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Regulatory B cell or “Breg” is a broad term that represents the anti-inflammatory activity of
B cells, but does not describe their individual phenotypes, specific mechanisms of
regulation or relevant disease contexts. Thus, given the variety of B cell regulatory
mechanisms reported in human disease and their animal models, a more thorough and
comprehensive identification strategy is needed for tracking and comparing B cell subsets
between research groups and in clinical settings. This review summarizes the discovery
process and mechanism of action for well-defined regulatory B cell subsets with an
emphasis on the mouse model of multiple sclerosis experimental autoimmune
encephalomyelitis. We discuss the importance of conducting thorough B cell
phenotyping along with mechanistic studies prior to defining a particular subset of B
cells as Breg. Since virtually all B cell subsets can exert regulatory activity, it is timely for
their definitive identification across studies.

Keywords: regulatory B cell (Breg cell), IL-10, Treg, autoimmunity, EAE (experimental autoimmune
encephalomyelitis), multiple scleorsis (MS), BDL
INTRODUCTION

Alongside T cells, B cells or B lymphocytes make up the adaptive immune system that recognizes
and retains memory of foreign antigen encounters. The B cell receptor (BCR) or immunoglobulin
(Ig) is a cell surface protein that recognizes intact antigens. BCR binding to cognate shapes activates
B cells and leads to downstream protective functions including antigen presentation, upregulation
of effector cell surface proteins and soluble factors and B cell differentiation into specialized effector
subsets (1, 2). B cells are continuously produced in the bone marrow (BM) to replenish and replace
expended populations in peripheral tissues (3, 4). High B cell turnover sustains a large and diverse
BCR repertoire, that can protect against a vast array of foreign antigens, but can also be self-reactive
(3, 5, 6). To minimize pathological autoimmunity regulatory cell subsets, which include T cells,
macrophages and B cells, control and resolve inflammation and reestablish homeostasis through
many mechanisms (7–10). Targeting regulatory cells for depletion to boost anti-cancer responses or
expansion to dampen autoimmunity is a current therapeutic strategy (9, 11–13).

Although there are differences between the human immune system and animal models, B cells
have similar functions and residence across species. B cells are divided into two broad subsets based
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on origin. Conventional B2 B cells in mouse and human are BM-
derived and account for most B cell populations in circulation
and in the secondary lymphoid organs including lymph nodes,
spleen and mucosal sites (14). In mice, B1 B cells were shown to
be derived from the yolk sac/fetal liver and largely self-renew in
the peritoneal cavity and surrounding abdominal tissues and
secrete large amounts of IgM for innate-like immune protection
(15, 16). B1 B cells are subdivided into B1a and B1b in mice (17).
Both B2 and B1 B cells can engage in antigen-specific immune
responses, secrete protective antibodies and become further
specialized based on 1) localization to tissue types/structures
and proximity to other cells; 2) BCR affinity for self or foreign
ligands and 3) availability of growth signals, stimulation, and
differentiation factors. In both mice and humans, BM-derived B
cells follow a maturation trajectory from immature states (pre-B,
pro-B, transitional) to mature marginal zone and follicular
subsets (18). Naïve B1 and B2 B cells become activated
through their BCR and related signaling (co-stimulation,
cytokines) and differentiate into long-lived memory or
antibody secreting plasma cells (19, 20). During differentiation
into plasma cells, activated B cells in both mice and humans,
downregulate canonical B cell markers (CD19, surface Ig, Pax5)
and upregulate transcriptional programs needed for efficient
protein folding and secretion (IRF4, Blimp-1, XBP1) (19, 21–
24). In this process, B cells mature through an intermediary
plasmablast stage characterized by high proliferation and
migration to effector sites (19, 21).

While the term “Breg” denotes a unique B cell subset,
regulatory activity can be found in virtually all B cell subsets
(25–28). Thus, Breg describes the general capacity for B cells to
dampen immune responses but does not detail their exact nature,
i.e., phenotype, mechanism of regulation or functional context.
Many recent reviews summarize a multitude of mechanisms by
which B cells are anti-inflammatory. For simplicity, these
mechanisms are often divided into IL-10-dependent and
-independent activities (10, 26, 28, 29). We support the concept
that while all B cell subsets have contextual regulatory capacity,
some subsets are inherently better suited than others. Because of
this complexity, characterization of specific B cell subsets that
exert regulatory activities has been incomplete and inconsistent
across model systems and between research groups. Thus, there is
a need for a definitive characterization strategy to assess novel
regulatory B cell subsets. Here, we will review the history of B cell
immune regulation research with focus on the discovery and
testing of B cell subsets whose phenotype and mechanism of
action have been clearly delineated. These include IL-10 producing
plasmablasts/plasma cells (30–32) (Figure 1) and B cell IgD low
(BDL) that interact with and induce proliferation of CD4+Foxp3+

