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Background and Purpose: Motor deficits are the most common disability after stroke,
and early prediction of motor outcomes is critical for guiding the choice of early
interventions. Two main factors that may impact the response to rehabilitation are
variations in the microstructure of the affected corticospinal tract (CST) and genetic
polymorphisms in brain-derived neurotrophic factor (BDNF). The purpose of this article
was to review the role of these factors in stroke recovery, which will be useful for
constructing a predictive model of rehabilitation outcomes.

Summary of Review: We review the microstructure of the CST, including its origins
in the primary motor area (M1), primary sensory area (S1), premotor cortex (PMC),
and supplementary motor area (SMA). Damage to these fibers is disease-causing and
can directly affect rehabilitation after subcortical stroke. BDNF polymorphisms are not
disease-causing but can indirectly affect neuroplasticity and thus motor recovery. Both
factors are known to be correlated with motor recovery. Further work is needed using
large longitudinal patient samples and animal experiments to better establish the role of
these two factors in stroke rehabilitation.

Conclusions: Microstructure and genetic polymorphisms should be considered possible
predictors or covariates in studies investigating motor recovery after subcortical stroke.
Future predictive models of stroke recovery will likely include a combination of structural
and genetic factors to allow precise individualization of stroke rehabilitation strategies.

Keywords: cerebral infarction, corticospinal tract (CST), genetic polymorphisms, motor, rehabilitation

INTRODUCTION

Most stroke patients experience motor deficits (Johnson and Westlake, 2021) that adversely affect
clinical outcomes and impair activities of daily living (Patel et al., 2020). The early prediction of
motor outcomes is of great significance for improving prognosis and designing interventions.
Many factors impact motor rehabilitation, including individual factors (e.g., age and sex) and
disease severity (e.g., lesion location, lesion size, and white-matter tract integrity; Sterr et al., 2014).
However, these traditional factors have many limitations in predicting rehabilitation outcomes
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following subcortical stroke. The white-matter tract integrity
of motor pathway in traditional factors is an important factor
in directly assessing the prognosis of patient motor function
(Liu et al., 2020). However, there are still some challenges
in using a single white-matter tract integrity indicator to
predict the recovery of motor function in clinical applications.
Increasing evidence suggests that genetic polymorphisms may
partially explain the frequently reported variability in individual
responses to interventions for rehabilitation (Shiner et al., 2016).
However, the relationship between genetic polymorphisms and
the degree of motor rehabilitation is complex, therefore the single
genetic factor also cannot comprehensively predict rehabilitation
outcomes after subcortical stroke. Currently, several studies have
found that a predictive model combining the microstructural
integrity of the motor pathway in traditional factors and gene
polymorphisms is significantly better than for models with only
one factor for stroke patients (Chang et al., 2017).

The integrity of motor pathways (e.g., the corticospinal and
cortico-rubro-spinal tracts) plays an important role in motor
dysfunction and recovery after stroke (Kim et al., 2018; Guo
et al., 2019; Zolkefley et al., 2021). The corticospinal tract (CST)
is the most important motor output pathway and has been
deemed the most common locus of motor deficits in subcortical
stroke. CST fibers arise from the primary motor area (M1),
the premotor cortex (PMC), the supplementary motor area
(SMA), and the primary somatosensory area (S1; Schieber, 2007;
Welniarz et al., 2017). Differential involvement of the CST
plays an important role in determining the outcomes of motor
rehabilitation following subcortical stroke.

Genetic polymorphisms that can affect neuroplasticity
include those of brain-derived neurotrophic factor (BDNF),
the dopamine neurotransmitter system, and apolipoprotein
E (Stewart and Cramer, 2017). Since BDNF is the most
important neurotrophin, BDNF polymorphisms play a key role
in neuroprotection and motor recovery after subcortical stroke
(Berretta et al., 2014; Balkaya and Cho, 2019).

The purpose of this article was to review the role of CST
microstructure and BDNF polymorphisms in motor recovery
after subcortical stroke, which will be useful for constructing
predictive models of rehabilitation outcomes and thus for precise
individualization of rehabilitation strategies.

