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Abstract

Lysyl oxidase (LOX) is a multifunctional protein required for normal collagen and elastin 

biosynthesis and maturation. In addition, LOX has complex roles in cancer in which the lysyl 

oxidase propeptide (LOX-PP) domain of secreted pro-LOX has tumor suppressor activity, while 

the active enzyme promotes metastasis. In prostate cancer cell lines, recombinant LOX-PP (rLOX-

PP) inhibits the growth of PC3 cells in vitro by mechanisms which were not characterized, while 

in DU145 cells rLOX-PP targeted FGF signaling. Because rLOX-PP can enhance effects of a 

genotoxic chemotherapeutic on breast cancer cell apoptosis, we reasoned that rLOX-PP could 

target DNA repair pathways typically elevated in cancer. Here we demonstrate for the first time 

that rLOX-PP inhibits prostate xenograft growth in vivo and that activating phosphorylations of 

the key DNA repair molecules ATM and CHK2 are inhibited by rLOX-PP expression in vivo. In 

addition, in vitro studies showed that rLOX-PP inhibits radiation induced activating 

phosphorylations of ATM and CHK2, and that exogenously added rLOX-PP protein can localize 

to the nucleus in both DU145 and PC3 cells. rLOX-PP pull-down studies resulted in detection of a 

protein complex with the nuclear DNA repair regulator MRE11 in both cell lines, and rLOX-PP 

localized to radiation-induced nuclear DNA repair foci. Finally, rLOX-PP was shown to sensitize 

both DU145 and PC3 cells to radiation-induced cell death determined in colony formation assays. 

These data provide evidence that rLOX-PP has a nuclear mechanism of action in which it directly 

interacts with DNA repair proteins to sensitize prostate cancer cells to the effects of ionizing 

radiation.
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Introduction

The lysyl oxidase (LOX) gene has been shown to have “RAS recision” activity (Contente et 

al., 1990; Kenyon et al., 1991). LOX is synthesized and secreted as a 50 kDa proenzyme, 

and is then processed extracellularly to a ~30 kDa mature LOX enzyme and an ~18 kDa 

lysyl oxidase propeptide (LOX-PP) by procollagen C-proteinases (1, 2) The active enzyme 

is essential for biosynthetic collagen cross-linking, while the propeptide of LOX (LOX-PP) 

is a tumor growth inhibitor and has multiple mechanisms of action. Interestingly, active 

lysyl oxidase enzymes promote invasiveness in metastasis (3), but the unique propeptide 

region of LOX in particular acts as a tumor suppressor (4–6). Recombinant LOX-PP (rLOX-

PP) has Ras recision activity and inhibits breast, prostate and lung cancer cell growth (7–9) 

and was recently shown to also inhibit Ewing sarcoma and hepatocellular carcinoma cell 

growth (10, 11). Purified rLOX-PP protein inhibits tumor growth after both direct 

intratumoral injection and by a slow release formulation in Her2/neu breast cancer cell 

xenografts (12). Thus, rLOX-PP is now understood to have therapeutic potential. In prostate 

cancer cells, we have shown in vitro that rLOX-PP inhibits FGF-2/FGF receptor-1 (FGFR1) 

interaction via an extracellular mechanism resulting in attenuated RAS/ERK/AKT signaling 

in DU145 prostate cancer cells (8). However, mechanisms of action by which rLOX-PP 

inhibits PC3 prostate cancer cell growth are not well characterized (8). Separate studies 

indicate that rLOX-PP can enhance apoptosis of breast and pancreatic cancer cell lines in the 

presence of doxorubicin, but not in the absence of doxorubicin (7). Because the mechanisms 

of action of doxorubicin include increased DNA damage (13), we reasoned that rLOX-PP 

could interact with or target DNA repair pathways which are elevated in cancer and which 

prevent mitotic catastrophe (14).

DNA damage in cells activates a complex DNA damage response (DDR). This response 

normally coordinates cell cycle progression with DNA repair to maintain genomic stability. 

Defects in the DDR cascade can inhibit cell cycle checkpoints, decrease repair responses 

and increase sensitivity to ionizing radiation (IR) and genotoxic chemotherapeutic agents. In 

response to DNA damage, a protein complex which contains MRE11, RAD50, and NBS1 

(MRN complex) binds to and activates ATM protein kinase which initiates a downstream 

signal transduction cascade essential for coordinating cell cycle progression with DNA 

repair. The elevated ability to repair DNA is a characteristic of tumor cells even in the 

absence of acute radiation, enabling continued proliferation and dissemination. Moreover, 

overexpression of key DNA repair enzymes results in increased cancer cell invasiveness and 

tumor formation (15, 16). Chemotherapeutic inhibition of DNA damage repair responses is, 

therefore, an effective strategy to inhibit tumor growth with or without accompanying 

radiation therapy.

The present report shows that ectopic overexpression of rLOX-PP inhibits prostate cancer 

xenograft growth in both PC3 and DU145 cells. rLOX-PP inhibited IR-induced activating 

phosphorylations of ATM and CHK2, and increased DNA fragmentation. rLOX-PP was 

observed to be taken up by PC3 and DU145 cells with accumulation in nuclei. Moreover, 

rLOX-PP co-localized with repair foci and formed protein complexes with MRE11, and 

sensitized prostate cancer cells to IR. These data strongly suggest that one mechanism of 

action of rLOX-PP is to target DNA repair pathways. Thus, we propose that rLOX-PP or a 
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derivative could have the potential to be used in conjunction with radiation and/or genotoxic 

cancer therapy.