T regulatory cells (Treg) (33) (Figure 2). In each of the four
articles highlighted, negative immune regulation was assessed
using the animal model of multiple sclerosis (MS), experimental
autoimmune encephalomyelitis (EAE), and measured as the level
of recovery from the signs of disease. Although B cell negative
immune regulation has been reported in a variety of human
disease models, for brevity and continuity, we are limiting this
review to MS and its animal model EAE.
Frontiers in Immunology | www.frontiersin.org 2
THE DISCOVERY OF B CELL NEGATIVE
IMMUNE REGULATION

The discovery of a regulatory role for B cells in autoimmunity,
ironically, was a serendipitous finding that was the outcome of a
study in the laboratory of Dr. Charles A. Janeway, Jr. to
determine whether B cell antigen presentation of peptides
could induce CD4 T cell priming. This question was asked
using EAE, which was well suited to address the question
because of its dependence upon CD4 T cell priming to a self-
antigen (34). EAE was induced in B10.PL (H-2u) mice by
immunization with the myelin basic protein (MBP)
immunodominant peptide Ac1-11 emulsified in complete
Freund’s adjuvant accompanied by two doses of pertussis toxin
(day 1 & 2) (35). This model was chosen because it was the first
peptide active immunization model of EAE (36). To address the
original question, B10.PL mice rendered deficient of mature B
cells by disruption of the IgM heavy chain (B10.PLmMT) (37)
were immunized with Ac1-11 (35). Now as part of scientific
history, we showed that mMT mice not only succumbed to EAE,
but failed to recover from the signs of EAE (35). This later
finding is an advantage of using B10.PL mice because WT mice
spontaneously recover from EAE. Although this result did not
answer the original question of whether B cells can take up and
present peptide antigens to T cells, it did indicate that B cell
antigen presentation was not required for EAE induction. The
observation that the mice did not recover from EAE provided the
first evidence that B cells play a regulatory role in autoimmune
responses. Remarkably, this finding was obtained prior to the
identification of CD4+Foxp3+ Treg. The question then became,
through what mechanisms do B cells facilitate resolution of EAE
or other inflammatory conditions?
IL-10/IL-35-SECRETING PLASMABLASTS/
PLASMA CELLS

IL-10 is a strong anti-inflammatory cytokine, which can potently
suppress antigen presentation, among other functions, leading to
attenuated immune responses (38, 39). IL-10-deficient mice
develop a severe, nonrecovery EAE phenotype much like B
cell-deficient animals (40, 41). Fillatreau and colleagues, in
2002, reproduced our findings that B cells are required for
EAE recovery in C567BL/6 mice using the myelin
oligodendrocyte glycoprotein (MOG) 35-55 peptide
immunization model (42). Mechanistically, they were the first
to demonstrate a role for B cell production of IL-10 in EAE
recovery (42). This was accomplished utilizing IL-10-deficient
mice and a combination of mixed BM chimeras and B cell
transfers. Since this landmark finding, a multitude of subsequent
studies have assessed B cell production of IL-10 through methods
such as ELISA and ELISPOT, flow cytometry, fluorescent
reporters and quantitative PCR (43). IL-10 production was
commonly assessed following potent antigen non-specific in
vitro B cell stimulation (44). While many, if not all, B cell
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subsets can produce IL-10 after in vitro stimulation, concurrent
secretion of pro-inflammatory cytokines (IL-6, TNF-a) has been
reported, suggesting that in vitro activation is not sufficient to
assess true regulatory activity via IL-10 (25, 45). Indeed, B10 B
cells named for their production of IL-10, are not a specific
subset of B cells, but defined by IL-10 production, regardless of
whether the IL-10 is regulatory in a disease context (28). Thus,
measuring IL-10 production alone is not sufficient to define/
phenotype B cell subsets with regulatory activity. The later
requires mechanistic studies utilizing well-defined and/or
purified B cell subsets, and as shown by Fillatreau and
colleagues (42), the utilization of IL-10-deficient B cells.