MICROSTRUCTURE OF THE CST
AFFECTS MOTOR RECOVERY

The CST is the most important motor output tract, and studies
have found that its impairment affects motor rehabilitation
(Schaechter et al., 2009; Radlinska et al., 2010). The CST can be
reconstructed using diffusion tensor tractography (Mori and van
Zijl, 2002), which can visualize the spatial relationship between
the CST and infarct sites and the extent of CST damage. Studies
have shown that if the CST is mostly or completely impaired
by the infarct, nerve fiber tract damage is more serious, usually
with partial or complete interruption, which correlates with
poor recovery of motor function after treatment. In patients
with infarcts near the CST, nerve fiber tract compression and
deformation but no obvious damage is observed, and good

motor function recovery is achieved after treatment. With no
obvious relationship between the CST and the lesion, motor
function involvement is not observed (Liu et al., 2020). Changes
in diffusion tensor imaging (DTI) parameters can be used to
observe the spatial relationship between the CST and infarct
lesions, and the degree of CST damage observed predicts the
prognosis of patients with subcortical stroke. DTI responds to the
pathophysiological changes in the infarcted tissue, evaluates the
degree of lesion tissue damage, and predicts clinical prognosis.
One of the parameters accessed by DTI is fractional anisotropy
(FA), a measure of microstructural integrity. A longitudinal
study showed that the FA value in the affected CST changes
dynamically, decreasing rapidly within 1 month after stroke,
slowly decreasing from 1 to 3 months after stroke, and showing
little change after three months (Yu et al., 2009). A significant
correlation has been reported between FA in the CST and
motor outcomes in patients with stroke (Stinear et al., 2007;
Xue et al., 2021). Although M1 is thought to be the main
origin of CST fibers, CST fibers also arise from the PMC, SMA,
and S1 (Schieber, 2007; Welniarz et al., 2017). Considering the
functional differences between these brain regions, CST fibers
originating from these cortical regions may be responsible for
different functions, and impairments of these fibers may result
in distinct functional deficits. Therefore, some DTI studies have
attempted to reconstruct the trajectories of CST fibers with
different origins (Newton et al., 2006; Seo and Jang, 2013).

Considering the CST as a whole tract, cross-sectional
studies have shown that decreases in the FA value of the
CST (Liu et al., 2015) are related to motor recovery in
subcortical stroke (Schaechter et al., 2009). In addition, the
CST injury was also evaluated by other methods, involving
the percentage of damage of CST fibers (Riley et al., 2011;
Liu et al., 2020), raw- and weighted-CST lesion loads (Zhu
et al., 2010). Liu et al. further found that the isotropy of
M1 fibers was correlated with walking endurance and that
of SMA fibers with motor dexterity in healthy adults. They
also found that the early damage of CST originating from
the M1 and SMA is closely associated with motor outcomes
and brain structural changes in chronic stroke patients (Liu
et al., 2020). These results suggest that the microstructures
of the CST affect motor rehabilitation. Therefore, CST
microstructure could be used to predict long-term motor
outcomes, which is clinically important because the early
prediction of motor outcomes is critical for designing suitable
interventions for patients with subcortical stroke. Kim et al.
(2021) indicated that CST microstructure was a significant
predictor of improvement in chronic stroke survivors with mild-
to-moderate motor impairment. Lin et al. (2019) compared the
prediction performance of four different CST injury methods
and showed that CST injury explained ∼20% of the variance
in the magnitude of upper extremity recovery even after
controlling for the severity of the initial impairment. Moreover,
Burke Quinlan et al. evaluated CST injury by probing FA
and the percentage of damage of CST fibers. They found
that the best prediction in multivariate modeling was achieved
using CST injury, and Lasso regression confirmed this result
(Burke Quinlan et al., 2015).
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However, at present, DTI research in cerebral infarction
disease is still in the initial stage, mostly limited to small sample
sizes and short- or medium-term research, thus lacking large
sample sizes and long-term studies. Moreover, the data from
related animal trials and clinical trials are still very limited.
Therefore, some challenges remain in using a single CST
indicator to predict the recovery of motor function in clinical
applications.

BDNF POLYMORPHISMS AFFECT MOTOR
RECOVERY

Cerebral infarction is a class of diseases in which brain-
tissue ischemia and hypoxia cause cellular metabolic disorders,
ultimately leading to neuronal degeneration and death. It has
been shown that endogenous BDNF and its receptor, tyrosine
kinase (Trk) B, are increased under conditions of pathological
change after stroke (Endres et al., 2000). BDNF is a member of
the neurotrophin family and the most abundant neurotrophin in
the body. It is synthesized in the central and peripheral nervous
systems and is important in neuronal survival, differentiation,
metabolism, damage repair, and regeneration (McTigue et al.,
1998). BDNF promotes the repair and regeneration of neurons,
accelerates the release of synaptic transmitters, strengthens
synaptic transduction, promotes axonal growth, and promotes
sensory neuron development, all of great value in the play
of nerve-cell function (Lu et al., 2003; Fletcher et al., 2018).
Therefore, BDNF plays a key role in neuroplasticity and
motor recovery after subcortical stroke. It has been reported
that local cerebral ischemia and hypoxia in acute stroke
increase the expression of BDNF-specific receptors to protect
nerve cells from damage (Tejeda et al., 2019). These studies
demonstrate that BDNF levels can be used as an important
indicator of treatment effect and prognosis after subcortical
stroke.