Results

Ectopic overexpression of LOX-PP inhibits mouse prostate cancer subcutaneous 
xenografts

Previous studies have shown that rLOX-PP inhibits prostate cancer cell growth in vitro (8). 

Here we hypothesize that rLOX-PP could inhibit the growth of prostate cancer cell lines by 

targeting DNA repair pathways. This idea is based on the finding that rLOX-PP enhances 

inhibition of cancer cell growth by a genotoxic agent (7), and on reports indicating that 

DNA repair pathways are elevated in cancer and promote metastasis (15–17). In order to 

first evaluate whether rLOX-PP can inhibit prostate cancer cell growth in vivo, we created 

xenografts in nude mice with PC3 cells and DU145 cells, respectively. PC3 and DU145 

cells were stably transduced with rLOX-PP expressing- or Empty lentivirus (Materials and 

Methods and Figure 1A). Figure 1B shows that growth of DU145 xenografts was slower in 

rLOX-PP expressing xenografts compared to controls, and that tumor weight at sacrifice 

was 50% of control tumors (Figure 1C). PC3 xenografts expressing rLOX-PP grew slower 

than corresponding controls (Figure 1D), with smaller tumors observed at sacrifice (Figure 

1E). Data indicate that ectopic expression of rLOX-PP inhibits tumor growth by at least 50% 

compared to empty vector controls. These findings demonstrate that prostate cancer 

xenografts are responsive to rLOX-PP in vivo.

ATM is a master regulator of double strand break repair. It auto-phosphorylates Ser1981 

after binding to the MRN complex of proteins (18). Active phosphorylated ATM is a 

signaling kinase which phosphorylates a variety of downstream effectors including CHK2 

that limits the cell cycle and/or promotes apoptosis (19). Activating phosphorylations of 

both ATM and CHK2 from protein extracts obtained from xenografts were measured. Figure 

1F shows that ATM and CHK2 phosphorylations were inhibited by overexpression of 

rLOX-PP in tumor xenografts, particularly in PC3-derived xenografts.

In vitro radiation induced ATM and CHK2 phosphorylations and rLOX-PP

We next evaluated whether rLOX-PP could inhibit IR-stimulated DNA repair pathways in 

vitro. Radiation therapy induces a DDR response and inhibition of this response in cancer 

cells by chemotherapeutics is an effective anticancer therapeutic strategy (16). ATM is 

activated by IR and its phosphorylation of CHK2 on Thr68 initiates a phosphorylation 

cascade that promotes the full activity of Chk2 and cell cycle arrest (20). Thus, DU145 and 

PC3 cells transduced to express rLOX-PP, and empty vector transduced cells, were 

subjected to 5 Gy IR for different time intervals. Cell proteins were extracted for Western 

blotting for phosphorylated ATM (Figure 2) and phosphorylated CHK2 (Figure 3). Data 

show that cells expressing rLOX-PP exhibited significantly reduced levels of both ATM- 

and CHK2 phosphorylation after 10 min and 1 hr of radiation exposure.

To determine whether rLOX-PP expression actually resulted in increased radiation-induced 

DNA damage, genomic DNA was isolated from irradiated cells and subjected to agaorse gel 
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electrophoresis to assess for DNA fragmentation levels. Data in Figure 3E clearly show that 

rLOX-PP expression results in increased DNA damage.

rLOX-PP inhibition of DNA repair and RAS signaling

It has been previously reported that rLOX-PP inhibits RAS-dependent signaling (6). To 

investigate whether the ability of rLOX-PP to inhibit DNA repair induced by IR is mediated 

by RAS-dependent signaling, we assessed changes in ERK1/2 and AKT activation as a 

function of rLOX-PP expression in IR-treated and control DU145 and PC3 cells. Data in 

Figure 4 indicate that IR-induced ERK1/2 and AKT activation are not inhibited in cells 

expressing rLOX-PP. These data suggest that LOX-PP inhibition of IR-induced DNA 

damage is not primarily the result of its inhibition of IR-induced RAS signaling.

rLOX-PP nuclear localization in DU145 and PC3 cells

In order to evaluate whether rLOX-PP can internalize into the cytoplasm and ultimately into 

the cell nucleus of prostate cancer cells to directly target DDR response proteins, we 

covalently labeled biologically active rLOX-PP protein that contains a C-terminal-myc-His6 

tag with ATTO565. The ATTO565 molecule (4-[4- (dimethylamino)phenylazo]benzoic 

acid) is a highly sensitive red fluorescent dye that is resistant to photo-bleaching (21). 

rLOX-PP contains no cysteine and a one lysine residue located in the C-terminal myc-His6 

tag, and none are present in LOX-PP itself (22). rLOX-PP was, therefore, labeled with 

ATTO565 as described in Materials and Methods. Incubation of cells with 4 μg/ml –

rLOXPP-ATTO565 for 36 hours followed by confocal immunofluorescence microscopy and 

analyses of Z-stack images revealed nuclear association of rLOX-PP in both DU145 and 

PC3 cells (Figure 5A and 5B).

rLOX-PP interacts with the MRN complex protein MRE11

If rLOX-PP directly inhibits DNA repair, it can be expected to bind one or more component 

of the MRN complex in its mechanism of action. We, therefore, studied direct binding of 

rLOX-PP with DNA repair proteins by pull down assays employing PC3 and DU145 cells 

transduced to express rLOX-PP or control empty vector. Cell extracts were incubated with 

non-immune IgG or anti-c-Myc tag IgG covalently attached to agarose beads (Pierce). Beads 

were washed and rLOX-PP containing protein complexes were eluted and analyzed as 

described in the Materials and Methods and Figure 5. The data show that rLOX-PP has 

specific direct or indirect interactions with MRE11 in PC3 and DU145 cells (Figure 5C and 

