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The determination of factors that influence protein conformational changes is very important for the identification of
potentially amyloidogenic and disordered regions in polypeptide chains. In our work we introduce a new parameter,
mean packing density, to detect both amyloidogenic and disordered regions in a protein sequence. It has been shown
that regions with strong expected packing density are responsible for amyloid formation. Our predictions are
consistent with known disease-related amyloidogenic regions for eight of 12 amyloid-forming proteins and peptides in
which the positions of amyloidogenic regions have been revealed experimentally. Our findings support the concept
that the mechanism of amyloid fibril formation is similar for different peptides and proteins. Moreover, we have
demonstrated that regions with weak expected packing density are responsible for the appearance of disordered
regions. Our method has been tested on datasets of globular proteins and long disordered protein segments, and it
shows improved performance over other widely used methods. Thus, we demonstrate that the expected packing
density is a useful value with which one can predict both intrinsically disordered and amyloidogenic regions of a
protein based on sequence alone. Our results are important for understanding the structural characteristics of protein
folding and misfolding.
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Introduction

Amyloid fibril formation is associated with an increase of b
structure content, which leads to fibrillar aggregation [1].
However, it should be noted that an increased level of the
beta structure is a characteristic property of several different
types of protein aggregates (amyloid fibrils, amorphous
aggregates) [2,3]. In addition to proteins observed in amyloid
diseases, recent studies have shown that diverse proteins not
related to any amyloid disease can aggregate into fibrils under
destabilizing conditions [4�6]. Normal proteins can become
toxic when they undergo fibrillation [7]. There is no
consensus about toxicity of the different states: small
oligomers, large oligomers, protofilaments, protofibrils, fila-
ments, mature fibrils, or amorphous aggregates. Significant
advancements in recent research have led to the discovery
that the toxic species in the amyloid diseases may not be the
fibrils themselves, but rather the pre-fibrillar aggregates [7]. A
possible mechanism for toxicity of a-synuclein protofibrils
has been demonstrated [8]. It has been shown that protofibrils
can form elliptical pores, like bacterial toxins, which can
puncture cell membranes, resulting in cell death [8]. There-
fore, the mechanism of amyloid formation is under intensive
investigation. Recognition of the factors that influence
protein conformational changes and misfolding is one of
the general fundamental problems, the solution to which will
help us find effective treatments for amyloid illnesses.

The experimental observation that not all proteins are
amyloidogenic (or at least that some proteins are less
amyloidogenic than others) and that specific continuous
regions of amyloid-forming proteins are more amyloidogenic
than others suggests that there is a sequence propensity for
amyloid formation. Moreover, the observation that some
short peptides also can form amyloids implies that these
segments, which usually are exposed to the environment, can

nucleate the transition of native proteins into the amyloid
state, and suggests that fibril formation is sequence-specific
[9]. In the mechanism of amyloidogenesis for natively folded
proteins such as b2-microglobulin and transthyretin, the
partial unfolding observed is believed to be a prerequisite for
the proteins’ assembly into amyloid fibrils both in vitro and in
vivo [10]. It has been suggested that residues with enhanced
flexibility and solvent accessibility are important for the
initiation of fibrillation [11]. This means that partial unfold-
ing of the rigid native structure can provide a specific
interface for the beginning of fibrillation. Thus, to under-
stand the molecular mechanism of amyloidosis, it is necessary
to find factors that induce partial unfolding of proteins and
subsequent amyloid fibril formation at or near physiological
conditions.
Some intrinsically disordered proteins are involved in

amyloid diseases (type II diabetes, Alzheimer disease, and
Parkinson disease). This fact may indicate that disorder is a
necessary condition for aggregation. It has been shown that a
very small change in the environment of such proteins often
might cause their partial folding and aggregation [12].
Knowledge of characteristics that control the process of
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amyloid fibril formation is important for finding effective
drugs for treatment of amyloid diseases.

Uversky and Fink in their review [13] illustrate that protein
fibrillogenesis requires a partially folded conformation (origi-
nated from partial unfolding of intrinsically structured
proteins or partial folding of intrinsically disordered proteins).

