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Abstract

Extracellular vesicles (EVs) are important elements of intercellular communication. A plethora 

of different, occasionally even opposite, physiologic and pathologic effects have been attributed 

to these vesicles in the last decade. A direct comparison of individual observations is however 

hampered by the significant differences in the way of elicitation, collection, handling, and 

storage of the investigated vesicles. In the current work, we carried out a careful comparative 

study on 3, previously characterized types of EVs produced by neutrophilic granulocytes. We 

investigated in parallel the modulation of multiple blood-related cells and functions by medium-

sized vesicles. We show that EVs released from resting neutrophils exert anti-inflammatory action 
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by reducing production of reactive oxygen species (ROS) and cytokine release from neutrophils. 

In contrast, vesicles generated upon encounter of neutrophils with opsonized particles rather 

promote proinflammatory processes as they increase production of ROS and cytokine secretion 

from neutrophils and activate endothelial cells. EVs released from apoptosing cells were mainly 

active in promoting coagulation. We thus propose that EVs are “custom made,” acquiring selective 

capacities depending on environmental factors prevailing at the time of their biogenesis.
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1 ∣ INTRODUCTION

Generation of extracellular vesicles (EV) is a common property of cells. Intensive research 

of the last decade has revealed a multitude of different biologic—both physiologic and 

pathologic—effects of EVs.1,2 Following a significant number of preclinical studies,3,4 

initial attempts of therapeutic applications using EVs or EV-related drug delivery have 

started.5,6 However, comparative data on specificity and selectivity of the effect of defined 

EV populations are still scarce.7-10

Neutrophilic granulocytes (PMNs) represent the most abundant population of leukocytes 

in circulating blood. As they are active in formation of EVs, PMN-derived EVs constitute 

a large fraction of EVs in normal blood. The number of PMN-derived EVs was reported 

to become significantly elevated in various pathologic conditions.2,11,12 The effects of 

neutrophil-derived EVs have been extensively investigated on almost every blood-related 

cell type and function, including neutrophils themselves,13-16 monocytes,17 monocyte-

derived macrophages17-25 and dendritic cells,26 lymphocytes,27 endothelial cells,28,29 and 

coagulation.30

Most studies demonstrated dominant anti-inflammatory effect of PMN-EVs on the 

interacting cells, by decreasing the production of activating cytokines such as IL-1β, TNFα, 

IL-6, IL-8, IL-10, or IL-1217-21,26 and increasing the secretion of TGFβ or resolving 

mediators.17,20,25,26 Opposing effects have also been reported, such as an increase in IL-6 

and IL-8 production from, and expression of adhesion molecules on, endothelial cells29; 

enhanced superoxide, IL-6 and TNFα secretion from macrophages,13,18 and stimulation 

of LTB4 synthesis in neutrophils.15 Enhanced coagulation has also been reported.30 These 

studies typically investigated the effects of PMN-EVs on 1 single cell type or function. A 

wide variety of EVs were applied, including true exosomes15 and microvesicles/ectosomes 

produced spontaneously or upon various stimuli.13,17-21,25,26,29,30 However, the differences 

between the effects of differently produced EVs were only rarely analyzed.18,31 Lastly, in 

many investigations, EVs were stored frozen for undefined periods.

In previous work, our group has characterized 3 different types of PMN-EVs in detail: those 

produced spontaneously in short incubation from resting cells (sEV), those produced by 

apoptotic cells in 1–3 days (apoEV), and those generated upon stimulation with opsonized 

particles.12,32 Only the latter EV population was able to impair bacterial growth in a 
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concentration-dependent manner12,33; hence, they were named “antibacterial EVs” (aEV). 

However, antibacterial capacity was lost under different storage conditions in a relatively 

short time.34 In several tests, sEV and apoEV were more similar to each other than either of 

them to aEV.32 Hence, the question arises whether sEV, apoEV, and aEV only differ in their 

antibacterial capacity or also in their effects on other blood cells and functions.

The aim of the present study was to compare the effects of 3, previously well-characterized 

PMN-EV types, applied freshly after isolation, on cells and function they could affect 

in their natural environment by autocrine or paracrine mechanisms, such as neutrophils 

themselves, endothelial cells, and coagulation of pooled human plasma. We demonstrate 

selective effects in all of the investigated functions.

2 ∣ METHODS

2.1 ∣ Materials

HBSS with calcium, magnesium, and glucose was from GE Healthcare Life Sciences 

(South Logan, UT, USA); zymosan A was from Sigma–Aldrich (St. Louis, MO, USA); 

Ficoll-Paque from GE Healthcare BioSciences AB (Uppsala, Sweden); HEPES (pH 7.4) 

from Sigma. All other used reagents were of research grade.

GFP expressing and chloramphenicol-resistant Staphylococcus aureus (USA300) was a kind 

gift from Professor William Nauseef (University of Iowa).

2.2 ∣ Isolation of human PMNs and monocytes

Venous blood samples were drawn from healthy adult volunteers according to 

the procedures approved by the National Ethical Committee (ETT-TUKEB No. 

BPR/021/01563-2/2015). The age and gender distribution of our donors was the following: 

32.5% of the donors were women, 67.5% were men. Mean age was 24.8±6.5 years; the 

youngest donor was 19, the oldest was 55 years old.

Neutrophils were obtained by dextran sedimentation followed by a 62.5% (v/v) Ficoll 

gradient centrifugation (Beckman Coulter Allegra X-15R, 1,000 g, 20 min, 22°C) as 

previously described.35 The mononuclear cell layer (consisting of lymphocytes and 

monocytes) was extracted by pipetting after the Ficoll gradient centrifugation step. 