5D) but not with ATR, Rad 50 or NBS1 (data not shown). MRE11 is a component of the 

MRN complex (18), and ATM binds to and is activated by the MRN complex. These 

findings point to the likelihood that rLOX-PP inhibits DNA repair pathways by binding to 

components of the DNA DSB repair complex.

rLOX-PP is present in DNA damage induced repair foci

Histone H2AX is a substrate of ATM kinase to form phosphorylated-H2AX, which is a 

component and excellent marker of the DNA double strand break repair complex and of 

DNA repair foci (23, 24). Next we asked whether rLOX-PP is a component of IR-induced 

repair foci. rLOX-PP-ATTO565 treated PC3- and DU145 cells were irradiated with 5 Gy 
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IR, and then stained for phosphorylated-H2AX and MRE11 (Materials and Methods). Figure 

6 shows that IR increased the presence of repair foci, and that rLOX-PP co-localized with 

phosphorylated-H2AX, and MRE11-containing nuclear foci.

rLOX-PP inhibits clonogenic survival in response to radiation

Based on these data we predicted that LOX-PP would sensitize PC3 and DU145 cells to 

ionizing radiation. Cells expressing rLOX-PP or transduced with empty lentivirus were 

subjected to different doses of IR. Live cells were sorted by flow cytometry and were plated. 

Colonies were allowed to grow for 2 weeks (Materials and Methods). DU145 and PC3 cells 

expressing rLOX-PP resulted in fewer colonies at all doses of IR compared to empty cells 

(Figure 7). Correcting for plating efficiency determined at 0 Gy, the surviving fraction in 

rLOX-PP expressing cells was significantly diminished compared to the empty control 

(p<0.001); and the size of colonies was smaller in the rLOX-PP expressing cells (Figure 7). 

rLOX-PP significantly decreased colonies in the prostate cancer cells treated with 1–2 Gy 

IR. This finding shows that rLOX-PP is effective at sensitizing cancer cells in vitro to 

radiation at clinically relevant doses used in radiation therapy in vivo. (25).

Discussion

Biologic chemotherapeutics which inhibit a single specific pathway and are effective in the 

short term are often not effective to treat cancer in the long term due to development of drug 

resistance and robust relapse (26–29). Up-regulation of DNA repair pathways is one way in 

which tumor cells become resistant to therapy and through which mitotic catastrophe is 

avoided in damaged tumor cells (14). In our opinion, there is a place for derivatives of 

biomolecules which can inhibit tumor growth by multiple mechanisms of action and which 

would have therapeutic value with low toxicity. Such agents could be used in conjunction 

with more conventional chemotherapeutic and/or radiation protocols and could reduce the 

dosing requirements of the harsher therapeutics. rLOX-PP inhibits tumor growth by several 

mechanisms of action and targets both cell surface receptors and intracellular signaling 

molecules (4, 8, 12, 30–34). rLOX-PP tumor inhibitory properties are mediated by inhibiting 

RAS, FGFR1, β-catenin activation, and/or FAK signaling. Although rLOX-PP inhibits 

serum-induced stimulation in both DU145 and PC3 cells, this activity is mediated by FGF-2/

FGFR1 signaling in DU145 cells and not in PC3 cells.

As noted, DNA repair pathways are often up-regulated in cancer cells to help avoid mitotic 

catastrophe (14). The protein kinase ataxia-telangiectasia mutated (ATM) is an apical 

activator of the DNA damage response at DNA double-strand breaks (DSBs) (35). The 

MRN complex is required for optimal ATM activation at DSBs (36), and is one of the first 

complexes to be recruited to DSB sites, where it acts as a damage sensor that can also form a 

physical bridge spanning the DSB ends. It is required for timely repair by both non-

homologous end-joining (NHEJ) and homology-directed repair (HDR). MRE11 takes part in 

DSB end resection, which is essential for homologous DNA repair (35). The interaction of 

ATM with the MRN complex initiates a highly coordinated program of further recruitment 

of DNA damage response proteins including MDC1 (Mediator of DNA Damage Checkpoint 

Protein 1) and other proteins to sites of DSB repair (37). rLOX-PP robust inhibition of ATM 
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and CHK2 phosphorylation in xenografts grown in mice even without radiation treatment 

suggests that DNA repair pathways could be a target of rLOX-PP in these cells. Inhibition 

by rLOX-PP of both ATM and CHK2 phosphorylation and reduced colony formation 

occurred after IR in vitro in both cell lines. These data suggest that rLOX-PP inhibition of 

DNA repair pathways can occur in both cell lines. ATM activity inhibition enhances the 

sensitivity of tumor cells to the cytotoxic effects of IR and to sensitizing chemotherapeutic 

agents (38–40). The downstream target of ATM is CHK2 which causes cell cycle arrest and 

provides cells time to repair DNA. Selective CHK1 and CHK2 inhibitors such as 7-

hydroxystaurosporine (UCN-01), aminopyrazine XL844, AZD7762 (a thiophene urea 

carboxamide) are in clinical trials to inhibit tumor growth (41). CHK2-specific inhibitors as 

isothiazole carboximidamine, VRX046617, and the bis-guanylhydrazone NSC 109555 have 

been identified to target DNA damage repair pathways in cancer cells (42, 43). In our 

studies, rLOX-PP inhibits activating phosphorylation of CHK2 in both of the two androgen-

independent prostate cancer cell lines examined.

rLOX-PP can enter nuclei and forms complexes with MRE11 in both PC3 and DU145 cells. 