The first high-resolution (1 Å) crystal of an amyloid fiber
formed by a sequence-designed polypeptide has been
obtained [14]. Recently, the atomic structure of the cross-b
spine [15] for a seven-residue peptide segment from Sup35
(GNNQQNY) was determined. It is a double b sheet, in which
each sheet is formed from parallel segments stacked in
register. Side chains protruding from the two sheets form a
dry, tightly self-complementing steric zipper that bonds the
sheets. Within each sheet, every segment is bound to two
neighboring segments through stacks of both backbone and
side-chain hydrogen bonds.

There are several computational methods for predicting a
protein’s propensity for amyloid fibril formation. In the work
of Fernandez et al. [16] it was shown that a concentration of
such defects as insufficient shielding of hydrogen bonds from
water attack might yield an aggregation-induced nucleus. But
the analysis of these defects revealed that the extensive
exposure of hydrogen bonds to water attack might be a
necessary but not sufficient condition to imply a propensity
for organized aggregation [16].

A computational algorithm has been suggested that detects
the nonnative (hidden) b strand propensity of sequences by
consideration of the relationships between protein local
sequence and secondary structure in terms of tertiary
contacts [17]. This algorithm detects sequences within the
protein that are favorable for triggering amyloid fibril
formation. It is worthwhile to emphasize here that both
algorithms for prediction of amyloidogenic properties of
polypeptide chains that are considered above can be applied
only to those proteins for which the three-dimensional
structure is known.

Based on the physico–chemical properties of b aggregation
sequences and a computational algorithm, a model was
developed for predicting the aggregation rate for a broad
range of polypeptide chains [18]. The model identifies
aggregation sites within a protein and predicts the parallel
or antiparallel organization of b sheets in a fibril. It should be
noted, however, that the overpredictions of aggregation sites
were not analyzed statistically.
On the other hand, there is a method for the prediction of

amyloidogenic regions from amino acid sequence alone [19].
After the experimental investigation of the amyloidogenic
properties of a model six-residue peptide and its mutants, the
authors obtained a six-residue amyloidogenic pattern
(STVIIE) and used this pattern for the identification of
amyloidogenic fragments in proteins [19]. This amyloidogen-
ic pattern has been used to validate the premise that the
amyloidogenicity of a protein is indeed localized in short
protein stretches (amyloid stretch hypothesis [20]). It has been
demonstrated that the conversion of a soluble, non-amyloi-
dogenic protein (SH3 domain of a-spectrin) into an
amyloidogenic-prone molecule can be triggered by a non-
destabilizing six-residue amyloidogenic insertion in a partic-
ular structural environment.
Recently, a new method for identifying fibril-forming

segments of proteins has been suggested [21]. This method
is based on the threading of six-residue peptides through the
known crystal structure of an amyloid fiber [15] formed by
the peptide from Sup35. The putative prediction is accepted
as a prediction if its energy evaluated with RosettaDesign
(http://www.rosettacommons.org) is lower than the threshold
energy.
It should be added that molecular dynamics can yield

valuable information about the structural changes that arise
at the atomic level upon the formation of amyloid fibrils
[23�24], while such information is difficult to obtain
experimentally.
Another interesting new method (named PASTA) is based

on sequence-specific interaction energies between pairs of
protein fragments calculated from statistical analysis of the
native folds of globular proteins [22]. This algorithm correctly
predicts the positions of most aggregation-prone portions of
some polypeptide chains.
The formation of a sufficient number of interactions is

necessary to compensate for the loss of conformational
entropy during the protein folding process. Therefore, the
structural uniqueness of native proteins is a result of the
balance between the conformational entropy and the energy
of residue interactions. It seems that disordered regions in a
protein chain do not have a sufficient number of interactions
to compensate for the loss of conformational entropy that
results from the formation of a globular state. On the other
hand, a large increase in the energy of interactions will lead
to a loss of the unique structure because the strengthening of
contact energy will speed up folding, but it is also likely to
lead to erroneous folds (for example, to amyloid fibrils).
It has been suggested that the lack of a rigid globular

structure under physiological conditions might represent a
considerable functional advantage for intrinsically disor-
dered proteins, as their large plasticity allows them to
interact efficiently with several different targets, as compared
with a folded protein with limited conformational flexibility
[25�29]. It has been shown that disordered regions are
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Synopsis