Furthermore, it has been shown that BDNF can cross the
blood-brain barrier; BDNF levels in the serum can thus reflect
the level of BDNF in the brain. Testing the serum BDNF levels
of patients can objectively and effectively reveal the severity of
acute stroke. Early studies reported that an increase in serum
BDNF levels correlated with motor recovery (Luo et al., 2019).
Salinas et al. (2017) found that lower serum BDNF levels were
associated with an increased risk of incident stroke. Some studies
have also found that reduced BDNF levels are associated with
severe functional impairment during the acute phase of ischemic
stroke (Lasek-Bal et al., 2015; Stanne et al., 2016). Further
studies also showed a reverse relationship between brain tissue
damage and BDNF levels in the serum. For example, Qiao
et al. (2017) found that BDNF levels decreased with increased
infarct volumes; that is, the lower the level of BDNF, the
higher the degree of damage to brain tissue. This showed that
BDNF was protective against cerebral infarction and involved
in the occurrence and development of cerebral infarction. In
addition, greater levels of BDNF are associated with lesser white
matter hyperintensity and better visual memory (Pikula et al.,
2013). Serum BDNF has also been associated with post-stroke
depression, and low serum BDNF levels may indicate the

development of depression in patients with acute ischemic stroke
(Yang et al., 2011).

BDNF is widely expressed in the central nervous system
(CNS) and plays an important role in neural differentiation
and synaptic plasticity (Binder and Scharfman, 2004). Moreover,
BDNF polymorphisms affect the process of neuroplasticity by
affecting the expression levels of neurotrophic factors in the brain
(Stewart and Cramer, 2017). Several studies have shown that
the single-nucleotide polymorphism (SNP) val66met (G189A or
rs6265) of BDNF (Akbarian et al., 2018) is associated with stroke
recovery (Shiner et al., 2016). Compared with stroke patients
with the Val/Val gene, those with the Met gene had lower motor
scores in the acute phase (7 days after stroke). However, the
difference was not statistically significant 1 month after stroke
(Mirowska-Guzel et al., 2012). Kim et al. (2012) found that stroke
patients with theMet gene had lower motor scores than did those
with the Val/Val gene in the subacute phase (4 months after
stroke) but did not find similar results at 2 months after stroke.
Some current findings have found that val66met SNPs do not
predict long-term functional outcomes in stroke patients (French
et al., 2018). Liepert et al. (2015) observed 67 patients with
ischemic stroke, and their results indicated that polymorphic
BDNF was closely related to the recovery of function after
ischemic stroke. These findings indicate that BDNF contributes
to the recovery and maintenance of brain function following
stroke.

Animal experiments can provide a deeper understanding of
complex physiological and pathological phenomena. Animal
studies have shown that BDNF levels dynamically change,
gradually increasing after birth, reaching a stable level in
adulthood (Silhol et al., 2005), and gradually decreasing with
advancing age (Wang et al., 2019). In a rat cerebral infarction
model, BDNF and TrkB were permanently reduced at the
center of cerebral infarcts, while the immune response in
the ischemic penumbra was increased (Ferrer et al., 2001).
Some researchers have found that the neuronal survival rate
decreases significantly when BDNF activity is inhibited by
the TrkB-Fc fusion protein (Larsson et al., 1999). These
studies suggest that endogenous BDNF may protect neurons
from ischemic damage and function as an endogenous
neuroprotective agent. The neuroprotective role of BDNF
in stroke has been demonstrated in subsequent intervention
studies using exogenous BDNF. Zhang and Pardridge (2001)
treated a mouse model of cerebral infarction with exogenous
BDNF and observed reduced infarct volume at both 24 h
and 7 days after treatment vs. control groups. Kiprianova
et al. (1999) showed that intravenous infusion of BDNF in
a continuous mouse model of stroke prevented the death
of hippocampal CA1 neurons. Jiang et al. (2011) found no
significant reduction in infarct volume in a mouse model
of stroke after nasal BDNF administration but did find
improvement in neurological recovery compared with control
groups. These findings confirm that exogenous BDNF is
meaningful in the treatment of cerebral infarction and revealed
that BDNF also plays an active role in the treatment of
stroke. In addition, rat models with knockout of the BDNF
val66met single-nucleotide homolog (BDNFmet/met) showed
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phenotypic characteristics similar o hose of humans (Chen
et al., 2006). Compared with wild-type mice, BDNFmet/met

