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Abstract

Secretome analysis is important in pathogen studies. A fundamental and convenient way to identify secreted proteins is to
first predict signal peptides, which are essential for protein secretion. However, signal peptides are highly complex
functional sequences that are easily confused with transmembrane domains. Such confusion would obviously affect the
discovery of secreted proteins. Transmembrane proteins are important drug targets, but very few transmembrane protein
structures have been determined experimentally; hence, prediction of the structures is essential. In the field of structure
prediction, researchers do not make assumptions about organisms, so there is a need for a general signal peptide
predictor. To improve signal peptide prediction without prior knowledge of the associated organisms, we present a
machine-learning method, called SVMSignal, which uses biochemical properties as features, as well as features acquired
from a novel encoding, to capture biochemical profile patterns for learning the structures of signal peptides directly. We
tested SVMSignal and five popular methods on two benchmark datasets from the SPdb and UniProt/Swiss-Prot databases,
respectively. Although SVMSignal was trained on an old dataset, it performed well, and the results demonstrate that
learning the structures of signal peptides directly is a promising approach. We also utilized SVMSignal to analyze proteomes
in the entire HAMAP microbial database. Finally, we conducted a comparative study of secretome analysis on seven
tuberculosis-related strains selected from the HAMAP database. We identified ten potential secreted proteins, two of which
are drug resistant and four are potential transmembrane proteins. SVMSignal is publicly available at http://bio-cluster.iis.
sinica.edu.tw/SVMSignal. It provides user-friendly interfaces and visualizations, and the prediction results are available for
download.
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Introduction

Signal peptides are short sequences that start from the N-

terminus and control protein secretion. They are related to drug

targets, protein production, and even biomarker discovery [1–4].

Normally, signal peptides in proteins are recognized and cleaved

by their corresponding proteases, and then the cleaved proteins

are secreted [5]. In some cases, however, instead of being cleaved,

the signal peptides form signal anchors, which are a type of

transmembrane protein [6]. Moreover, as shown by Gierasch [7]

signal peptides are interchangeable as well as highly tolerant, i.e.,

they allow some mutations. Thus it is important to identify signal

peptides in proteins.

Proteins targeting to organelles or outside of the cell sometimes

need a cleavable signal peptide. Signal peptide has its systematic

structure, an amino-terminal positively charged region (n-region),

followed by a central, hydrophobic region (h-region), then

followed by a more polar carboxy-terminal region (c-region) [6].

The hydrophobic core of h-region could be recognized by the SRP

(signal recognition particle). C-region usually contains a motif

before the cleavage site that can be cleaved by appropriate

protease. For example, the bacterial signal peptides consist of

positive charge residues, hydrophobic core, and a motif such as

Ala-X-Ala, just before the cleavage site to direct the protein going

through the Sec pathway. The Tat signal peptide also has the

above (n, h, c)-regions structure, particularly having consecutive

arginines in n-region, to direct the protein going through the Tat

pathway. The lipoprotein signal peptide also has the above

structure, and particularly a cysteine follows the cleavage site for

lipid modification.

Modifying the residues of these cleavable signal peptides may

affect protein secretion. For example, the secretion efficiency may

be mediated by hydrophobicity in h-region and charge in n-region

[8,9]. Modification at cleavage site may extend or shorten the

mature protein sequence, and then may slightly alter the protein

structure. Completely removing c-region may yield the signal

peptide uncleaved and form a signal anchor for transmembrane

proteins.

Since the pairwise sequence similarity of signal peptides is

usually low, they cannot be detected simply by sequence alignment

analysis [10]. To predict signal peptides, rules have been devised

for the analysis of signal peptide cleavage sites [11]. Combined the

rules with the signal peptide structure, i.e., (n, h, c)-regions, can
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lead to accurate signal peptide prediction. However, a major

difficulty with this technique is that signal peptides may be

misclassified as transmembrane domains, and vice versa, because

both regions contain hydrophobic cores, and hydrophobicity is a

key feature of signal peptide prediction methods [6]. Transmem-

brane proteins are important drug targets, but very few

transmembrane protein structures have been determined exper-

imentally. Accurate prediction of transmembrane protein struc-

tures is essential. If the transmembrane domain of a transmem-

brane protein is misclassified as a signal peptide, or vice versa, it

would lead to incorrect transmembrane protein structure predic-

tion and also inaccurate secretion analysis. Several methods have

been developed for signal peptide prediction based on three

domains of a signal peptide structure. For example, SignalP uses

neural networks and hidden Markov models to construct the (n, h,

c)-regions and improve the disambiguation between transmem-

brane proteins and signal peptides [12–14]; and PrediSi exploits a

position weight matrix to predict cleavage sites [15]. Phobius,

which uses a hidden Markov model, was the first predictor to

predict both the topologies of transmembrane proteins and signal

peptides [16]. RPSP is a neural network-based method designed

for proteomic analysis [17]; and Philius uses dynamic Bayesian

networks to model transmembrane protein topology and signal

peptide [18].