Protein folding is one of the most challenging issues in biophysical
science. During the past few years it has been shown that some
diseases are connected with protein misfolding and the formation of
insoluble aggregates called amyloid plaques. These processes may
be associated with several diseases such as Alzheimer disease,
Parkinson disease, Creutzfeldt-Jacob disease, and even certain forms
of cancer. It has been shown that proteins with intrinsically
disordered regions are involved in protein–protein or protein–
nucleic acid interactions. The main objective of this paper is to
report insights into the molecular mechanisms of amyloid aggre-
gation. This has been done using the parameter of the observed
number of contacts for each amino acid residue in globular state,
further called expected packing density. By analysis of sequences
alone, the authors have demonstrated that regions that possess
strong expected packing density can be responsible for amyloido-
genic properties of a protein, while regions with weak expected
packing density correspond to disordered regions. A new concept is
proposed that could aid in understanding protein folding, misfold-
ing, and amyloidosis. The results help to explain that the nature of
the amyloidogenic propensity of proteins is connected to their
amino acid sequences that are able to form a large number of
contacts.
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involved in DNA binding and other types of molecular
recognition [30]. A large portion of the sequences of
intrinsically disordered proteins contain segments of low
complexity and high predicted flexibility [31�38]. It also has
been indicated that a combination of low overall hydro-
phobicity and a large net charge represent a structural
feature of intrinsically disordered proteins in comparison
with small globular proteins [39,40]. There are currently
several widely used methods for prediction of disordered
regions: GlobPlot [41], a simple propensity-based approach
for evaluating the tendency of residues to be in a regular
secondary structure; PONDR VL3H [37], which is able to
distinguish experimentally verified disordered proteins from
globular proteins by various machine learning approaches;
DISOPRED [42], in which the definition of disorder is
restrained to regions that are missing from X-ray structures
but are specifically recognized by a support vector machine in
the DISOPRED model; and IUPred [43], which assigns the
order/disorder status to residues on the basis of their ability
to form favorable pairwise contacts. We were the first to our
knowledge who used the number of contacts per residue as a
parameter to distinguish folded and intrinsically disordered
proteins [44]. We have extended our method to predict
disordered regions and have made comparisons with the
above-mentioned methods [45]. It has been demonstrated
that our method is the best among widely used methods for
the sets of proteins considered here.

Despite considerable efforts to understand the mechanism,
it is still unclear what is responsible for amyloidogenic and
disordered regions. The goal of this work is to test our
hypothesis about whether protein regions that possess
expected strong packing density are responsible for the
amyloidogenic properties of proteins, while regions with
weak packing density simultaneously are responsible for the
appearance of disordered regions. We introduce a new
parameter, namely mean packing density (number of residues
within the given distance from the considered residue), which
enables the prediction of both amyloidogenic and intrinsi-
cally disordered regions from protein sequence. These
findings support the concept that the occurrence of
amyloidogenic and intrinsically disordered regions has a
similar basis in different peptides and proteins.

Results

Observed Mean Packing Density for 20 Types of Amino
Acid Residues and Expected Packing Density Profiles

To calculate the packing density observed in protein
structures, we have constructed two databases of protein
structures. The first one [45,46] includes proteins with
sequence identity less than 80% (database 80%). The second
database consists of proteins with sequence identity less than
25% (database 25%). The average packing density observed
in protein structures (database 25%) for each of 20 types of
amino acid residues is shown in Table 1. For database 80%,
the 20 values were not identical but very similar (they can be
found in [45]), so that the correlation coefficient between the
two sets of values was as large as 99.95%. These values were
considered to be the expected packing density for the
residues in each protein or peptide sequence studied further.
It is worth noting here that three aromatic residues
(tryptophane, tyrosine, and phenylalanine) have the highest

observed packing density among the 20 amino acids in both
databases. Among the many parameters that have been
proposed to promote amyloid fibril formation is the p-
stacking of aromatic residues [47,48]. Many amyloidogenic
regions of proteins have high content of aromatic residues.
From experimental works [49,50], one can suggest that
aromatic residues favor aggregation because of hydropho-
bicity, size, and intrinsic b sheet propensity rather than
aromaticity. The specific nature of the side-chain interactions
for each protein will drive the rate of fibril formation as well
as the resulting stability.
The expected packing densities were averaged over a

sliding window, and a packing density profile was produced
(see Materials and Methods). Similarly, the other types of
profiles were built using other scales instead of the scale from
Table 1 (for example, hydrophobicity profile basing on
hydrophobicity scale, etc.).

