic effects of MDKN and its
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potential to modulate multiple signal transduction cascades
that impact the proliferative and neurogenic responses of
Müller glia, it would be interesting to assess combinatorial
effects ofMDKNand growth factor stimulation of JAK/STAT,
MAPK, or other signal transduction cascades on Müller glial
proliferation and retinal regeneration.

11. Conclusions

Müller glia are particularly appealing as a cellular source for
retinal regeneration because they are intrinsic to the retina
and offer the potential to regenerate neurons in situ, without
transplantation. Despite a growing body of research showing
the neurogenic potential of Müller glia in the mammalian
retina, a level of regenerative response sufficient for potential
clinical applications has yet to be achieved. Given the overall
modest outcomes to date, cultured Müller glia seem unlikely
to provide a clinically relevant path for generating sufficiently
large numbers of retinal progenitors for transplantation.
Successful regenerative strategies using transplantation are
more likely to build on the ongoing progress in generating
retinal progenitors and neurons from other sources, such as
induced pluripotent stem cells [3–6, 15, 177–184]. Therefore,
the importance of studies to promote in vitro differentiation
of Müller glia lies in the ability to manipulate the cellular
environment and to dissect cellular mechanisms that regulate
their regenerative responses. Nevertheless, there is clear
evidence thatMüller glia change patterns of proliferation and
gene expression as they adapt to culture conditions and that
the ability of Müller glia to respond to some ligands and
activate key signaling pathways is different in vitro and in
vivo. This raises questions about whether in vitro assays will
recapitulate all aspects of the in vivo glial injury response and
how in vitro findings will translate into promoting regenera-
tion in vivo.Thus, caution is warranted in interpreting results
obtained using Müller glial cell lines. Research to promote
clinically relevant levels of retinal regeneration from mam-
malian Müller glia will benefit from the use of more complex
model systems and such as ex vivo retinal explants and three-
dimensional substrates and the inclusion of multiple retinal
cell types to better model the retinal environment.
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