Although the structure of (n, h, c)-regions provides good clues

for signal peptide prediction and clearer rules have been defined

for the c-region, the n-region and h-region have ambiguous

boundaries and are diversified in terms of sequences and

organisms. Thus in this paper we present a machine learning

approach based on support vector machines (SVMs), called

SVMSignal, to learn the structures of signal peptides and classify

signal peptides from transmembrane proteins. SVMSignal uses

basic biochemical profiles as features and also defines a novel

feature to capture the inter-profile relationships that describe the

structural properties of signal sequences.

We compared the performance of SVMSignal with that of

existing methods on two benchmark datasets, the signal peptide

database SPdb [19] and a hybrid dataset compiled from UniProt/

Swiss-Prot [20] and PDBTM [21] (Protein Data Bank of

Transmembrane Proteins), a transmembrane protein structure

database. We used experimentally determined signal peptide

sequences from SPdb and UniProt/Swiss-Prot as the signal

peptide benchmark to demonstrate the sensitivities of various

signal peptide predictors. In order to evaluate the specificities and

classification abilities of different predictors, we collected soluble

proteins from UniProt/Swiss-Prot and transmembrane proteins

from both UniProt/Swiss-Prot and PDBTM as benchmark. Our

method SVMSignal achieved good performance on the bench-

mark datasets.

Signal peptides are crucial to protein secretion, and secretome

analysis is important in pathogen studies because it has been

shown that some hosts are affected by proteins secreted from

bacteria [22,23]. There are at least six known secretion systems,

i.e., Types I to VI, as well as the Sec and Tat pathways in Gram-

negative bacteria [5]. Signal peptides are not responsible for all of

the secretions. Although proteins containing signal peptides (called

signal peptide proteins hereafter) cannot characterize the full

secretome, it is still necessary to use sequence information to

discover potential secreted proteins for further research [24,25].

HAMAP (High-quality Automated and Manual Annotation of

microbial Proteomes) microbial database [26] provides 1292

curated microbial proteomes and description of microbial

pathogens, and proteomes in the database are also integrated

with UniProt/Swiss-Prot. It is considered as an important

database for pathogen studies [27,28]. We applied our method

to HAMAP to predict signal peptides in proteomes so that signal

peptide-dependent secreted proteins could be identified.

From the pathogens recorded in the HAMAP database, we

selected tuberculosis to conduct secretome analysis because it is a

historical human interactive pathogen, and it is still difficult to

treat in some cases, e.g., drug-resistant strains and immunocom-

promised HIV patients. Recently, Walzl et al. presented a review

paper that suggests using an ‘‘omics’’ approach to find potential

immunological biomarkers of tuberculosis [29]. To this end, we

made an in-depth analysis of proteins with signal peptides in

Mycobacterium tuberculosis and Mycobacterium bovis, which can

cause tuberculosis in humans and cattle, respectively. It is also

possible for Mycobacterium bovis to infect humans via certain

foods, such as unpasteurized milk. We selected seven strains from

the two pathogens for study, including virulent strains, attenuated

strain, and drug-resistant strains. Due to their close lineage, the

comparative study of signal peptide-dependent secreted proteins

belonging to different strains can provide clues about the

tuberculosis mechanism, virulence factors or biomarkers. The

signal peptide prediction results of the entire HAMAP database

are provided for further research.

Results

Performance evaluation of SVMSignal
We compared the performance of SVMSignal with that of five

existing predictors, namely, Phobius [16], RPSP [17], Philius [18],

SignalP [12–14] (specifically SignalP 3.0), and PrediSi [15]. Each

of the last two predictors provides three models specifically

developed for Gram-positive bacteria, Gram-negative bacteria and

eukaryotes. We included all of the models in the performance

evaluation.