Once it was recognized that B cell production of IL-10 was anti-
inflammatory in EAE, the search commenced to identify the
phenotype of the regulatory B cell. This was a daunting task given
that all B cell subsets have the capacity to produce IL-10. In
particular, B cells produce copious amounts of IL-10 following
TLR stimulation (44, 46–49). Interestingly, CFA used to induce EAE
has numerous TLR ligands and B cells stimulated via TLR ligands
were shown to suppress EAE (44, 46). It took until 2014 for the
identification of plasmablasts/plasma cells as the major source of B
Frontiers in Immunology | www.frontiersin.org 3
cell-derived IL-10 during EAE (30). In the first of two articles,
Fillatreau and colleagues, used both EAE and Salmonella infection
along with BM chimeras utilizing knockout (KO) mice, to
demonstrate that IL-35 production was also a critical B cell-
derived anti-inflammatory cytokine (30). IL-35 as a potential B
cell regulator was identified via a microarray approach utilizing B
cells expressing IL-10 as detected using IL-10 reporter mice.
They went on to show that splenic plasma cells were the
major contributors of IL-10 and IL-35. Here, we want
to emphasize that thorough cell surface phenotyping
(CD138hiTACI+CXCR4+CD1dintTim1int) combined with
intranuclear detection of the plasma cell transcription factor
Blimp were utilized (30). This was the first time a “definitive” B
cell phenotype was identified exhibiting regulatory activity via
secretion of IL-10/IL-35 (Figure 1). IL-10/IL-35 production was
used as the starting point to identify the B cells, not as the endpoint.

In the same year, Matsumoto and colleagues also reported
that plasmablasts were the primary producers of IL-10 in EAE
(31). IL-10 reporter mice (Venus) were used as the strategy to
identify IL-10 producing B cells, which were highly prevalent in
the draining lymph nodes, but not in the spleen or spinal cord on
FIGURE 1 | Plasmablast/plasma cells (PC) regulate through many mechanisms in different tissues. PC facilitate microbial homeostasis at mucosal surfaces like the
small and large intestine through secretion of lgA, a dimerized lg with added features. These PC can migrate to the central nervous system (CNS) and secrete IL-10
to dampen inflammation therein. In draining lymph nodes (dLN), PC secrete IL-10 to inhibit antigen (Ag) presentation by dendritic cells (DC), thereby dampening
immune responses. PC secrete IL-10 and IL-35 in the spleen which is believed to inhibit Ag presentation therein.
December 2021 | Volume 12 | Article 787464
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day 14 of EAE (~peak of disease). Using cell surface phenotyping
and intranuclear Blimp-1 staining, CD138+ plasmasblasts/
plasma cells were identified as the major IL-10 secreting cells
during EAE. Confirmation that the plasmablasts/plasma cells
were negative regulatory in EAE came from studies utilizing
Blimp-1 B cell conditional KO mice. Additional studies indicated
that lymph node, but not splenic plasmablasts/plasma cells were
responsible for the negative regulation. To resolve the splenic
(30) versus lymph node origin of the regulatory plasmablasts
(31), adoptive transfer experiments were conducted, which
ultimately demonstrated that the negative immune regulation
occured in the lymph node independent of the germinal center
(i.e., plasmablasts). In retrospect, the lymph node as the location
of B cell-derived IL-10 immune regulation makes intuitive sense,
due to IL-10s’ potent ability to suppress antigen presentation.
MOG35-55 EAE is induced by immunization driving T cell
priming due to delivery of the peptide to the draining lymph
node via dendritic cells. IL-10 has been reported to negatively
regulate the upregulation of MHC class II, co-stimulatory
molecules and cytokines important for CD4 T cell priming (50,
51). Indeed, in vitro studies suggested that dendritic cells were
the target of the plasmablast-derived IL-10 (31). TLR2, 4 and/or
Frontiers in Immunology | www.frontiersin.org 4
9 agonists in the CFA likely induced the IL-10 production by the
plasmablasts/plasma cells (30, 31). Here, again, IL-10 production
was the starting point and the implementation of multiple
strategies were utilized to definitively identify the B cell subset
that produced the regulatory IL-10 (Figure 1).