In DSB repair complexes, ATM, MRE11 and phosphorylated-H2AX are present in DNA 

repair foci. MRE11 is the core of the MRN complex and interacts with both RAD50 and 

NBS1 (44–46). Further, in mammalian cells the MRE11 complex mediates the S-phase 

checkpoint through an interaction with replication protein A (47). Our data suggest that 

rLOX-PP disrupts productive functional interactions involved in the MRN complexes 

resulting in inhibited downstream signaling required for DNA repair. Moreover, MRE11 is a 

nuclease which has a role in DNA splicing in DSB repair (48). MRE11 is a conserved 

protein with an N-terminal nuclease domain (49, 50) and a DNA-binding region (51, 52) 

encompassing the glycine-arginine motif which is predicted to regulate DNA double-strand 

break processing (53). Further studies are required to determine whether or not MRE11 is a 

direct binding partner for rLOX-PP in its ability to inhibit the DSB repair response.

rLOX-PP was localized to phosphorylated-H2AX- and MRE11-containing DNA damage-

induced foci which confirms that rLOX-PP binds to DSB complexes. In order to arrest cell 

cycle progression at sites containing damaged chromatin, phosphorylated-H2AX is required 

for the assembly of DNA repair protein complexes and for activation of checkpoint proteins. 

H2AX-containng nuclear foci are used to detect genotoxic effects and to monitor the 

efficiency of anticancer treatment to predict of tumor cell sensitivity to gentotoxic anticancer 

agents (54). H2AX becomes extensively phosphorylated within three minutes of DNA 

damage, forms foci at break sites and recruits other factors at foci. The product of the tumor 

suppressor gene BRCA1 also co localizes with phosphorylated-H2AX and is recruited to 

these sites before Rad50 or Rad51 (55).

In summary, rLOX-PP sensitizes cells to ionizing radiation in clonogenic survival assays at 

clinically relevant doses of IR in both PC3 and DU145 cell lines. Clinically in prostate 

cancer patients, conventionally fractionated external beam radiation therapy uses 1.8 – 2.0 

Gy/fraction. (56). Moreover, rLOX-PP interferes with the DSB repair response in cancer 

cells by inhibiting ATM and CHK2 phosphorylation. rLOX-PP interacts with MRE11 and 

H2AX foci. Thus, we propose that a mechanism of action of the rLOX-PP effect is through 

its interaction with the MRN complex, and inhibition of DSB repair signaling. This study 
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raises the novel concept that rLOX-PP, or a derivative, could be used in combination with 

radiation therapy and/or with genotoxic drugs, increasing the effectiveness of these 

conventional therapies. Evaluation of the responsiveness of rLOX-PP in pre-clinical 

orthotropic mouse models in combination with DNA damaging agents including radiation 

and/or DNA-directed chemotherapeutic drugs is now of considerable interest.

Materials and Methods

Mouse xenografts

All in vivo experiments were approved by Boston University Medical Center IACUC. PC3 

and DU145 cells were stably transduced with rLOX-PP expressing lentivirus particles 

EF1α-LOX-PP-myc-his-UBC-GFP (designated as rLOX-PP) and empty vector EF1α-

Empty-UBC-GFP (designated as Empty). Cells transduced with rLOX-PP- or Empty 

constructs (4×106 cells) were respectively injected subcutaneously into the midline dorsa (n 

= 5) of NCR nu/nu mice (Taconic Farms, Hudson, NY) as single cell suspensions in serum-

free DMEM. Caliper measurements were performed at regular intervals to monitor the 

volumes of all tumors. Tumors were harvested at sacrifice, weighed and snap frozen, ground 

to a fine powder in liquid nitrogen and then extracted for Western blotting.

Western blots

Tumor samples or cell layers were extracted into SDS PAGE sample buffer (0.1 mM Tris-

HCl, 4% SDS, 10% glycerol, 5% β-mercaptoethanol) and boiled for three to five minutes. 

Cell culture media samples were boiled after adding one volume of 2X SDS PAGE sample 

buffer. Protein concentrations were determined using Nano Orange assay kits (Molecular 

Probes, Eugene, OR). From tumors, approximately 40 micrograms of protein from 3 tumors 

per experimental group were then subjected to 6% or 10% SDS PAGE and Western blotting 

with primary antibodies from Cell Signaling Technology (Danvers, MA). The antibodies 

used were phospho-ATM (#5883), ATM (#2873), phospho-CHK2 (#2661), CHK2 (#2662) 

and MRE11 (#4895) and normalization control β-actin (#4970). LOX-PP antibody was 

prepared as described earlier (8). Anti-rabbit and anti-mouse secondary antibodies were 

purchased from Cell Signaling Technology (Danvers, MA; 7074 and 7076, respectively). 

The quantifications were performed by a digital densitometry system (Versadoc; BioRad, 

Hercules, CA) and Image J software.