Searching for Peptides That Are Fibril Formers and Fibril
Nonformers
Toobtain a threshold for our predictions, we took a database

of six-residue peptides, some of which were fibril formers and
some of which were fibril nonformers [21]. The receiver
operator characteristic (ROC) curves for our method are
shown in Figure 1. The four ROC curves correspond to four
scales: packing density for database 25% (Table 1), packing
density for database 80% [46], hydrophobicity [51], and b sheet
propensity [52]. For further investigations, we considered the
following values the thresholds for predicting amyloidogenic
regions (which gave rather a high level of true predictions,
about 80%, as well as a rather low level of false predictions,
about 25%): packing density greater than 21.5 and 21.4 for the
two scales obtained from database 25% and database 80%,
correspondingly; hydrophobicity less than�0.75, and b sheet

Table 1. Mean Observed Packing Density for 20 Amino Acid
Residues (and Errors in the Determination of the Average)
Obtained Using a Contact Radius of 8.0 Å from Database 25%

Amino Acid Residue Number of Close Residues

Gly 17.18 6 0.03

Asp 17.39 6 0.03

Glu 17.43 6 0.03

Pro 17.53 6 0.04

Lys 17.72 6 0.03

Ser 18.35 6 0.04

Asn 18.57 6 0.04

Gln 19.19 6 0.04

Thr 19.91 6 0.04

Ala 19.97 6 0.03

Arg 21.03 6 0.04

His 21.64 6 0.06

Cys 23.99 6 0.07

Val 24.05 6 0.03

Met 24.80 6 0.07

Leu 25.53 6 0.03

Ile 25.96 6 0.04

Tyr 26.17 6 0.05

Phe 27.42 6 0.05

Trp 28.53 6 0.09

doi:10.1371/journal.pcbi.0020177.t001
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propensity less than �0.46 (the corresponding points on the
ROC curves [Figure 1] are marked with symbols). It should be
mentioned that when we consider the packing density scale for
database 80%, the ROC curve is slightly better; the threshold is
21.4.

Searching for Optimal-Residue Long Sliding Window for
Prediction of Amyloidogenic Regions

We collected a database of all known proteins and peptides
that are associated with amyloid diseases, and for which the
position of amyloidogenic regions is now experimentally
examined (see Table 2). Amyloids are elongated fibrils that
bind the aromatic dyes Congo red and Thioflavin-T have a
common cross-b X-ray diffraction pattern [53].

Varying the size of the sliding window (three, five, seven,
and nine residues), we constructed a packing density profile
for each of these proteins and peptides. We predicted a
region as amyloidogenic if expected packing density for the
region (with size equal or greater than size of the window) is
above the considered threshold. Our hypothesis is that
regions with strong expected packing density should corre-

spond to aggregation regions, which presumably intersect
with amyloidogenic regions of proteins. The number of
predicted amyloidogenic regions are presented in Table 2.
One can see that the window size of seven residues is optimal
for the prediction of amyloidogenic regions. The result was
very similar for the scale obtained from the 80% database
(cutoff is 21.4 for this scale).

Searching for Amyloidogenic Regions in Proteins with
Known Disease-Related Regions
We constructed a packing density profile using a sliding

window of seven residues for each of the proteins and
peptides considered here. The experimentally observed
amyloidogenic regions and the predicted ones are presented
in Table 3 (25% database). One can see that for eight of 12
examined proteins and peptides the predictions are consis-
tent with the experimentally found amyloidogenic regions.
In Alzheimer disease, s-protein forms neurofibrillary

tangles, which are bundles of paired helical filaments. A
single region (amino acid residues 306�311), which is shown
experimentally to be amyloidogenic [54], is correctly pre-
dicted by our method when we use a sliding window of five
residues.
Despite a large body of experimental data related to the