Contaminating red blood cells were removed by hypotonic lysis. Cells were finally 

resuspended in HBSS and kept on ice until use. The neutrophil preparations contained more 

than 95% PMNs and less than 0.5% eosinophils.

2.3 ∣ Opsonization

Zymosan A (5 mg in 1 ml HBSS) was opsonized with 500 μl prewarmed pooled human 

serum for 25 min at 37°C. After opsonization, zymosan was centrifuged (5,000 g, 5 min, 

4°C, Hermle Z216MK 45° fixed angle rotor), and washed once in HBSS.

USA300 bacteria (OD600 = 1.0 in 900 μl HBSS) were opsonized with 100 μl prewarmed 

pooled human serum for 25 min at 37°C. After opsonization, bacteria were centrifuged 

(5,000 g, 5 min, 4°C), and washed once in HBSS.
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2.4 ∣ Preparation of EV fractions

PMNs(107 cells in 1 ml HBSS) were left unstimulated or were activated by 0.5 mg/ml 

final concentration of opsonized zymosan A for 20 min at 37°C in a linear shaker (0.18 g). 

Spontaneous cell death was initiated in HBSS by leaving PMNs (2.5 × 106 cells/ml HBSS) 

unstimulated at 37°C for 24 h. After incubation, cells were sedimented (Hermle Z216MK 

45° fixed angle rotor, 500 g, 5 min, 4°C). The supernatant was filtered through a 5 μm pore 

sterile filter (Sterile Millex Filter Unit, Millipore, Billerica, MA, USA). The filtered fraction 

was sedimented (15,700 g, 10 min, 4°C) and the sediment was resuspended in HBSS at the 

original incubation volume unless indicated otherwise. By this procedure, we got 3 different 

EV types as characterized previously32: activated EVs (aEVs) from opsonized zymosan A 

activated cells in 20 min, spontaneously generated EVs (sEVs) from unstimulated cells in 20 

min, and apoptotic EVs (apoEVs) from cells undergoing spontaneous cell death. Apoptotic 

EVs originated from the PMN preparation of the preceding day of the indicated experiment.

As zymosan residues arising from the cell activation are an inherent, inseparable part 

of aEV fractions after the EV isolation process, we prepared a control sample for aEV 

measurements, which contained the same amount of zymosan as aEV isolates. To achieve 

this, half of the aEV batch was sedimented (15,700 g, 10 min, 4°C), resuspended in distilled 

water at the original volume, vortexed for 10 min, then sedimented again (15,700 g, 10 min, 

4°C), and resuspended in HBSS at the same volume as the aEV sample. By this means, 

relevant EV fractions were destroyed due to hypotonic lysis and mechanical disruption, 

zymosan particles however are resistant to both. We refer to this sample as “lysed aEV.”

2.5 ∣ Characterization of the size distribution of PMN-derived EVs

Dynamic light scattering (DLS) measurements were performed at room temperature with 

an equipment consisting of a goniometer system (ALV GmbH, Langen, Germany), a diode-

pumped solid-state laser light source (Melles Griot, IDEX corp., Lake Forest, IL, USA; 

58-BLS-301, 457 nm, 150 mW), and a light detector (Hamamatsu, Japan; H7155 PMT 

module). The evaluation software yielded the autocorrelation function of scattered light 

intensity, which was further analyzed by the maximum entropy method, from where the 

different contributions of this function were determined. The radius of the particles was 

calculated using sphere approximation.36

For nanoparticle tracking analysis (NTA), samples were resuspended in 1 ml of PBS to reach 

appropriate particle concentration range for the measurement. Particle size distribution and 

concentration were analyzed on ZetaView PMX120 instrument (Particle Metrix, Inning am 

Ammersee, Germany). For each measurement, 11 cell positions were scanned at 25°C (in 

2 cycles) with the following camera settings: shutter speed—100, sensitivity—75, frame 

rate—7.5, video quality—medium (30 frames). The videos were analyzed by the ZetaView 

Analyze software 8.05.10 with a minimum area of 5, maximum area of 1,000, and a 

minimum brightness of 20.

2.6 ∣ Transmission electron microscopic investigation of the PMN-derived EVs

EV-containing pellets were processed as described in our previous papers.12,36 Briefly, 

pelleted EVs were fixed with 4% paraformaldehyde at room temperature for 1 h, rinsed 
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by PBS, and post-fixed in 1% osmium tetroxide (OsO4) for 20 min. After rinsing with 

distilled water, pellets were dehydrated by a series of increasing ethanol concentrations, 

including block staining with 1% uranyl-acetate in 50% ethanol for 30 min, finally 

embedded in Taab 812 (Taab, Aldermaston, UK). Following polymerization at 60°C for 

12 h, 50–60 nm ultrathin sections were cut using a Leica UCT ultramicrotome (Leica 

Microsystems, Wetzlar, Germany, UK) and examined using a Hitachi 7100 transmission 

electron microscope (TEM) (Hitachi Ltd.,Tokio, Japan).

Electron micrographs were made by Veleta 2k x 2k Megapixel side-mounted TEM CCD 

camera (Olympus, Tokio, Japan). Contrast/brightness of electron micrographs was edited by 

Adobe Photoshop CS4 (Adobe Systems Incorporated, San Jose, CA, USA).

2.7 ∣ Antibacterial activity of different types of PMN-derived EVs

Opsonized bacteria (5 × 107/50 μl HBSS) were added to 500 μl EV (derived from 5 × 

106 PMNs) suspended in HBSS. During a 40 min coincubation step at 37°C, the bacterial 

count decreases or increases depending on the samples’ antibacterial effect and the growth 

of bacteria. At the end of the incubation, 2 ml ice-cold stopping solution (1 mg/ml saponin 

in HBSS) was added to stop the incubation and lyse EVs. After a freezing step at −80°C for 

20 min, samples were thawed to room temperature and inoculated into LB broth. Bacterial 

growth was followed as changes in OD using a shaking microplate reader (Labsystems 

iEMS Reader MF; Thermo Scientific, Waltham, MA, USA) for 8 h, at 37°C, at 650 nm. 