In addition to autoimmunity, B cell activation and
differentiation into antibody-secreting plasma cells is also
associated with IL-10 competency and immunosuppressive
activity in cancer (31, 52–54). While plasmablast/plasma cell
characterization has narrowed the phenotype for IL-10-secreting
B cells, several plasma cell populations exist between the BM,
secondary lymphoid organs (spleen/lymph nodes) and mucosal
sites (i.e., gut) (55–60). Of importance, not all PC can produce
IL-10, such as IgG-secreting plasma cells (53). Interestingly,
microbial sensing through TLR (54) and the presence of gut
commensals (61) seems required for effective plasmablast/
plasma cell immunosuppression (30, 31). The gut microbiome
and its role in MS has been investigated using models like germ-
free, single microbe monocolonized and specific pathogen-free
animals in tandem with EAE and by sequencing microbiomes
from human patients (62–64). While a definitive MS
microbiome is yet unclear, these cumulative studies have
FIGURE 2 | BDL. In the spleen BDL promote regulatory T cell (Treg) proliferation through GITR-GITRL interactions. Treg attenuate experimental autoimmune
encephalomyelitis (EAE) severity.
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identified microbes associated with disease activity as well as
quiescence and elucidated further mechanisms through which
the gut microbiome impacts immune regulation (65–67). While
a multitude of mechanisms exist, IgA production in the gut has
emerged as an important regulator of the composition of the gut
microbiome. IgA is the most abundant Ig in the body. In human
adults, around 5 mg is secreted at mucosal surfaces per day (68,
69). IgA is produced by gut plasma cells residing in the lamina
propria of the small and large intestine and is secreted as a dimer
joined covalently by the J-chain protein which acquires an
additional secretory component during translocation into the
gut lumen via the epithelium (70–72) (Figure 1). In the gut, IgA
canonically targets microbes through antigen-specific binding
but can also participate in non-specific binding via glycan-, J-
chain-, and secretory component-driven adherence (72–74).
Through these combined mechanisms, IgA facilitates clearance
of potentially pathogenic microbes while allowing beneficial
commensals to thrive (75, 76).

Rojas and colleagues, investigated whether there was a link
between gut IgA, IL-10 and EAE penetrance (32). They identified
gut-derived IgA-secreting plasma cells as a potent source of IL-
10 and that these cells ameliorated EAE by trafficking from the
gut to the brain. In their work, IgA PC were characterized by
multiple techniques including fluorescent reporters with
parabiosis tracking, flow cytometry and microscopy and were
functionally assessed via ELISPOT and adoptive cell transfer
analysis. These plasma cells were shown to be IgA- and IL-10-
secreting, expressed Blimp-1, had low levels of canonical B cell
markers (B220) and reacted with gut-derived antigens in vitro
(32) (Figure 1).

While each of the three highlighted studies discussed above
were comprehensively and elegantly conducted using state-of-
the-art techniques, one can ask how does induction of EAE with
immunization utilizing a potent TLR stimulating adjuvant (CFA)
have relevance to human MS? The nature of this question is
relevant to most animal models of human disease. Nevertheless,
interestingly, all FDA approved therapies for MS have shown
efficacy in the EAE model of MS. Although little is known
regarding the role of IL-35 in MS, it has been shown to be
elevated in the serum of treated patients as compared to the
control group (77). A second study found that IL-35 was reduced
in relapsing-remitting MS patients as compared to healthy
controls (78). A third study reported that IL-35 was higher in
MS patients as compared to healthy controls (79). In a fourth
study, MS patients infected with helminths had higher levels of
IL-35-producing B cells in the CSF, which correlated with
reduced MRI lesions, as compared to uninfected patients (80).
In vitro studies, showed that IL-35 could drive IL-35 and IL-10
production by CD19+ B cells and induce a Treg-like phenotype
(80). While these studies are interesting, the lack of definitive B
cell phenotyping limits impact. Taken together, the collective IL-
35 data indicate that much remains unknown regarding the
source of IL-35 in MS and its mechanism of action. Human
relevance investigated by Matsumoto and colleagues utilized an
in vitro culture system whereby healthy human peripheral blood
B cells were stimulated through TLR9 with CpG along with IFN-
Frontiers in Immunology | www.frontiersin.org 5
a/IFN-b to induce IL-10 production (31). It was found that of
the various plasmablast populations generated, those derived
from naïve B cells, with a CD27intCD38+ phenotype, expressed
the highest level of IL-10 and remained IgM+. Whether these
cells are regulatory in MS is not known. In the Rojas study, MS
patients were utilized to demonstrate that IgA bound bacteria
was reduced during active disease (32). The presence of IgA-
producing plasma cells in the MS brain has since been confirmed
(81). While the gut microbiota is closely associated with IgA-
secreting plasma cells, the signals required for IL-10 secretion
and migration to sites of autoimmune inflammation require
further exploration.