search for amyloidogenic regions in human prion protein, it
is difficult to determine which regions these are. It has been
shown that helix 1 (residues 144–153) of human prion protein
(PrP) plays a critical role in the amyloidogenic process [55,56].
Peptides corresponding to three helical regions (residues
144�154, helical region one; residues 178–193, helical region
two; and residues 198–218, helical region three) have been
synthesized and studied [57]. The peptides corresponding to
the second helical region, residues 180–193 and residues 178–
193, are the only ones that form an amyloid structure,
according to data obtained by electron microscopy and
Congo red birefringence [57]. By using two intrinsic
fluorescent variants of this protein (Y150W and F141W),
conformational changes confined to the 132–160 segment
were monitored [58]. Our predicted fragments intersect with
all helices.
Most mutations described in apolipoprotein A (ApoA) are

within the N-terminal portion of the protein (residues 1–93),
which represents the proteolysis fragment that is incorpo-
rated into amyloid deposits [59]. We predict as amyloidogenic
one region (residues 15–21) within the N-terminal portion as
well as one additional region in the C-terminal part of
apolipoprotein A, which has strong expected packing density.
The experimentally found amyloidogenic fragment of

lysozyme (residues 49–64), which has been specifically

Figure 1. ROC Curves for Prediction of Amyloidogenic Regions in the

Database of Fibril Formers and Fibril Non-Formers Peptides

The symbols correspond to values chosen as thresholds.
doi:10.1371/journal.pcbi.0020177.g001

Table 2. Comparison of Prediction of Amyloidogenic Regions Using Contact Density Scale and Varying Size of Sliding Window (Scale
Obtained from Database 25%)

Regions Size

Window Size 3 Window Size 5 Window Size 7 Window Size 9

Predicted and confirmed by experiment 14 14 11 5

Predicted but not confirmed by experiment 49 16 7 5

Not predicted but observed in experiment 4 4 7 13

doi:10.1371/journal.pcbi.0020177.t002
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implicated in amyloidogenic conversion [60,61], is a part of
the b domain in the native structure of the protein. Our
predictions for lysozyme are consistent with experimental
results; however, three additional fragments (25–33, 76–82,
and 107–114) are also predicted.

The most amyloidogenic peptide fragments from trans-
thyretin (TTR) have been demonstrated in two regions:
residues 10–19, which encompass the A strand of the inner
b sheet structure that readily forms amyloid fibrils when
dissolved in water at low pH [62,63]; and residues 105–115,
which adopt an extended b strand conformation that is
similar to that found in the native protein [64]. We predicted
correctly these important regions (11–17 and 105–113) and
one additional region with strong expected packing density.

It has been found experimentally that the following
sequences play a dominant role in the amyloidogenesis of
b2-microglobulin: residues 20–41 [65], residues 59–71 [66],
and residues 83–89 [9]. All predicted regions are consistent
with the experimental data except for fragment 83–89.

Reactive (or secondary) amyloidosis is characterized by the
extracellular deposition of amyloid fibrils containing pre-
dominantly amyloid A protein (AA), which is a proteolytically
derived fragment of serum amyloid A (SAA) protein. The N-
terminus of amyloid A protein (residues 1–11 of AA protein)
was shown to be the amyloidogenic part of the molecule [67].
We predicted this region correctly (residues 1–9).

Medin is the main constituent of the aortic medial amyloid.
It is derived from a proteolytic fragment of lactadherin, a
mammary epithelial cell–expressed glycoprotein that is
secreted as part of the milk fat globule membrane. It was
previously demonstrated that an octapeptide fragment of
medin (residues 42–49, NFGSVQFV) forms typical well-
ordered amyloid fibrils [68]. The last four residues (residues
47–50) have a large expected packing density, yet this region
is not predicted by the rules of our algorithm (a region must
be at least seven residues).

It has been shown that residues 16–20 in amyloid b (Ab)
peptide are essential for the peptide’s polymerization [69].
Also, solid-state NMR and site-directed spin labeling experi-
ments suggest that residues 30–38 [70] form a b strand in the
fibrils. Our predictions (residues 15–22) are consistent with
the first region.