After the end of growth phase, the initial bacterial counts were calculated indirectly using an 

equation similar to PCR calculation, as described previously.35

2.8 ∣ Investigation of the EV uptake by leukocytes

All aEVs, sEVs, and apoEVs were stained with PKH67 (Sigma) in 4 μM final concentration 

for 5 min. To wash out unbound PKH67, after sedimentation of the EVs (15,700 g, 10 min, 

4°C), the pellet was resuspended in HBSS at double of the original volume. After 10 min 

incubation at room temperature, EVs were sedimented again (15,700 g, 10 min, 4°C) and 

resuspended at the original volume. One part of the EVs was pelleted for a 3rd time (15,700 

g, 10 min, 4°C) and the supernatant was used as control for unspecific PKH binding.

PMN (50 μL of 5 × 106/ml) or mononuclear cell suspension (50 μl of 107/ml) was added 

to 500 μl aEV, sEV, apoEV sample or to the control supernatant. EVs and cells were 

coincubated for 45 min in a linear shaker (0.18 g) at 37°C. aEV and sEV samples were 

prepared from 107 cells, whereas apoEV samples were derived from 1.25 × 106 cells.

For flow cytometric (FC) detection of EV uptake, a Becton Dickinson FACSCalibur flow 

cytometer was used with the following settings: flow rate was held under 1,000 events/s; 

forward scatter (FSC) = E–1 (log); side scatter (SSC) = 320 V (log); 530/30 nm detector 

(FL1) = 500 V (log).

FC data were analyzed with Flowing Software 2.5.1 (Turku Centre for Biotechnology, 

Turku, Finland).
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PMNs and monocytes were gated out based on their FSC–SSC characteristics; cell gates 

were defined in previous measurements with anti-CD11b-R-phycoerythrin antibodies (Dako, 

Glostrup, Denmark). Absolute change in geometric mean of FL1 (green) fluorescent 

intensity (ΔMFI) of the indicated cell types was compared with the change measured in 

supernatant control samples after 45 min incubation.

The uptake was also confirmed by confocal microscopic images (Zeiss, Oberkochen, 

Germany; LSM710 confocal laser scanning microscope equipped with EC Plan-Neoflural, 

Zeiss 40×/1.30 Oil DIC objective). Excitation and emission wavelengths were 488 and 494–

651 nm, resp. Similar to FC experiments, 50 μl of 5 × 106/ml PMN or 107/ml mononuclear 

cell suspension was added to 500 μl aEV, sEV, apoEV sample or the control supernatant 

and incubated on a cover slip at 37°C. Samples were analyzed at 0 and 45 min with ZEN 

software (Zeiss).

2.9 ∣ Measurement of phagocytic activity of PMNs

PMNs (120 μl of 5 × 106/ml) were added to 480 μL aEV, lysed aEV, sEV, apoEV sample or 

HBSS at 37°C in a linear shaker (0.18 g) for 45 min. aEV, lysed aEV, and sEV samples were 

prepared from 1.92 × 107 cells, whereas apoEV samples were derived from 0.96 × 107 cells.

In order to determine the phagocytic capacity, 5 different concentrations of opsonized 

USA300 bacteria were used (1 × 108, 3 × 108, 1 × 109, 3 × 109, and 1 × 1010/ml). From 

each concentration, 10 μl was added to 100 μl of the pretreated PMN populations at 37°C 

in a digital heating/shaking drybath for 20 min. Phagocytosis was stopped by adding 1 ml 

of ice-cold PBS to each sample. Uptake of USA300 bacteria was detected with FC with the 

following settings: flow rate was held under 1,000 events/s; FSC = E—1 (log); SSC = 320 

V (log); 530/30 nm detector (FL1) = 480 V (log). PMNs were gated out based on their FSC–

SSC appearance. Autofluorescence intensity was measured with a PMN sample without 

bacteria. Geometric mean of FL1 (green) fluorescent intensity of PMN and percentage of 

PMN above the autofluorescence threshold were measured.

Similarly, kinetics of the phagocytic process was investigated by coincubating 600 μl of the 

abovementioned pretreated PMN populations with 60 μl of 3 × 108/ml opsonized USA300 
bacteria at 37°C in a digital heating/shaking drybath (1.89 g) for 20 min. At 0, 5, 10, 15, and 

20 min, 100 μl of each suspension was added to 1 ml of ice-cold PBS. FL1 fluorescence was 

measured instantaneously with FC.

2.10 ∣ Determination of the migratory potential of PMNs

PMNs (120 μl of 5 × 106/ml) were added to 480 μl aEV, lysed aEV, sEV, apoEV sample 

or HBSS at 37°C in a linear shaker (0.18 g) for 45 min. aEV, lysed aEV, and sEV samples 

were prepared from 1.92 × 107 cells, whereas apoEV samples were derived from 0.96 × 

107 cells. The pretreated PMN samples were placed in the wells of a 3 μm pore Corning, 

NY, USA transwell cell culture plate coated with 10% FBS. Every well contained 2 × 

105 cells. As a chemoattractant, 100 nM N-formylmethionyl-leucyl-phenylalanine was used. 