In vitro radiation protocol for ATM and CHK2 activation

PC3 and DU145 cells expressing rLOX-PP or empty vector controls were plated and grown 

in DMEM/F12K media with 10% serum under standard conditions. Cells were transduced 

with the rLOX-PP or empty lentivirus particles and plated in 6-well plates (57). At 80% 

visual confluence, cells were placed in serum-free medium overnight. Cultures (n = 3) were 

then irradiated with 5 Gy IR with a [137Cs] γ-irradiator. Cells were cultured for an additional 

10 min, 1 hr and 6 hrs and cell layers were collected as described above in SDS PAGE 

sample buffer and were subjected to Western blot analysis.
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rLOX-PP labeling and localization to cell nuclei

rLOX-PP uptake studies were performed by labeling rLOX-PP at the N-terminus and at the 

only lysine residue which is located in the C-terminal myc-His6 tag employing the N-

hydrosuccinamide ester of ATTO565 (4-[4-(dimethylamino)phenylazo]benzoic acid) 

(Molecular Probes, Eugene, OR). rLOX-PP (2 mg/ml) in 0.1 M sodium bicarbonate buffer 

(pH=8.3) was treated with a 10-fold molar excess of ATTO565-NHS ester and incubated at 

37°C for 3 hrs, followed by incubation at 4°C overnight (58, 59). The samples were diluted 

with 200 mM sodium phosphate buffer, 10 M urea (pH 7.8) resulting in a final urea 

concentration of 4 M. In order to remove unlabeled dye, the sample was subjected to gel 

filtration chromatography through a Sephadex G-25 column (GE Healthcare, Waukesha, 

WA, PD MiniTrap™ G-25, #28-9180-07). The column was pre-equilibrated with 200 mM 

sodium phosphate buffer with 10 M urea (pH 7.8) and eluted with same buffer at room 

temperature. The flow-through fraction containing rLOX-PP–ATTO565 was collected. 

Labeled rLOX-PP was then dialyzed against water using 10,000 Dalton molecular weight 

cut off Slide-A-Lyzer dialysis cassettes (Thermo Scientific, Waltham, MA). To confirm that 

free dye was removed, samples were subjected to 12% SDS-PAGE gel and compared to the 

mobility of free ATTO565 dye and imaged (Ex 565 nm, Em 592 nm) with a Molecular 

Imager FX (Biorad, Hercules, CA). The stoichiometry of ATTO565 labeling of rLOX-PP 

was calculated based on extinction coefficients of rLOX-PP and ATTO565 (Molecular 

Probes, Eugene, OR). The extinction coefficient of ATTO565 is 120,000 L mol−1 cm−1 (563 

nm) and rLOX-PP is 19,480 L mol−1 cm−1 (280 nm). Uptake studies were performed in live 

cells by plating 30,000 PC3 and DU145 cells in F12K or DMEM media (10% FBS, 1% 

penicillin-streptomycin) in chamber slides, respectively, and cultured overnight. The cells 

were replenished with serum-free F12K or DMEM media containing 0.1% BSA, and 1% 

penicillin-streptomycin for 24 hrs. rLOX-PP-ATTO565 was then added as indicated and 

incubated for another 36 hrs. The cells were imaged with a Zeiss 710 dual scanner confocal 

microscope as indicated.

DNA fragmentation assay

In order to determine the direct physical effect of LOX-PP on IR induced DNA damage, a 

DNA fragmentation assay was performed (60). Empty vector and rLOX-PP expressing PC3 

and DU145 cells were cultured and treated with IR (5 Gy). After 24 hr, cells were lysed in 

0.2% Triton X-100; 10 mM Tris-HCl, pH 7.4, 10 mM EDTA. Samples were centrifuged and 

supernatants extracted with phenol:chloroform:isoamyl alcohol (25:24:1) followed by 

chloroform:isoamyl alcohol (24:1) twice. DNA was precipitated by adding of 5 M NaCl to a 

final concentration of 300 mM and 2.5 volume of ice-cold 100% ethanol, washed with 70% 

ethanol, dried and suspended in 10 mM Tris-HCl, pH7.5, 1 mM EDTA. DNA samples (25 

μg each) were subjected to 2% agarose gel electrophoresis analysis.

rLOX-PP Pull down assays

Empty vector and rLOX-PP expressing PC3 and DU145 cells were cultured, extracted into 

non-denaturing RIPA cell lysis buffer and incubated with agarose bead-immobilized non-

immune IgG or anti-c-Myc tag IgG overnight at 4°C to pull down rLOX-PP. Non-immune 

IgG (#31903, Thermo Scientific, Waltham, MA) was coupled to agarose using AminoLink 
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Immobilization Plus Trial kit (#20394, Thermo Scientific, Waltham, MA) according to the 

manufacturer’s instructions. For pull-down assays, beads were washed, and then eluted 

according to kit instructions (ProFound c-Myc Tag IP/Co-IP Kit; Thermo Scientific, 

Waltham, MA). Eluted samples were analyzed by Western blotting on denaturing SDS 

PAGE probed with an anti-ATM, anti-ATR, Rad50, anti-NBS1 and anti-MRE11 antibodies 

(Cell Signaling, Danvers, MA) and with anti-rLOX-PP antibody (61). Aliquots (5%) of 

initial extracts taken before the immunoprecipitation were analyzed by Western blot on the 

same gels.