It has been shown that a fragment (residues 20–27) from
amylin (also called human islet amyloid protein or hIAPP) is

amyloidogenic and cytotoxic [71]. Other than this one, the
shortest active fragments capable of self-assembly were found
to be pentapeptides FLVHS (residues 15–19) and NFLVH
(residues 14–18) [72]. One of the fragments (residues 12–18) is
correctly predicted by our method, but the second amyloido-
genic region (residues 20–27) has expected packing density
below the threshold.
Alpha-synuclein is a major component of Lewy bodies in

Parkinson disease and is found to be associated with several

Figure 2. ROC Curves for Prediction of Intrinsically Disordered Regions

Each ROC curve corresponds to predictions with specified (on the
legend) size of the sliding window. The open circle corresponds to the
value of packing density that is chosen as a threshold, 20.5 for database
25% (A) and 20.4 for database 80% (B).
doi:10.1371/journal.pcbi.0020177.g002

Table 4. Comparison of Prediction of Amyloidogenic Regions
Using Different Scales

Regions Scales

Packing Density

(from Database

25%)

Hydrophobicity b Sheet

Propensity

Predicted and confirmed

by experiment

11 9 2

Predicted but not

confirmed by experiment

7 7 6

Not predicted but observed

in experiment

7 9 16

doi:10.1371/journal.pcbi.0020177.t004
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other forms of dementia. The central fragment of a-synuclein
(35 residues long), which has been isolated from purified
amyloid of Alzheimer disease brains, [73] is called the non-Ab
component of Alzheimer disease amyloid (NAC). It has been
shown that the N-terminal fragment of NAC (residues 3–18)
forms aggregates and displays a transition from random coil
to b sheet structure [74]. On the contrary, the C-terminal
fragment of NAC (residues 19–35) remains in solution with
random coil conformation under the same conditions [74]. No
regions with expected packing density over 20.5 are observed.
The predicted region (residues 9–13) appears only if the
threshold is 20.3. Thus, we consider this prediction as a failure.

It has been shown that a peptide consisting of residues 15–
19 of the human hormone calcitonin forms highly ordered
fibrils, which are similar to those formed by the entire
hormone sequence [75]. This region is not predicted by the
rules of our algorithm.

Our predicted regions are consistent with known disease-
related regions for eight of 12 experimentally well-studied
amyloidogenic peptides and proteins (transthyretin, b2-
microglobulin, lysozyme, prion protein, and others). This
result strongly indicates that the aggregation capability of a
protein chain is one of the common properties of amyloid
fibrils. Moreover, it should be noted that regions with high
packing density are often surrounded by amino acids that
disrupt their amyloidogenic capability, regions with weak
expected packing density, that is, amyloid breakers.

Here we also tested the ability of two other scales,
hydrophobicity [51] and b sheet propensity [52], to predict
amyloidogenic regions and compared these results with our
method of expected packing density. The choice of the
thresholds (Figure 1) for these predictions was made in the
similar way. On the one hand, from 18 experimentally
determined amyloidogenic regions, the expected packing
density scale finds 14 regions (see Tables 2 and 4), while the
hydrophobicity scale finds nine, and the b sheet propensity
scale finds two regions (in other words, the packing density
scale misses four amyloidogenic fragments while the hydro-
phobicity scale misses nine fragments and the b sheet
propensity scale misses 16). On the other hand, the scale of
expected packing density finds seven additional regions while
the scale of hydrophobicity finds seven extra regions, and the
scale of b sheet propensity finds six additional regions, the
amyloidogenic role of which is not confirmed by experiment.
Therefore, here we suggest a new property of peptides and

proteins that can be used to predict the formation of amyloid
fibrils: regions with strong expected packing density.

Searching for Intrinsically Disordered Regions
To test the quality of our predictions of intrinsically

disordered regions in proteins, we have used two databases,
of which one has 427 intrinsically disordered proteins and
regions [76] and the other has 559 fully folded proteins [43].
The ROC curves obtained with different sizes of the sliding
window are shown in Figure 2. The best result corresponds to
the case where we construct the packing density profile
smoothed over the sliding window of 41 residues; we chose
20.4 (the corresponding point is marked as a large circle) as
the threshold when we use the scale from database 80% (true
positives 0.74 and false positives 0.03) and 20.5 when we use
the scale from database 25% (true positives 0.74 and false
positives 0.05).
To test the quality of predictions obtained by our method

compared with other methods of prediction of disordered
regions such as IUPred [43], DISOPRED2 [42], PONDR VL3H
[37], and GlobPlot [41], we examined the same proteins that
were used by Dosztanyi et al. [43], who compared the quality of
predictions obtained by theirmethod IUPredwithDISOPRED,
PONDR VL3H, and GlobPlot (the data on these methods were
taken from [43]). These were a dataset of globular proteins (559
proteins) and long disordered protein segments (129 proteins).
Table 5 demonstrates that our method (FoldUnfold) showed
improved performance over these widely used methods on
these sets of proteins (the averaging for our method is done in
the same two ways as for the other methods [43]—over amino
acid residues and over proteins).