After 1 h incubation at 37°C, the transwell plate was centrifuged (Eppendorf 5810 R swing-

bucket plate rotor, 3,220 g, 3 min, 4°C). Transmigrated cells were counted using an acid 

phosphatase assay37 in a plate reader (Labsystems iEMS Reader MF; Thermo Scientific).
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2.11 ∣ Measurement of reactive oxygen species production of PMNs

PMNs (200 μl of 5 × 106/ml) were added to 2,000 μl aEV, lysed aEV, sEV, apoEV sample or 

HBSS at 37°C in a linear shaker (0.18 g) for 45 min. aEV, lysed aEV, and sEV samples were 

prepared from 4 × 107 cells, whereas apoEV samples were derived from 2 × 107 cells.

Lucigenin (5 mg/ml N,N′-dimethyl-9,9′-biacridinium dinitrate dissolved in DMSO, both 

from Sigma) was added in 1:100 volume ratio to the pretreated cells. White flat-bottom 

96-well plates were coated with 10% FBS at room temperature for 1 h. Three parallel 180 

μl samples of pretreated PMNs were activated in the coated wells with 20 μl 1 μM PMA. 

Changes in the luminescence were recorded for 90 min at 37°C with gentle shaking in a 

Varioskan multimode microplate reader (Thermo Fisher Scientific) every minute.

2.12 ∣ Quantification of IL-8 secretion of PMNs

PMNs (120 μl of 2.5 × 107/ml) were added to 480 μl aEV, lysed aEV, sEV, apoEV sample 

or HBSS at 37°C in a linear shaker (0.18 g) for 3 h. aEV, lysed aEV, and sEV samples were 

prepared from 1.92 × 107 cells, whereas apoEV samples were derived from 0.96 × 107 cells.

Cells were centrifuged (500 g, 10 min, 4°C) and supernatants were analyzed for IL-8 

with a human CXCL8/IL-8 DuoSet sandwich ELISA kit according to the manufacturer’s 

instructions (R&D Systems)38 in a plate reader (Labsystems iEMS Reader MF; Thermo 

Scientific, Minneapolis, MN, USA).

2.13 ∣ Effect of EVs on coagulation

Turbidimetry was performed to study the EVs prothrombotic properties by registering the 

absorbance of samples at 340 nm at 37°C with a CLARIOStar microplate reader (BMG 

LABTECH, Ortenberg, Germany) as described previously.39-41

For clotting assays, aEV, lysed aEV, and sEV samples were prepared from 6.5 × 107 cells, 

whereas apoEV samples were derived from 2 × 107 cells.

To compare the positive effect of the aforementioned different types of EVs on the initiation 

of clotting in plasma, the change of absorbance was followed in microtiter plates. EVs were 

added to recalcified citrated human pooled plasma to reach a total volume of 104 μl with 

12.5 mM calcium.

Furthermore, to assess the effects of EVs on the dynamics of clotting, the above described 

mixture was supplemented with 5 μl 100× diluted recombinant thromboplastin (TP) Dia-PT 

R (Diagon Kft, Budapest, Hungary) and the clotting curves were analyzed. A self-designed 

script running under the Matlab software (The Mathworks, Natick, MA, USA) was used 

to determine the maximum absorbance, and times to reach 10/50/90% of maximum 

absorbance.

2.14 ∣ Preparation and culture of HUVECs

Cells were harvested from fresh umbilical cords obtained during normal delivery of healthy 

neonates (according to Helsinki Protocol, Semmelweis University Institutional Review 

Board specifically approved this study, (permission number: SETUKEB 141/2015), and 
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all participants provided their written informed consent to participate in this study), by 

collagenase digestion as described earlier.42,43 HUVECs were kept in gelatin-precoated 

flasks in MCDB131 medium (Life Technologies, Carlsbad, CA, USA) completed with 5% 

heat-inactivated FCS, 2 ng/ml human recombinant epidermal growth factor (R&D Systems), 

1 ng/ml human recombinant basic fibroblast growth factor (Sigma), 0.3% Insulin transferrin 

selenium (Life Technologies), 1% chemically defined lipid concentrate (Life Technologies), 

1% glutamax (Life Technologies), 1% penicillin–streptomycin antibiotics (Sigma), 5 μg/ml 

ascorbic acid (Sigma), 250 nM hydrocortisone (Sigma), 10 mM HEPES (Sigma), and 7.5 

U/ml heparin hereinafter referred to as Comp-MCDB131. Each experiment was performed 

on at least 3 independent primary HUVEC cultures from different individuals.

2.15 ∣ Measurement of cytokine production of HUVECs by sandwich ELISA

Confluent layers (104 cell/well) of HUVECs were cultured in 96-well plates for 24 h in 

100 μl Comp-MCDB131 medium supplemented with 20 μl EV sample. aEV, lysed aEV, and 

sEV samples were prepared from 5 × 106 cells, whereas apoEV samples were derived from 

3.33 × 106 cells. IL-8 was measured in a plate reader (Infinite M1000 PRO; Tecan Group 

Ltd., Männedorf, Switzerland) by CXCL8/IL-8 DuoSet sandwich ELISA kit according to 

the manufacturer’s protocol (R&D Systems) as described previously.42,43

2.16 ∣ Detection of adhesion molecules by cellular ELISA

HUVECs were cultured in 96-well plates at confluent concentration in 100 μl Comp-

MCDB131 medium for 1 day, then treated with different EV populations in 100 μl Comp-

MCDB131 supplemented with 20 μl EV sample. aEV, lysed aEV, and sEV samples were 

prepared from 5 × 106 cells, whereas apoEV samples were derived from 3.33 × 106 cells. 

Previous studies have shown42 that maximum expression of E-selectin and VCAM-1 were 

at 6 and 24 h, respectively, thus we detected the expression of adhesion molecules at 

these time points. Supernatants were removed for cytokine ELISA, cells were fixed in 1:1 

methanol and acetone mixture and incubated with mouse-anti-human E-selectin or mouse-

anti-human VCAM-1 (both from Bender MedSystems, GmbH, Vienna, Austria) for 1 h. 