Foci formation assay

DU145 and PC3 cells were respectively plated in chamber slides and cultured for 18 hrs in 

standard media with serum. Cells were incubated for an additional 36 hrs in serum-free 

media supplemented with rLOX-PP-ATTO565 at 10 μg/ml, or vehicle. After incubation, the 

cells were subjected to IR (5 Gy) and allowed to recover for 1 hr. The cells were fixed with 

4% paraformaldehyde for 10 min and blocked with blocking buffer (1X PBS/5% normal 

rabbit serum/0.3% Triton™ X-100) for 1 hr. Cells were incubated with anti-MRE 11 

antibody (Cell Signaling, Danvers, MA, #4895) or rabbit non-immune control IgG (1.1 

μg/ml) in 1X PBS, 1% BSA, 0.3% Triton™ X-100) for 2 hrs. Cells were washed and treated 

with Alexa Fluor 647 conjugated anti-rabbit IgG (Molecular Probes, Eugene, OR, #4414; 

400 μg/ml) to respective samples, and incubated for an additional 1 hr and were extensively 

washed 3 times with PBS. Samples were then incubated with rabbit IgG non-immune 

control antibody and incubated for 1 hr at room temperature in the dark. This step blocks 

any remaining free Alexa Fluor 647 labeled anti-rabbit secondary antibody for the 

subsequent step. Finally, anti-phosphohistone H2AX rabbit mAb (Cell Signaling, Danvers, 

MA, #9719) or its isotype control (Cell Signaling, Danvers, MA, #2975), each directly 

conjugated with Alexa Fluor 488 in antibody dilution buffer (1X PBS/1% BSA/0.3% 

Triton™ X-100), were added in respective samples and incubated for 2 hr at room 

temperature in the dark. Anti-fade reagent with DAPI was added to all the samples and 

imaged. A Zeiss 710 dual scanner confocal microscope with a Plan-Apochromat objective, 

oil immersion lens and a CCD detector was used to obtain confocal images. Image 

acquisition was performed with Zeiss Zen image analysis software (Carl Zeiss Micro 

Imaging, Inc., Thornwood, NY). The image analysis was performed using Zeiss LSM 

viewer and Image J software (NIH, USA). Z-stack images analysis and 3-dimensional 

reconstruction was performed by using LOCI and the 3D viewer plug-in of Image J 

software.

Clonogenic survival assay

Empty vector and rLOX-PP expressing DU145 and PC3 cells were plated and grown in 

DMEM and 10% serum under standard conditions in 6-well plates. At 80% visual 

confluence, cells were placed in serum-free medium overnight. Cells expressing rLOX-PP 

and their respective controls (n=6) were then irradiated and then plated in 6-well plates as 

follows. Cells were trypsinized and subjected to sorting (Aria FACS, BioRad, Hercules, 

CA). The cell sorting was performed to exclude dead cells due to IR treatment by utilizing 

the Near-IR dead cell stain kit (Invitrogen Inc., Carlsbad, CA). The number of cells needed 

for successful initial plating of 5,000 and 10,000 cells per well in 6-well plates was 
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determined based on the plating efficiency determined at 0 Gy. The clonogenic survival 

assay, calculation of plating efficiency and the survival fraction determinations were 

performed as described (62, 63). Colonies were allowed to grow for 14 days, and cultures 

were then fixed, and stained with crystal violet and colony numbers were determined using a 

Versadoc Photodocumentation System and Quantity One colony counting software (BioRad, 

Hercules, CA). The survival fraction was calculated and plotted as described (62).

Statistical analysis

Analyses of all experiments were done using two way ANOVA with Bonferroni post-hoc 

analysis or Student’s t-test (Graph Pad Prism 5 software, La Jolla, CA) as indicated in 

Figure legends. All experiments were performed at least three times.
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Figure 1. Ectopic overexpression of LOX-PP inhibits DU145 and PC3 xenografts growth in mice 
and inhibits ATM and CHK2 phosphorylation
(A) Ectopic overexpression of rLOX-PP in PC3 and DU145 cells by lentiviral transduction 

as described in Materials and Methods, and Western blot analysis of cell culture 

supernatants to evaluate LOX-PP expression. Lanes rL1 and rL5 are 1 and 5 ng of rLOX-

PP protein as a Western blot control; lane DE, conditioned medium sample from DU145 

cells transduced with CMV-Empty; lane DL, DU145 conditioned medium sample from cells 

transduced with rLOX-PP lentivirus; lane PE, conditioned medium sample from PC3 cells 

transduced with Empty lentivirus particles; lane PL, conditioned medium sample from PC3 

cells transduced with rLOX-PP lentivirus; (B) subcutaneous murine xenografts of PC3 cells 

infected with Empty or rLOX-PP expressing virus as generated above. The tumor size was 

monitored by caliper measurements (n=5); * p<0.05 analysis by two way ANOVA; (C) 
tumor weight at sacrifice on day 70. (D) Subcutaneous murine xenografts of DU145 cells 

infected with Empty or rLOX-PP expressing lentivirus particles (n=5); * p<0.05, ** p<0.01, 

*** p<0.001; analysis by two way ANOVA; (E) tumor weight at sacrifice on day 52; (F) 
Western blot analysis of tumor extracts for ATM and CHK2 phosphorylation, total ATM 

and CHK2 and β-actin. Equal amounts of protein from each tumor xenograft (n=4) were 

pooled together and 40 μg samples were loaded to evaluate the expression of phospho-ATM/