Discussion

We demonstrate that expected packing density is a useful
value for the prediction of both intrinsically disordered and
amyloidogenic regions of a protein based only on its
sequence. In Figure 3, a distribution of average packing
densities of globular proteins, is presented. The determined
thresholds (21.4 for amyloidogenic regions and 20.4 for
intrinsically disordered ones) correspond to the ends of this
distribution.
Structures of peptides such as NNQQNY (derived from

Sup35 protein [15]), KFFEAAAKKFFE (a designed 12-mer
peptide [14]), and YTIAALLSPYS (derived from transthyretin
[77]) confirm that the peptides adopt an extended b-strand

Table 5. Performance of Disorder Prediction Methods on Datasets of Globular Proteins (559 Proteins) and Long Disordered Protein
Segments (129 Proteins) [43] (Packing Density Scale Obtained from Database 25%)

Method True Positive Rate False Positive Rate

Averaging Is

Done over Residues

Averaging Is Done

over Proteins

Averaging Is Done

over Residues

Averaging Is Done

over Proteins

FoldUnfold (our method) [45,46] 0.865 0.739 0.051 0.074

IUPred [43] 0.763 0.679 0.053 0.055

PONDR VL3H [37] 0.663 0.607 0.050 0.078

DISOPRED2 [42] 0.664 0.491 0.050 0.069

GlobPlot [41] 0.330 0.304 0.181 0.197

doi:10.1371/journal.pcbi.0020177.t005
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conformation in amyloid fibrils. These fibrils achieve their
stability through optimal values of main-chain and dihedral
angles, as well as through extensive hydrophobic packing of
side chains (hydrophobic template, Serrano’s pattern—
STVIIE) and salt bridge formation from polar side chains
(polar template, Eisenberg’s pattern—NNQQNY). It should
be emphasized that between these two templates there
probably exist many different intermediate variants. Our
approach finds amyloidogenic regions closer to the hydro-
phobic template than to the polar one.

If amyloid fibril formation is a generic feature of proteins
[5], some common properties of amino acid sequences
possessing amyloidogenic propensities should be observed.
Experimental data as well as theoretical analyses can help
reveal the common structural and chemical properties for
this process, one of which is the tight packing density.

We tried to collect all known amyloidogenic proteins and
peptides for which disease-related regions are experimentally
localized. By analysis of primary structure alone, we have
demonstrated that regions that possess strong expected
packing density can be responsible for the amyloidogenic
properties of a protein, while regions with weak expected
packing density correspond to disordered regions. A new
concept is proposed that could aid in the understanding of
protein folding, misfolding, and amyloidosis.

Our study provides new insights into the process of
amyloid formation. The results help to explain that the
nature of the amyloidogenic propensity of proteins is related
to their amino-acid sequences that are able to form a large
number of contacts. Our results can help determine the
amyloidogenic propensity of amyloidogenic proteins for
which the position of amyloidogenic regions now remains
unexplored experimentally.

Materials and Methods

Observed packing density for 20 types of amino acid residues. The
set of protein structures used for calculation of the packing density
observed in protein structures was obtained by inspection of the
SCOP (Structural Classification of Proteins) [78] database 1.61 release
(for database 80%) and 1.65 release (for database 25%). For the first
database, 5,829 domains from four general classes (a–d) with less than
80% sequence identity values were found: 1,133 all-a proteins from
class a, 1,644 all-b proteins from class b, 1,617 a/b proteins from class c,
and 1,435 aþ b proteins from class d. A total of 3,769 domains from
four general classes (a–d) with less than 25% sequence identity values

were found (database 25%): 794 all-a proteins from class a, 928 all-b
proteins from class b, 1,089 a/b proteins from class c, and 958 a þ b
proteins from class d. The observed packing density for each amino
acid residue from this database was calculated as the number of close
residues (within the given distance). In our case a residue is
considered close to the given residue if any pair of their heavy atoms
is at distance of less than 8 Å. The neighboring residues bound with
peptide bonds (which are close in any case) are not taken into
account. The mean observed packing density for each of 20 types of
amino acid residues is presented in Table 1. These 20 values were
used for prediction of packing density from protein sequences, that
is, the expected packing density (we consider the expected packing
density of a residue equal to the mean observed packing density of
the corresponding residue in a globular state).