Cells were washed with PBS-Tween containing 1% BSA then incubated with HRP-labeled 

goat-anti-mouse IgG (SouthernBiotech, Birmingham, AL, USA) for 1 h. Color reaction was 

developed by 3,3′,5,5′-tetramethylbenzidine (Thermo Fisher Scientific) and detected in a 

plate reader (Infinite M1000 PRO; Tecan Group Ltd.).

2.17 ∣ Proteomic analysis of PMN-derived EVs

Proteomic analysis was performed as previously described.32 Briefly, samples (45 μg) were 

lysed using 2% SDS at 65°C for 30 min, reduced, alkylated, and digested using trypsin 

(Promega, Madison, WI, USA).44 Peptides were isolated through a YM-10 filter, desalted, 

and concentrated using NEST Group C18 PROTOTM UltraMicroSpin columns. Desalted 

samples were separated offline into 7 strong cation exchange (SCX) fractions using SCX 

MicroTrapTM (Michrom-Bruker, Auburn, CA, USA) prior to analysis by 1D-RP (C18) 

nanoflow UHPLC and nanoelectrospray-MS45 on the Thermo LTQ-Orbitrap ELITE MS 

platform.
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Data were acquired using Oribtrap ELITE in ETD decision tree method. All MS1 was 

acquired with the FTMS and MS2 acquired with the ITMS. All MS data were searched 

using PD1.4 with Sequest and Mascot (v2.4) in a decoy database search strategy against 

UniprotKB.

Search data result files were imported into Scaffold (v4.3.4 Proteome Software Inc., 

Portland, OR, USA) to control for <1.0% FDR with Peptide and Protein Prophet. Peptide 

and protein identifications were accepted if they could be established at greater than 

95.0% probability by the Peptide Prophet46 or the Protein Prophet47 algorithm, respectively. 

Comparison of protein abundance among the EV groups was determined in Scaffold as the 

exponentially modified Protein Abundance Index (emPAI), as described by Ishihama et al.48

Proteomic data were analyzed further by the FunRich (version 3.1.3.) program to compare 

EV samples to each other or to the current FunRich (heatmap and integrin interactome) and 

UniProt human database (functional analysis).49,50

2.18 ∣ Statistics

Plasma clotting results without TP were analyzed by Fisher’s exact test; all other 

comparisons between 2 groups were analyzed by 2-tailed Student’s t-tests or ANOVA. Exact 

statistical tests are indicated in the figure legends. All bar graphs show mean and +SEM. 

Difference was taken significant if P value was <0.05. * represents P < 0.05; ** represents P 
< 0.01; *** represents P < 0.001. Statistical analysis was performed using GraphPad Prism 8 

for Windows (La Jolla, CA, USA).

In every experiment, “n” indicates the number of independent experiments from different 

donors, unless stated otherwise in the figure legend (Fig. 5).

Biologic variance between individual donors was considerable and also showed seasonal 

variations. Therefore, in addition to the summarized data, we present the normalized and 

paired values of individual experiments as well.

3 ∣ RESULTS

3.1 ∣ Characterization of PMN-derived EVs

First, we characterized the basic physical properties of the 3 types of PMN-derived EVs: 

those produced upon stimulation with opsonized zymosan (aEV) or spontaneously from 

fresh (sEV) or apoptotic cells (apoEV). The size distribution of the EV preparations was 

investigated by DLS (Fig. 1A). A broad peak was detected around 200 nm that disappeared 

upon treatment with Triton X-100 supporting the vesicular nature of the preparation. No 

significant differences were found among the 3 types of EVs. NTA was performed to 

quantitate both the number and the size of the EV populations. As shown in Fig. 1B, there 

were about twice as many particles in the aEV than in the sEV preparation. This difference 

corresponds to our earlier data obtained with flow cytometry.12 There was no difference in 

the median diameter of sEV and aEV, whereas apoEV proved to be slightly larger (Fig. 

1C). Electron microscopic images support that all 3 EV preparations contained membrane 

surrounded vesicles corresponding to “medium-size” EVs (Figs. 1D-1F).
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Next, we show the major functional difference between the 3 types of PMN-derived EVs: 

only aEVs are able to impair bacterial growth (hence the name of antibacterial EVs), 

whereas sEV and apoEV lack this property (Fig. 1G).

In order to test the effect of the different EV types on neutrophil functions under stable 

conditions, we followed the fate of fluorescently labeled EVs upon encounter with PMN by 

flow cytometry. Monocytes served as a positive control. Figure S1A presents the original 

data in form of dot plots on the fluorescence distribution at the beginning and at the end of 

the 45 min incubation time in a representative experiment. Summarized data of the increase 

of mean fluorescent intensity (ΔMFI) are provided in Fig. S1B. At 45 min, a measurable 

increase of MFI occurred with all 3 EV populations in both cell types indicating that all 3 

types of EVs get associated with PMNs. With confocal microscopic imaging we could verify 

that EVs are engulfed in PMN, as opposed to staying only attached on the surface of the 

cells (Fig. S1C).

In all the following experiments, cells were pretreated with EVs for 45 min, thus allowing 

sufficient time for uptake of vesicles.

3.2 ∣ Effect of PMN-derived EVs on resting and activated PMNs

We measured the effect of PMN-derived EVs on reactive oxygen species (ROS) production. 