In summary, although plasmablasts/plasma cells identified by
Blimp-1 expression were shown to be the regulatory B cell in EAE,
each study identified a different mechanism. In the spleen, they
regulated via IL-35, via an unknown mechanism (30) (Figure 1). In
the lymph node, IL-10 was the primary immunosuppressive
cytokine that likely targeted dendritic cell antigen presentation
(31) (Figure 1). While in the gut, IgA plasma cells trafficked to
the CNS and suppressed via IL-10 (32) (Figure 1). While the IL-10
target in the CNS was not investigated, it was shown that
overexpression of IL-10 in the CNS via transfer of immortalized
fibroblasts producing IL-10 or an adenovirus expressing IL-10 into
the CNS potently attenuated EAE severity (82, 83). These collective
studies illustrate the complexity of B cell regulation within just the
plasmablast/plasma cell subset, which itself is a complex group of
cells with differential production of Ig isotypes, anatomical location,
cytokine profiles and longevity.
MAINTENANCE OF TREG HOMEOSTASIS
BY BDL

As discussed above, we were the first to demonstrate a negative
regulatory role for B cells in promoting recovery from EAE (35).
This seminal study was conducted using the active immunization
model utilizing CFA. To avoid bystander effects of CFA (i.e., TLR
agonism), we first confirmed that B10.PLmMT mice did not
recover from EAE induced by the passive transfer of MBP-
specific encephalitogenic CD4+ T cells generated from MBP-
TCR transgenic mice (84, 85). Interestingly, in this study
utilizing BM chimeras, we did investigate IL-10 expression, but
in the context of the recently described CD4+Foxp3+ Treg, not B
cells (85). In a follow up study, we utilized anti-CD20 B cell
depletion as an alternative to genetic disruption (mMT) to render
mice B cell deficient, to further support our findings that B cells
are required for EAE recovery (86). In this study, we moved from
a BM chimera approach to B cell adoptive transfer and showed
that neither IL-10 nor MHC class II were required for B cells to
drive EAE recovery. Keeping with our previous findings, we
investigated a role for Treg and found that B cells induced their
proliferation in a glucocorticoid-induced tumor necrosis factor
receptor ligand (GITRL)-dependent manner (Figure 2). This
mechanism was supported by findings that mice deficient in B
cells (either mMT or anti-CD20 depleted) had a significant
reduction in splenic Treg and that B cell adoptive transfer into
December 2021 | Volume 12 | Article 787464
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mMT mice restored Treg numbers and recovery from EAE.
Antibody blocking of GITRL prior to B cell adoptive transfer,
attenuated Treg expansion and EAE recovery.

By utilizing two different EAE models (active & passive) and
two means to render mice deficient in B cells (genetic & antibody
depletion), we were confident that B cells were required for
recovery from EAE (85, 86). We then required a strategy by
which to identify and subsequently purify the regulatory B cell
subset. Unlike IL-10, we could not utilize GITRL due to its very
low expression on B cells (86). We did perform some targeted
adoptive transfers using FACS purified B cell subsets, but found
that strategy too laborious, costly and unfocused. Thus, we chose
anti-CD20 partial B cell depletion. By swabbing the IgG2a heavy
chain of the totally B cell depleting anti-CD20 to IgG1, B cell
depletion efficiency was reduced (33, 87). We would like to thank
Biogen Idec for generously providing these antibodies. Anti-
CD20 IgG1 depleted the majority of follicular B cells while
sparing marginal zone B cells (33). Thus, we were surprised
that the B cell regulatory activity resided within the few follicular
B cells that were not depleted (33). We then employed extensive
flow cytometry cell surface phenotyping to determine that the
non-depleted follicular B cells were enriched for IgDlow

expressing B cells. Using FACS purified follicular IgDlow B
cells, we showed that upon transfer into mMT mice, they drove
Treg proliferation and EAE recovery. Importantly, neither
follicular IgDhi nor marginal zone B cells exhibited regulatory
activity. Given that only follicular IgDlow B cells were regulatory
in the context of our EAE model in conjunction with RNAseq
studies, this evidence supported that we had identified a new B
cell subset and named them B cell IgD low (BDL). Several
strategies were utilized to determine that BDL are not part of
the marginal zone B cell lineage. Developmental studies showed
that BDL emerge in the spleen after the transitional 2 subset,
similar to follicular B cells. However, how BDL fit into follicular B
cell development is not known. A more comprehensive review of
how BDL were discovered and the assays used to identify then
were recently published (88, 89).