mice exhibited severe motor impairment only at 7 days after
stroke, but not at 2 weeks or 1 month (Qin et al., 2011).
Additionally, BDNFmet/met mice showed reduced angiogenesis
and elevated expression of thrombospondin-1 (TSP-1) and
its receptor CD36, which are antiangiogenic factors. It
has been suggested that the Met allele is associated with
angiogenic deficits after stroke (Qin et al., 2011). These findings
indicate that the relationship between BDNF polymorphisms
and the degree of motor rehabilitation is complex and
dependent on post-stroke stage. Therefore, combining brain
microstructure findings with those from genetics can predict
motor rehabilitation in stroke patients better than using a single
index.

RELATIONSHIP AMONG CST INTEGRITY,
GENETICS, AND PREDICTION MODELS
OF MOTOR RECOVERY

From what has been discussed above, both CST integrity
and BDNF genotype were shown to significantly influence to
motor recovery of patients with stroke. Exploring the main
factors that affect the efficacy of high-frequency repetitive
transcranial magnetic stimulation to improve motor function
in subacute stroke patients with moderate to severe upper
extremity motor involvement, Chang et al. (2016) also found
that the functional integrity of CST and BDNF genotype had
the greatest impact on the improvement of upper extremity
motor recovery. As well as, BDNF levels play a key role in
white-matter microstructural plasticity (Lu et al., 2005; Jickling
and Sharp, 2015). Luo et al. (2019) found that serum BDNF
was positively correlated with FA in the CST in stroke patients
with good motor recovery, whereas no such results were found
in stroke patients with poor motor recovery. Park et al. found
that in patients with stroke, FA in the ipsilesional CST was
positively correlated with the motor outcome at 3 months in
the presence of the Met genotype. These researchers concluded
that the microstructural integrity of the intra-hemispheric tracts
might be related to different processes of motor recovery
dependent on the BDNF genotype (Park et al., 2020). Kim
et al. (2016) also showed that poorer motor function was
associated with higher radial diffusivity values in the CST
for the Val/Met and Met/Met genotype groups in the early
chronic stroke phase, which demonstrated that motor recovery
in stroke patients might be affected by the BDNF val66met
polymorphism, possibly through its effects on the distinct
pathological processes underlying CST degeneration. In general,
direct and/or indirect relationships between microstructure and
genes are suggested by these findings, but causal relationships
of these two factors have not been established. Exploring the
microstructure of the CST as a potential mediator between
gene expression and motor recovery is an urgent priority for
understanding the rehabilitation mechanisms operating after
subcortical stroke.

Few studies have combined data on CST microstructure with
data on BDNF polymorphisms for the prediction of motor
rehabilitation after stroke. Chang et al. predictedmotor outcomes
at 3 months using patient characteristics, integrity of the CST,
and BDNF genotype. They found that in all stroke patients,
the independent predictors of motor outcome at 3 months
were baseline upper-extremity motor impairment, age, stroke
type, and CST integrity. Further, in the group with severe
motor impairment at baseline, the number of Met alleles in
the BDNF genotype was an independent predictor of stroke
(Chang et al., 2017). These results indicate that in patients with
subacute stroke, the prediction of post-stroke motor recovery
using CST integrity could be improved by the addition of the
BDNF genotype factor. Therefore, prediction models combining
CST with BDNF genotype are better than models with only
one factor for stroke patients with severe motor impairment.
Although using this combination strategy in patients at different
stroke stages requires further validation in clinical applications,
this idea provides new perspectives on how to establish a
prediction model of post-stroke motor rehabilitation in the
future.

CONCLUSIONS

The microstructure of the CST and BDNF polymorphism
status plays a key role in motor recovery after subcortical
stroke. Future predictive models of stroke recovery are likely
to include a combination of structural and genetic factors to
determine patient-specific interventions for rehabilitation. These
two factors are dynamic changes across different stages of stroke
rehabilitation and may change depending on the amount of
rehabilitation in patients with subcortical stroke. Moreover, their
relationships and their predictive effect on stroke rehabilitation
remain unclear. Linear mixed-effects model could be used to
investigate the evolution of these two factors in a longitudinal
dataset. Therefore, future studies should focus on verifying the
roles of microstructure and genetic polymorphisms in motor
rehabilitation in longitudinal designs with large samples, as well
as on gene-knockout effects in mouse models of stroke to explore
the relevant neurological mechanisms. These approaches will
help to realize personalized rehabilitation strategies for stroke
patients.
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