EVs isolated as described in Methods section, do not produce any detectable amount of ROS 

on their own.12,32 None of the 3 different types of PMN-derived EVs have any significant 

effect on the basal superoxide production of resting neutrophils (Figs. 2A and 2E). Next, 

we tested whether EVs had any influence on stimulated ROS production. We applied as 

stimulator the pharmacologic agent PMA. PMA-induced superoxide production starts after a 

typical lag phase of variable length. We chose as characteristic parameters ROS production 

in the early phase at 10 min and at the maximum that occurred between 30 to 40 min. 

Opsonized zymosan is an inherent component of the aEV preparation and it may have 

various effects on PMN on its own. To assess the true effect of EVs, in these experiments, 

control PMNs were treated with the lysed fraction of the aEV preparation (details see 

in Methods). Figure 2 shows both the summarized data of the absolute values (Figs. 2A 

and 2E) and the paired data related to the relevant control from each experiment (Figs. 

2B-2D and 2F-2H). After 10 min in the presence of sEV or apoEV, ROS production was 

significantly diminished (Figs. 2A, 2C-2D). In contrast, in the presence of aEVs, there was 

a significant and consistent increase of ROS production as compared to the control (Figs. 

2A and 2B). Maximal ROS production was also significantly and consistently higher than 

the control in the presence of aEV and lower in the presence of sEV (Figs. 2E-2G). The 

difference in the presence of apoEV was not significant (Figs. 2E and 2H). We thus observed 

opposing effect of aEV and sEV upon stimulated ROS production. A third type of effect was 

observed with apoEVs: by reducing the early but not affecting the maximal ROS production 

they induced a right-shift of the time curve.

Alteration of cytokine secretion upon EV treatment was investigated previously in 

monocytes,17-21,25 but not in PMN. Therefore, we tested cytokine secretion from neutrophils 

after encountering the different EV populations. Resting PMNs produce low amount of IL-8, 

which was dramatically increased by opsonized zymosan, which served as positive control 
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(Fig. 3A). Even the zymosan remnants present in the aEV preparation were able to increase 

IL-8 secretion approximately fourfold (lysed aEV column in Fig. 3A). In order to test 

exclusively the effect of the different EV preparations, all the samples contained the same 

amount of lysed aEV. As summarized in Fig. 3A, IL-8 release was significantly increased 

by aEV, but decreased by sEV. These changes were consistently observed in all experiments 

(Figs. 3B and 3C). In contrast, IL-8 release in the presence of apoEV showed no significant 

change (Fig. 3D).

In the following experiments, we compared phagocytosis, another basic neutrophil function, 

in the absence or following pretreatment by different types of PMN-derived EVs. In Fig. S2, 

we show both the kinetics of uptake of fluorescent S. aureus (panels A, C, and E) and the 

maximal uptake in case of different ratios of bacteria to PMNs (panels B, D, and F). None of 

the EVs had any significant effect on the engulfment of fully opsonized bacteria.

Finally, we tested the effect of EVs on neutrophil migration in a chemotactic gradient (Fig. 

S3). Again, none of the EVs had significant or consistent effect.

Taken together, our results show that aEV and sEV have opposite effects on ROS production 

and cytokine secretion, whereas apoEV only delayed ROS production. Phagocytosis and 

chemotactic migration were not influenced by any of the EVs.

3.3 ∣ Effect of PMN-derived EVs on endothelial cells

The first reports on biologic effects of PMN-derived EVs showed an increase of 

proinflammatory cytokine secretion from endothelial cells.28,29 In view of the observed 

opposing effect of sEV and aEV on IL-8 secretion from neutrophils, we tested their effect 

also on HUVECs. In this setting, only aEV stimulated a significant and reproducible 

increase of IL-8 secretion (Figs. 4A and 4D), whereas sEV and apoEV had no consistent 

effect (Figs. S3A and D).

To gain further insight in dissimilar effectivity of neutrophil-derived EVs, we tested 2 

activation markers on the endothelial cells: E-selectin and VCAM-1. The expression of both 

surface markers was significantly and reproducibly increased by aEVs (Figs. 4B, 4C, 4E, 

and 4F). In contrast, neither sEV nor apoEV had any consistent effect (Fig. S3).

Our data obtained on endothelial cells further support the diverging effect of EVs generated 

by resting (sEV) or activated (aEV) neutrophils.

3.4 ∣ Effect of PMN-derived EVs on coagulation

Increased blood clotting was reported as a common property of EVs released from different 

cell types.2 Based on our above results, we asked whether all EV types have similar capacity 

in enhancing coagulation.

We tested the system in 2 different settings. First, we explored the procoagulant activity 

of the EVs themselves (in the absence of added TP). In the experiments presented in Figs. 

5A-5F, we detected the frequency of coagulation in the presence of the different types of 

EVs. Panels A–C provide the exact numbers of cases where coagulation did or did not occur, 
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which allowed the statistical analysis of data, whereas panels D–F present the ratio of events 

where coagulation did happen. For aEVs, the frequency of coagulation was almost the same 

in case of intact or lysed aEVs, suggesting that coagulation was initiated by some other 

component (e.g., opsonized zymosan remnant) but not the EVs themselves. In cases of both 

sEV and apoEV, the frequency of coagulation was significantly higher in the presence of 

EVs than in their absence. ApoEV proved to be the most effective, initiating coagulation in 

over one-third of the measurements.

In the second test, coagulation time was measured in a system initiated by TP. As shown in 

Figs. 5G-5I, the presence of apoEV reduced coagulation time significantly and consistently. 

The presence of sEV resulted in a decreasing tendency but the effect was not statistically 

significant. Similar to the previous test, the effect of aEV was weak.

Our results on coagulation support the functional diversity of the different types of PMN-

derived EVs, with apoEV having the largest and aEV the smallest effect.