We too, were interested in whether our findings were relevant
to humans. In that regard, we found that BDL activity existed in
IgDlow B cells in both human spleen and peripheral blood, as
determined using an in vitro Treg expansion assay (33). However,
a definitive human BDL phenotype was not identified nor were
studies in MS performed. Thus, much remains to be discovered
regarding B cell biology, particularly in the context of disease. In
summary, by utilizing a variety of experimental approaches
combined with comprehensive cell surface phenotyping and
mechanistic studies, like IL-10 secreting plasmablasts/plasma
cells, we have successfully identified a definitive B cell subset
with regulatory activity (33, 88).
B CELL PHENOTYPING TO IDENTIFY
REGULATORY B CELL SUBSETS

Previous research has uncovered many B cell subsets with
regulatory potential that utilize a large cadre of regulatory
Frontiers in Immunology | www.frontiersin.org 6
mechanisms (10, 26). This highlights the complexity and
challenges in targeting these populations for in-depth testing
and therapeutic development. Here, we describe a strategy for
identifying regulatory B cell subsets using gold-standard and
state-of-the-art methodology that has three steps: 1) in-depth B
cell subset phenotyping, 2) determination of B cell subset origin
and 3) functional/mechanistic analysis. These steps do not need
to be performed in a specific order, and the process of definitively
characterizing a novel subset is often iterative and cyclic in
nature (Figure 3).

In-Depth B Cell Subset Phenotyping
For in-depth B cell subset phenotyping, flow cytometry is a powerful
tool that allows for comparative analysis of many cell surface and
intracellular/intranuclear markers combined. However,
conventional flow cytometry is limited in breath due to an upper
limit of 12-14 colors (markers) with a conventional flow cytometer
equipped with four lasers. If the flow cytometer also has a UV laser,
20 colors are possible. However, realistically, most laboratories have
a upper limit of 6-8 colors. In our studies, identification of BDL

required six colors that includes B220 or CD19, IgM, IgD, CD21,
CD23 and CD93 (33) (Figure 4). In addition, this combination of
cell surface markers can be used to identify splenic transitional
subsets, the marginal zone lineage and follicular B cells (Figure 4).
In unpublished studies, we have now identified an additional BDL

marker making our panels seven colors. We also routinely
phenotype Treg (CD4+Foxp4+) and if done in combination with
B cell phenotyping would be nine colors. If B cells are enzymatically
obtained from tissues the hematopoietic marker CD45 along with a
live/dead stain need to be included. Determining IL-10 expression
requires either a reporter or intracellular staining. Similarly
FIGURE 3 | A three-step process to identify regulatory B cell subsets.
Complete characterization of novel regulatory B cell subsets requires three
steps: subset phenotyping, lineage determination, and functional analysis. To
accomplish this goal, many experimental techniques are required. The
process is often iterative, and steps can be completed in any order and
revisited as new information is gained.
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complex, delineation between mouse plasmablasts and plasma cells
from other B cell subsets requires both cell surface phenotyping,
intracellular (IL-10/IL-35) and intranuclear transcription factor
identification (i.e., Blimp-1, IRF4), because no cell surface markers
alone identify these subsets (Figure 5). Surface markers including
CD19low/neg, B220low, CD20-, CD38+, CD44hi, CD27+, CD138+,
TACI+, CXCR4+, Tim1+, cell surface Iglow/- are used in addition
to transcription factor identification to further characterize subsets
of plasmablast/plasma cells (Figure 5). One major hurdle in
identifying BDL and plasmablasts/plasma cells is that they are
rare, making their purification for downstream analysis
challenging. Because transcription factor staining for flow
cytometry kills target cells, Blimp-1 reporter animals are necessary
to FACS purify plasmablasts/plasma cells (90). Additionally, IgM-
targeting can activate B cells so care must be taken when purifying
cell subsets using this marker. Other markers associated with B cell
FIGURE 5 | Plasmablast (PB)/pIasma cell (PC) differentiation. B cells are characterize
CD20, CD19, and surface lg (sur-lg). When B cells differentiate into PC, they transver
maturation continues, Pax5 expression is lost and other transcriptional programs (IRF
lost. Some subsets of PB and PC have expression of CD138 among other markers,