CHK2, total ATM/CHK2 and β-actin. These pooled samples were run 3 times, quantified 

and plotted. (G) Quantification and normalization of phospho-ATM and CHK2 levels from 

tumors derived from Western blots. Data are the averages of means of three independent 

experiments +/− SEM; n = 3, * p<0.05, ** p<0.01, Student’s t-test.
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Figure 2. LOX-PP inhibits IR induced DNA damage repair response by inhibiting ATM 
phosphorylation
PC3 and DU145 cells transduced with Empty and rLOX-PP lentivirus particles were plated 

in 6-well plates and subjected to IR (5 Gy). Equal amounts of protein extracts from each cell 

sample (n=3) were pooled together and 40 μg samples were evaluated for the expression of 

phospho-ATM, total ATM and β-actin by Western blotting. The experiments were repeated 

with 3 different preparations of cells. (A) Representative Western blots for phospho-ATM, 

total ATM and β-actin as a loading control from PC3-Empty and PC3-LOX-PP cells 

subjected to IR (5 Gy) (B) quantification of relative protein expression in experimental 

groups quantified by densitometry analysis; (C) representative Western blots for phospho-

ATM, total ATM and β-actin as a loading control from DU145-Empty and DU145-LOX-PP 

cells subjected to IR (5 Gy); (D) the quantification of relative protein expression quantified 

by densitometry analysis; The experiments were repeated 3 times. Data are the averages of 

means of three independent experiments +/− SEM (n=3; * P<0.05, **p<0.01, *** P<0.001; 

student’s t-test).
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Figure 3. LOX-PP inhibits DNA damage induced CHK2 phosphorylation and DNA 
fragmentation detected by agarose gel electrophoresis
PC3 and DU145 cells were transduced with Empty- and rLOX-PP-expressing lentivirus 

particles and were cultured in 6-well plates and subjected to IR (5 Gy). Equal amounts of 

cell layer protein extracts from each cell extract (n=3) were pooled together and 40 μg 

aliquots of protein were evaluated for the expression of phospho-CHK2, total CHK2 and β-

actin. The experiments were performed 3 times with different preparations of cells. (A) 
Representative Western blots for phospho-CHK2, total CHK2 and β-actin as a loading 

control from the PC3-Empty and PC3-LOX-PP cells subjected to IR (5 Gy); (B) the 

quantification of relative protein expression by densitometry analysis; (C) Western blot for 

phospho-CHK2, total CHK2 and β-actin as a loading control from the DU145-Empty and 

DU145-LOX-PP cells subjected to IR (5 Gy); (D) the quantification of relative protein 

expression by densitometry analysis. Experiments were performed 3 times. Data are the 

averages of means of three independent experiments +/− SEM (n=3; *, P<0.05; student’s t-

test). (E) PC3 and DU145 cells were transduced with Empty and rLOX-PP-expressing 

lentivirus particles, were cultured in 6-well plates and subjected to IR (5 Gy). Cells were 

harvested after 24 hrs for DNA isolation and subjected to 2% agarose gel electrophoresis in 

the presence of ethidum bromide and then visualized under UV light and photographed; (M) 

molecular weight marker.
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Figure 4. LOX-PP inhibition of IR induced DNA damage repair response is independent of its 
effect on Ras signaling pathways
PC3 and DU145 cells transduced with Empty and rLOX-PP-expressing lentivirus particles 

were plated in 6-well plates and subjected to IR (5 Gy). Equal amounts of protein extracts 

from each independent culture (n=3) were pooled and 40 μg samples were subjected to SDS 

PAGE and Western blotting to evaluate the expression of phospho-Akt, phospho ERK1/2, 

total AKT, total AKT and β-actin. The experiments were performed with 3 different 

preparations of cells. (A) Representative Western blots for phospho-AKT, total AKT and β-

actin as a loading control and phospho ERK1/2, total ERK and β-actin from PC3-Empty and 

PC3-LOX-PP cells subjected to IR (5 Gy) (B) quantification of relative protein expression 

by densitometry analysis; (C) representative Western blots for phospho-AKT, total AKT 

and β-actin as a loading control and phospho ERK1/2, total ERK and β-actin from the PC3-

Empty and PC3-LOX-PP cells from the DU145-Empty and DU145-LOX-PP cells subjected 

to IR (5 Gy) (D) the quantification of relative protein expression by densitometry analysis. 

Experiments were repeated 3 times. Data are the averages of means of three independent 

experiments +/− SEM (n=3).
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Figure 5. rLOX-PP nuclear localization in prostate cancer cell line PC3 (A) and DU145 (B), and 
LOX-PP interaction with MRE11 protein complexes PC3 cells (C) and DU145 cells (D)
For uptake studies, 30,000 PC3 and DU145 cells in F12K or DMEM media were cultured in 

chamber slides in standard media and were then replenished with serum-free F12K or 

DMEM media (0.1% BSA, 1 % penicillin-streptomycin) for 24 hrs. rLOX-PP labeled with 

ATTO565 (4 μg/ml rLOX-PP-ATTO565) was added as indicated and incubated for 36 hrs, 

and subjected to confocal microscopy by using Zeiss 710 dual scanner confocal microscope 

in a live cell imaging chamber at 37°C with 5% CO2. (A and B) Confocal microscopy 

revealed apparent nuclear and cytoplasmic association of rLOX-PP in PC3 and DU145 cells, 

respectively. In each panel the images shown from left to right are phase contrast, rLOX-PP-

ATTO565, Hoechst staining to label nuclei, and corresponding merged images showing in 

addition the 0.2 micrometer plane (Z-stack) derived from the indicated cross-section in the 

cell nucleus. For LOX-PP interaction studies (Panels C – F), PC3 (C and D) and DU145 (E 

and F) empty vector and rLOX-PP expressing PC3 and DU145 cells were cultured, 

extracted into non-denaturing cell lysis RIPA buffer. Cells were washed extensively with 