3.5 ∣ Proteomic analysis of PMN-derived EVs

We carried out proteomic analysis of the 3 distinct EV preparations in order to relate 

protein composition to the observed functional divergences. A total of 774 proteins could be 

identified in the 3 EV populations. The variety of proteins in aEVs is less than the half of 

that in the other 2 EV types (284 vs. 636 and 705, respectively) and the number of unique 

proteins is also remarkably lower (Fig. 6A). The differences in the abundance of individual 

proteins compared with the average of the 3 EV types is shown in the heat map of Fig. 6B. 

A large cluster of proteins is significantly underrepresented and another cluster significantly 

overrepresented in aEVs compared with either sEV or apoEV; however, the latter 2 samples 

also showed characteristic differences. Next, the abundance of specific groups of proteins 

was analyzed (Fig. 6C). The origin of proteins shows that aEVs contain more proteins of 

plasma membrane and less proteins of nucleoplasmic origin than either sEV or apoEV, 

and they are also enriched in components of focal adhesions and exosomes. Categorizing 

proteins according to biologic function shows that aEVs contain more proteins involved in 

cell adhesion and immune response than the other 2 EV types, whereas proteins associated 

to the MAPK cascade are less abundant. As for molecular functions, several types of binding 

proteins, including integrin binding proteins are enriched in aEVs.

Recently, we have identified Mac1 integrin as the critical surface receptor that initiates 

formation of aEVs.36 Previously we showed a potential role of Mac1 in the aggregation of 

bacteria and aEVs related to impaired bacterial killing.12 Therefore, we analyzed in detail 

the interactome of integrins identified in the distinct EV preparations. As indicated by the 

proportion of red dots in Fig. 6D, aEVs contain a higher proportion of proteins interacting 

with integrins.

4 ∣ DISCUSSION

Using PMN as model cell type, we show in this study that EVs generated under different 

physiologically or pathologically relevant conditions from the same cell exert divergent 

and selective effects on cells and functions in their environment (Table 1). In previous 
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studies, we demonstrated the difference between aEV and sEV in their action on bacterial 

growth and in their protein composition.12,32 This line of observations is now extended 

by demonstrating their opposing effect on ROS production and IL-8 secretion from PMN, 

and their distinct effects on endothelial cells. Importantly, we also show differences in their 

influence on coagulation.

Interestingly, we observed some differences between the effects of sEV and apoEV as well. 

The latter type did not decrease maximal ROS production and IL-8 release from neutrophils, 

but had a strong and clear procoagulant effect. Production of sEV seems to be a constitutive 

property of neutrophils. In our hands, no inhibitor or genetic deficiency of receptors or 

signaling molecules had any influence on sEV generation.36,51 Neutrophils being short-lived 

cells that go in spontaneous apoptosis, it could be envisaged that sEV are produced by a 

few cells going into apoptosis during the short (20 min) incubation time before we collect 

the vesicles. However, the observed differences in the actions and the protein composition 

between sEV and apoEV indicate separate EV populations.

In the current study, we compare 3 types of EVs, which are present under different 

conditions in circulating blood.12 sEV and apoEV are produced from resting, not 

specifically stimulated cells. They have no effect or mitigate neutrophil and endothelial 

cell activation. These findings are consistent with numerous previous reports on anti-

inflammatory effects of PMN-derived EVs on monocytes and macrophages.14,20,23,52 

In contrast, aEVs are produced upon stimulation by opsonized particles, typical under 

infectious conditions.12 Our present data indicate that aEVs activate select proinflammatory 

functions in both neutrophils and endothelial cells. These observations are consistent with 

data on proinflammatory properties of PMN-derived EVs.15,17,18,24,25,28,29

Finally, it is important to note that neither phagocytosis nor chemotactic migration was 

affected by any of the EVs, supporting the selective nature of EV actions.

Many previous studies have concluded that EVs are able both to stimulate and to dampen 

immune functions.3,53,54 However, those studies summarized the effects of EVs issued from 

very different sources and actions on most different players of the complicated immune 

reaction. The novelty of our study resides in demonstrating that the same cells are able 

to transmit either anti-inflammatory or proinflammatory signals via EVs, depending on the 

environmental cues.

The divergent effects communicated by the different types of EVs are unlikely to be caused 

by one common mechanism. The time scale of the demonstrated effects alone suggests 

different mechanisms. Coagulation occurs in a few minutes, hence differences in the surface 

components can be envisaged as the decisive factors. Alteration of ROS production was 

evident in 10–30 min, suggesting posttranslational modification rather than alteration of 

gene expression as potential mechanism. Cytokine secretion from PMNs and HUVEC as 

well as appearance of HUVEC surface markers occurred after several hours, suggesting an 

alteration in gene expression. The observed differences in protein composition (Fig. 6A), 

abundance (Fig. 6B), and pattern (Figs. 6C and 6D) among the 3 types of EVs can account 

for both shortterm and long-term functional alterations. The specific signaling pathways 
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involved in the diverging or opposing effects revealed in this study have to be deciphered in 

future investigations.

Production of EVs with diverse and selective effect is probably not the unique property of 

PMNs. Numerous studies demonstrated differences in the composition of EVs secreted from 

the same cell under different conditions. In contrast, functional differences were tested only 

by a few publications.18,31 In the present study, we revealed that EV effects can be divergent 

and even antagonistic depending on the environmental conditions prevailing at time of EV 

biogenesis. At the dawn of therapeutic usage of EVs and EV-related preparations, we call 

the attention to the need of detailed comparative examination of functional properties of 

EVs.
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Refer to Web version on PubMed Central for supplementary material.
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Abbreviations:

aEV antibacterial EV

apoEV apoptotic EV

DLS dynamic light scattering

EV extracellular vesicle

FC flow cytometry

FSC forward scatter

MFI mean fluorescent intensity

NTA nanoparticle tracking analysis

PMN polymorphonuclear cell (here: neutrophilic granulocyte)

ROS reactive oxygen species

sEV spontaneous EV

SSC side scatter

TP thromboplastin
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FIGURE 1. Characterization of EV samples.
(A) Size distribution spectra of EVs measured by DLS. Broken line represents 0.1% Triton 

X-100-treated aEV. Representative results out of 3 similar experiments. (B) Particle size 

distribution of EVs measured by NTA. ApoEV were measured in a 10-fold dilution in order 

to stay within optimal detection ranges. Representative results out of 3 similar experiments. 