Frontiers in Immunology | www.frontiersin.org 7
regulation to consider are CD5, CD1d, PD-L1 and FasL (10, 26). In
mouse studies, it is important to analyze several lymphoid tissues to
determine if the novel B cell regulatory subsets are sequestered to a
portion of the body or more generally found inmultiple tissue types.

B subset markers in mouse and human are relatively similar,
but differences do exist. CD10 is a human B cell marker not used
in mice and CD38 is used more often in humans than mice (60).
Human tissues beyond peripheral blood can be difficult to obtain
and B cells in circulation do not allow the analysis of specialized
B cells subsets such as marginal zone B cells, germinal center B
cells, long-lived plasma cells or mucosal B cell subsets. Human B
cell subsets are also infinitely more complex than mice due to
exposure to environmental and microorganism-derived antigens
leading to isotype class switching and memory and plasma cell
generation. Here, BDL will be used to illustrate human B cell
complexity. Although, we examined a number of B cell markers
FIGURE 4 | Differentiation of BDL from other splenic B cell subsets. To identify BDL, B220
+ cells are selected and subsequent comparison of lgM and CD21

subdivides B cells into three groups based on maturity: marginal zone (MZ) and marginal zone precursors (MZP), transitional 1 (TI) and T2 cell and T3 and follicular
(FO) B cells. CD23 and CD93 are subsequently used to identify FO B cells. Within the FO B cell subset, BDL are selected for their low/negative expression of lgD.
d by their high expression of transcription factor Pax5 and surface markers lgD,
se through a PB stage known for its high proliferative capacity. As PC
4, Blimp-I, XBPI) are upregulated. Concurrently, most B cell surface proteins are
but not all express these.
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to narrow the BDL phenotype in humans (unpublished
observations), in the end, the only reliable phenotype was
CD19+ (or equivalent B cell marker) and IgDlow. In addition to
BDL, the CD19

+IgDlow/- phenotype can include: 1) isotype class
switched effector B cells, 2) isotype class switched memory B
cells, 3) IgM memory B cells, 4) circulating transitional B cell
subsets and 5) circulating marginal zone B cells. It is unlikely that
flow cytometry alone could differentiate between the various
IgDlow/- human B cell subsets. Thus, newer technologies may
need to be applied. These include imaging mass cytometry
(CyTOF), which is a mass spectrometry approach that utilizes
metal conjugated antibodies to identify ~50 parameters/cells
with minimal overlap in the metal signals (91). Primary
disadvantages include its lack of mainstream use, slow flow
rate and destruction of the analyzed cells. Spectral flow
cytometry is a newer technology that also has the advantage of
minimal overlap of signals. While similar to conventional flow
cytometry, its fluorescent emission spectrum is captured by
detectors across several defined wavelength ranges. In essence,
every molecule’s fluorescent spectrum is recorded as a spectral
signature that can be discriminated from other fluorescent
signatures (92). Spectral flow cytometers are now commercially
available and are slowly being incorporated into basic research
studies. Finally, single cell RNA sequencing (scRNAseq) has
become a strategy of choice to identify rare subsets of immune
cells (93). Detection of cell surface proteins via antibodies (i.e.,
TotalSeq™) can be used alongside scRNAseq strategies (i.e., 10X
Genomices) to analyze the transcriptional profiles of pre-marked
immune cell subsets (94). In addition, full-length BCR sequences
can also be obtained (95). The best platform to choose is
dependent upon the experimental question. 10X Genomics
allows the analysis of high numbers of individual cells
(thousands) and can be combined with cell surface
identification. However, its primary weakness is that sequence
read depth is limited to high copy number transcripts, so unique
markers expressed at low levels may be washed out during
analysis. In comparison, both the Fluidym and Takara systems
can analyze sequences with low copy number transcripts, but
fewer cells can be analyzed per run (hundreds) (93, 96, 97).