Calculation of the expected packing density profile. It is worth-
while to emphasize that the order of the residues may play an
important role in protein folding and may account for regions with
weak and strong packing density in a protein structure. To predict
such regions in a protein, we construct a profile of the expected
packing density for the protein sequence. The calculations are based
on a sliding window-averaging technique. For each peptide and
protein, in the prediction of amyloidogenic regions the sliding
window size is varied from three to nine residues while the sliding
window size is 11 (or 41) residues in the case of intrinsically
disordered regions prediction. The packing density profile is
calculated as follows. First, the expected packing density is
determined for each residue (see Table 1); then, these numbers are
averaged for five residues inside the window and assigned to the
central residue of the window. Therefore, the influence of residues
along the sequence flanking each window is included in our
calculation. The value of the average expected packing density for
every position of the polypeptide chain provides the packing density
profile. If more than five residues in a row have values over a
specified threshold, this region is predicted to be amyloidogenic. On
the other hand, any region having more than 11 (or 41) residues with
values below a specified threshold is predicted to be intrinsically
disordered.

Databases used to test our method. To evaluate the accuracy of,
and confidence in, our method of predicting amyloidogenic regions,
a database of 67 peptides that are six-residue fibril formers and 91
peptides that are six-residue fibril nonformers was used [21]. To test
our method, we also used the amino acid sequences of 12 disease-
related amyloidogenic proteins and peptides (for which the position
of amyloidogenic regions is localized experimentally); the sequences
were taken from the SWISS-PROT database [79] (http://us.expasy.org/
sprot/). To test our method for predicting intrinsically disordered
regions, we used three databases. Two of them were downloaded from
the Database of Protein Disorder DISPROT [76]. The first one
consists of sequences of 427 completely intrinsically disordered
proteins and intrinsically disordered fragments. The second database
contains 129 intrinsically disordered proteins. The third database
consists of 559 globular proteins without intrinsically disordered
fragments [43]. This database was constructed using Protein Data
Bank (PDB) entries from the above work.

Evaluation of the quality of predictions. To obtain the quality of
predictions and to determine thresholds, we calculated true positive
and false positive rates and made so-called receiver operator
characteristic (ROC) curves. In predictions of intrinsically disordered
regions, the true positive rate was calculated as the fraction of
residues predicted as intrinsically disordered over the intrinsically
disordered set of residues; the false positive rate was the fraction of
predicted intrinsically disordered residues over the set of folded
residues. Similarly, in the case of six-residue peptides that were fibril
formers, the true positive rate was calculated as the fraction of
peptides predicted as fibril formers in the fibril formers set of
peptides while the false positive rate was the fraction of peptides
predicted as fibril formers in the fibril nonformers set of peptides.

The other scales for prediction of amyloidogenic regions. Using
hydrophobicity and b sheet propensity scales, we predicted the
amyloidogenic regions of the considered proteins and peptides and
evaluated the obtained results in a similar way to how we predicted
these regions using packing density scales. The hydrophobicity scale
of 20 types of amino acid residues was taken from the work of
Fauchere and Pliska [51]. The b sheet propensities of the 20 types of
amino acid residues in an internal b sheet position were taken from
the work of Minor and Kim [52]. The original hydrophobicity and b
sheet propensity scales were taken with reversed sign since the most
hydrophobic and b sheet–predisposed amino acid residues have the
largest negative values.

Figure 3. Histogram Representing the Distribution of 5,829 Globular

Protein Domains (Database 80%) as a Function of the Expected Packing

Density

Arrows indicate upper and lower thresholds obtained from the ROC
curves (see Figures 1 and 2) which correspond to unusually strong and
unusually weak expected packing density.
doi:10.1371/journal.pcbi.0020177.g003
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