(C) Particle median diameter of EVs measured by NTA. Data were compared by using RM 

1-way ANOVA coupled with Sidak’s post hoc test; n = 3. Error bars represent mean + SEM. 

(D–F) Representative electron microscopic images of sEV (D), aEV (E), and apoEV (F). 

Original magnification is 30,000×. Representative pictures out of 3 similar experiments. (G) 

Bacterial survival in the presence of different types of EVs released from 5 × 106 PMNs. 

Data were compared by using RM 1-way ANOVA coupled with Sidak’s post hoc test; n = 4. 

Error bars represent mean + SEM. 100% represents the initial bacterial count
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FIGURE 2. Effect of EVs on the ROS production of PMN.
PMNs were pretreated for 45 min with the indicated EV or control, then left unstimulated 

or activated with 100 nM PMA. ROS production was determined at 10 min after activation 

(A–D) and at the peak intensity of the curve, typically at 30 to 40 min (E–H). Panels 

(A) and (E) show the summarized ROS production of the EV-pretreated PMN, (B–D) and 

(F–H) show the normalized data pairs from each experiment. Data were normalized to their 

adequate controls (“aEV” to “Lysed aEV,” “sEV” and “apoEV” to “No EV”). Raw data were 

compared using paired Student’s t-test; n = 13 for aEV and sEV; n = 7 for apoEV. Error bars 

represent mean + SEM
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FIGURE 3. Effect of EVs on the IL-8 production of PMN.
PMNs were treated for 3 h with 1 of the 3 EV populations or their controls. IL-8 amount 

of the supernatant was quantified with ELISA. Panel (A) shows the summarized changes in 

IL-8 production of the EV-treated cells. Panels (B)–(D) show the normalized data pairs from 

each experiment. Data were normalized to their adequate controls (“aEV” to “Lysed aEV,” 

“sEV” and “apoEV” to “No EV”). Raw data were compared using paired Student’s t-test; n 
= 15 for aEV; n = 7 for sEV; n = 8 for apoEV. Error bars represent mean + SEM
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FIGURE 4. Effect of EVs on endothelial cells.
HUVEC were pretreated for 6 h (E-Selectin) or 24 h (VCAM-1 and IL-8) with 1 of the 

3 EV populations or their controls. IL-8 amount of the supernatant was quantified with 

ELISA (A and D). E-Selectin and VCAM-1 expression was determined by cellular ELISA 

(B, C, E, and F). Panels (A)–(C) show the summarized changes in IL-8 secretion, E-Selectin, 

and VCAM-1 expression of the EV-treated cells. Panels (D)–(F) show the normalized data 

pairs for aEV or control-treated cells from each experiment. Data were normalized to their 

adequate controls (“aEV” to “Lysed aEV”, “sEV” and “apoEV” to “No EV”). Raw data 

were compared using paired Student’s t-test; n = 5. Error bars represent mean + SEM
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FIGURE 5. Effect of EVs on coagulation.
One of the 3 EV populations or their controls were mixed with pooled citrated human 

plasma in the absence (A–F) or presence (G–I) of thromboplastin followed by recalcification 

with Ca-HEPES. Panels (A)–(C) show the absolute numbers of coagulated and not 

coagulated wells in each sample. Panels (D)–(F) represent the percentage of coagulated 

wells based on the same data. Panels (G)–(I) show the time needed for 50% of the 

coagulation process in the thromboplastin-treated samples (raw data pairs). The dotted lines 

on (G)–(I) show the average coagulation time of the “No EV” samples. Data were compared 

using Fisher’s exact test (A–F) and paired Student’s t-test (G–I). n = 29 wells from 7 donors 

for aEV and sEV; n = 30 wells from 6 donors for apoEV (A–F). n = 5 from 5 donors (G–I)
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FIGURE 6. Proteomic analysis of EV populations.
(A) Comparison of protein presence in different EV populations using Venn diagram. Equal 

protein amount was analyzed (45 μg). The size of the set is proportional to the number 

of identified proteins. (B) Protein enrichment heat map of the 3 different EV populations 

normalized to each row. Proteins are clustered according to the calculated dendrogram by 

FunRich. (C) Analysis of protein content according to cellular origin, biologic process, and 

molecular function. (D) Integrin interactome of sEV, apoEV, and aEV. Red nodes represent 

proteins that are part of the integrin interactome. Blue nodes represent identified proteins 

that are not the part of the integrin interactome. Percentage of integrin interactome proteins 

to all proteins is indicated
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TABLE 1

Summarized effects of PMN-derived EVs

aEV sEV apoEV

Maximal ROS production ↑ ↓ –

Early ROS production ↑ ↓ ↓

IL-8 production of PMN ↑ ↓ –

IL-8 secretion of HUVEC ↑ – –

E-selectin expression of HUVEC ↑ – –

VCAM-1 expression of HUVEC ↑ – –

Coagulation (no TP) – ↑ ↑

Coagulation time (TP) – – ↓

Phagocytosis – – –

Migration – – –

Arrows represent the observed statistically significant changes upon pretreatment with different EV populations compared to their adequate 
controls.
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