Determination of B Cell Subset Origin
B cell phenotyping can provide strong evidence of the lineage from
which a particular B cell subset derives. However, additional
developmental studies should be performed. In comparison with
conventional B2 B cells from the BM, B1 B cells are derived from the
yolk sac/fetal liver, thus they can be eliminated with BM
transplantation (98). Marginal zone B cells require Notch-2
signaling for development and any disruption in that pathway
prevents their differentiation (99). Plasmablast/plasma cell
differentiation can be prevented by loss of Blimp-1 expression
(100). The loss of XBP-1 in plasmablasts/plasma cells can be used
interrogate relevance of Ig secretion with other mechanisms (101).
Germinal center B cells require BCL6 and its deficiency leads to
truncation of the germinal center response (102). The transcription
factor ABF-1 prevents plasma cells differentiation, without
disrupting memory (103). Bach2 was recently shown to be
essential for the transition from germinal center B cells to
Frontiers in Immunology | www.frontiersin.org 8
memory B cells (104). Undoubtably, other transcription factors
can also be targeted to disrupt the development of specific B cell
subsets. The developmental timing/kinetics of any B2 subset can be
tracked after BM transplantation or sublethal irradiation (33). In
addition, adoptive transfer is also an effective strategy for
monitoring B cell subsets, especially when used in tandem with
congenic markers (CD45.1/2) (33). For instance, the adoptive
transfer of transitional 2 cells leads to the emergence of both the
follicular and marginal zone lineages, as well as BDL (33). When
used together, these KO and cell reconstitution strategies can
experimentally interrogate the lineage of regulatory B cell activity.

Functional/Mechanistic Analysis
Beyond identifying definitive markers of regulatory B cells subsets
and where they come from, characterization of their functional
capacity is equally important. Functional capacity includes 1) the
mechanism through which the regulatory B cell yields an altered
immune response and 2) the context in which this is applicable
(type of disease, target cells). As evidenced through the story of B
cells in EAE, not every regulatory B cell activity is relevant in all
model systems and potentially multiple B cell subsets can be
regulatory through different mechanisms at the same time. Thus,
choosing and accurately describing the disease context is important
for characterizing the regulatory B cell subset. Mechanisms of
regulatory B cells can be investigated using many of the
approaches discussed above where cellular activities (i.e.; IL-10/IL-
35 secretion) are altered by gene/transcript-targeted deletion/
overexpression or protein inhibition/stimulation with drug
compounds. Genetic animal strains (including B cell-conditional
varieties), BM chimeras, adoptive cell transfers and in vitro co-
culture systems are used in tandem with these approaches to
minimize confounding effects of gene manipulation on other,
non-B cells. Further methods for investigating regulatory B cell
mechanisms include measuring cytokines and effector molecule
production via reporters (i.e.; IL-10, Blimp-1), ELISA, ELISPOT,
quantitative PCR and RNAseq. While conducting these analyses, it
is important to keep in mind the purity of tested cell subsets, this is
where in-depth B cell phenotyping can aid in and strengthen the
interpretation of results.
CONCLUDING REMARKS

To ensure the accurate identification of novel B cell subsets with
regulatory activity and their mechanism, consistent and
comprehensive phenotyping along with mechanistic studies are
necessary. The four laboratories, including our own, whose work
was discussed in this review were chosen because they all utilized
multiple strategies to identify a definitive B cell subset whose
mechanism of action was confirmed using multiple mechanistic
approaches. These included KO mice, BM chimeras, genetic
approaches and adoptive cell transfer, among others. Although
each story was years in the making, cumulatively, they provide a
path by which others can follow to discover novel regulatory B cell
subsets and mechanisms in the context of other diseases. Similar
investigations have been made in models beyond MS/EAE that
researchers interested in B cell regulation should explore. The
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identification of regulatory B cell subsets and their mechanism
leads to the question of how they can be exploited for the
treatment of anti-inflammatory diseases. The main hurdle with
utilizing B cells as an adoptive cell therapy is that they do not self-
renew, like their T cell counterparts. Thus, longevity must be
addressed. In the context of IL-10, adoptive transfer of long-lived
plasma cells that produce IL-10 is being actively explored. We are
actively exploring how BDL can be utilized as an adoptive cell
therapy to increase Treg numbers in autoimmunity. These are
exciting times for research in B cell regulation and given the
complexity of the entire B cell lineage new B cell subsets and
regulatory mechanisms are surely to be discovered.
Frontiers in Immunology | www.frontiersin.org 9
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