PBS, lysed and extracted with 500 μl non-denaturing cell lysis buffer (Profound c-Myc Tag 

IP/Co-IP kit; Thermo Scientific). Agarose beads with covalently bound non-immune IgG or 

anti-Myc-tag IgG antibody was added to samples and incubated overnight at 4° C to pull 

down rLOX-PP and any bound proteins. Resins were transferred to columns, washed, and 

then subjected to an acid elution protocol according to the manufacturer’s instructions. (C) 
Western blot analysis of 5% input samples from PC3-Empty and from PC3-LOX-PP cells in 

lanes 1 and 2 demonstrates the presence of MRE11. Eluted samples from non-immune IgG 

agarose in lanes 3 and 4 and from anti-Myc-tag IgG in lanes 5 and 6 identify MRE11 only 

from cells expressing rLOX-PP and only in the anti-Myc tag IgG agarose pull down, as 

expected; (D) detection of immunoprecipitated rLOX-PP after stripping and re-probing with 

anti-LOX-PP antibody showing endogenous 50 kDa pro-lysyl oxidase in lanes 7 and 8, and 

rLOX-PP in lanes 8 and 12 only. (E) Western blot analysis of 5% input samples from 

DU145-Empty and from DU145-LOX-PP cells in lanes 13 and 14 demonstrates the 

presence of MRE11. Eluted samples from non-immune IgG agarose in lanes 15 and 16 and 

from anti-Myc-tag IgG in lanes 17 and 18 identify MRE11 only from cells expressing 

rLOX-PP and only in the anti-Myc tag IgG agarose pull down, as expected; (F) detection of 

immunoprecipitated rLOX-PP after stripping and re-probing with anti-LOX-PP antibody 

identified rLOX-PP in lane 24 only, as expected. The experiments were repeated 3 times 

each from protein extracts from 3 different batches of cells with the same outcomes.
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Figure 6. LOX-PP co-localizes with DNA repair foci in irradiated PC3 and DU145 cells
PC3 (A) or DU145 (B) cells were respectively cultured in chamber slides for 18 hrs in 

standard media with 10% serum, treated with labeled rLOX-PP (rLOX-PP-ATTO565) for 

36 hrs for direct detection. Cells were subjected to 5 Gy IR. After 1 hour, irradiated and non-

irradiated control cells were fixed, stained and subjected to confocal microscopy for rLOX-

PP-ATTO565, phosphorylated-H2AX and MRE11 (Materials and Methods). Row A1, PC3 

cells not treated with IR; row A2, PC3 cells no radiation control probed with anti-

phosphorylated-H2AX; row A3, PC3 cells treated with IR in the presence of rLOX-PP-

ATTO565, and probed with isotype non-immune antibody (negative control for anti-H2AX 

antibody), row A4, PC3 cells treated with IR in the absence of rLOX-PP-ATTO565, and 

probed with anti-phosphorylated-H2AX antibody; row A5, PC3 cells treated with IR and 

rLOX-PP-ATTO565, and probed with anti-phosphorylated-H2AX- and visualized for 

presence of rLOX-PP-ATTO565; row A6, PC3 cells treated with IR and rLOX-PP, and 

probed with MRE 11- and visualized for presence of rLOX-PP-ATTO565, and row A7, PC3 

cells treated with IR and rLOX-PP-ATTO565, and probed with anti-phosphorylated-H2AX 

and MRE 11 antibody. Row B1; DU145 cells not treated with IR; row B2, DU145 cells not 

treated with IR but probed with anti-phosphorylated-H2AX antibody to detect endogenous 

expression of phosphorylated-H2AX independent of radiation treatment; row B3, DU145 

cells treated with IR in the presence of rLOX-PP-ATTO565, and probed with isotype 

control antibody for anti-phosphorylated-H2AX; row B4, DU145 cells treated with IR in the 

absence of rLOX-PP-ATTO565, and probed for phosphorylated-H2AX; row B5, DU145 

cells treated with IR and rLOX-PP-ATTO565, and probed with anti-phosphorylated-H2AX 

and visualized for presence of rLOX-PP-ATTO565; row B6, DU145 cells treated with IR 

and rLOX-PP-ATTO565, and probed with MRE 11- and anti-LOX-PP antibody; and row 
B7, DU145 cells treated with IR and rLOX-PP-ATTO565, and probed with anti-

phosphorylated-H2AX and MRE 11 antibody.
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Figure 7. LOX-PP inhibits clonogenic survival in response to different doses of radiation
PC3 and DU145 cells were transduced with Empty- and rLOX-PP-expressing lentiviruses 

and cells were grown under standard cell culture conditions and subjected to 0, 0.5,1, 2, 3, 5, 

7.5 and 10 Gy of ionizing radiation. Cells were sorted to exclude dead cells and live cells 

were plated at 5000 or 1000 live cells in 6-well cell culture plates. Colonies were allowed to 

grow for 14 days, and cultures were then fixed and then stained with crystal violet. The 

survival fraction was calculated as described in Materials and Methods. (A) PC3-Empty or 

PC3-LOX-PP cells surviving fraction as a function of radiation dose; (B) respective images 

of cells stained with 0.5% crystal violet; (C) DU145-Empty or DU145-LOX-PP cells 

surviving fraction as a function of radiation dose; (D) respective images stained with 0.5% 

crystal violet; (n=6); * p<0.05; student’s t-test from one representative experiment of three 

performed with the same outcomes.
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