To avoid over-estimating SVMSignal’s performance in com-

parison with the other predictors, we used the original Phobius

2004 dataset to train our model. We tested all of the methods on

the two benchmark datasets mentioned earlier, i.e., the signal

peptide database SPdb [19] (called the SPDB dataset hereafter),

and a hybrid dataset compiled from UniProt/Swiss-Prot [20] and

PDBTM [21] in 2010. Note that we filtered each of the

benchmark datasets by removing sequences with over 30%

similarity to sequences in the training dataset and within the

dataset itself. Both datasets were decomposed by organism into

mixed, eukaryotes, and bacteria for analysis; archaea and viruses

were omitted because there was insufficient data for them. We

further decomposed the second benchmark dataset into SP

(proteins with signal peptides), TM (proteins with transmembrane

domains only), and G (proteins without signal peptides or

transmembrane domains) datasets. Note that the SP dataset

contains very few proteins with both transmembrane domains and

signal peptides. All of the above datasets are provided in the

Supporting Information (Dataset S1).

To evaluate the performance of various predictors, we define

sequences with signal peptides as positive (P) data, and those

without signal peptides as negative data (N). We use the following

metrics to evaluate the performance sensitivity~TP= TPzFNð Þ,
specificity~TN= TNzFPð Þ and accuracy~ TNzTPð Þ= TPzð
FPzTNzFNÞ, where T and F denote ‘‘true’’ and ‘‘false’’,

respectively. Accuracy alone is insufficient to reflect a global

perspective of good sensitivity in signal peptides and speci-

ficity in non-signal peptides, especially specificity in transmem-

brane domains required by a good predictor, due to the data

imbalance. Therefore, to evaluate the performance from a

global perspective, we use MCC (Matthew’s correlation coe-
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fficient), which is formulated as MCC~ TP � TN{FP � FNð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPzFPð Þ TPzFNð Þ TNzFNð Þ TNzFPð Þ

p� �
.

Evaluating SVMSignal’s ability to disambiguate proteins
with and without signal peptides

Predictors sometimes confuse signal peptides with transmem-

brane domains due to hydrophobic composition. We evaluated

SVMSignal’s ability to classify signal peptides and non-signal

peptides, i.e., to disambiguate the SP dataset from the TM and

TM+G datasets, denoted by SP/TM and SP/(TM+G), respec-

tively. The MCCs of SVMSignal and the other predictors on

different organism datasets are detailed in Table 1. SVMSignal

outperformed the other predictors on the mixed organisms and

eukaryotes in SP/TM and SP/(TM+G), except on the eukaryotes

in SP/TM as the second best, with 2.24% slightly worse than the

best SignalP model. Notably, in the mixed organisms, SVMSignal

outperformed the second best predictor by 0.54% and 3.31% on

SP/TM and SP/(TM+G), respectively. It also achieved the second

best performance on the bacteria in SP/TM and the third best

performance on the bacteria in SP/(TM+G).

As shown in Table 2, the accuracy of SVMSignal’s classification

with respect to different organisms ranged from 90% to 92% for

SP/TM and exceeded 96% for SP/(TM+G). SVMSignal achieved

the best accuracy in classifying SP/(TM+G) of the mixed

organisms and eukaryote datasets. It achieved the second best

accuracy in SP/TM of mixed organisms and SP/(TM+G) of

bacteria with at most 0.4% difference to the best accuracy, and the

third best accuracy in the remaining datasets with at most 2% gap

from the best accuracy.

Sensitivity and Specificity of SVMSignal’s predictions on
the signal peptide benchmark datasets

The sensitivities of SVMSignal and the other predictors on the

signal peptide benchmark datasets, SPDB and SP, are shown in

Table 3. Although SVMSignal was trained on an old dataset and it

was not trained on different organisms, it performed well

compared to most of the predictors. As SignalP was trained

specifically on different organisms, reflected by variations in the

sensitivities of different models, SVMSignal performed slightly

inferior to SignalP by at most 0.92% on the mixed organism

datasets, at most 2.88 on the eukaryotes datasets, and at most

2.58% on the bacteria datasets.

We compared the specificities of SVMSignal and the other

predictors on proteins without signal peptides in the TM and

TM+G datasets. As shown in Table 4, for the TM classification,

SVMSignal achieved the best performance on the mixed organism

and eukaryote datasets, and was only outperformed by Philius on

the bacteria dataset. For the TM+G classification, SVMSignal’s

performance differed from the best performance by at most

1.48%; however, on the three organism datasets of TM+G, it

achieved over 97% specificity, which was very close to the

specificity achieved by SignalP.

Application of SVMSignal to tuberculosis pathogen study
We applied signal peptide prediction to secretome analysis in

tuberculosis pathogen since tuberculosis is a well-known infectious

disease that can be fatal. Notably, signal peptides of tuberculosis

proteomes are related to its virulence [30–32]. Since very few

proteins of tuberculosis strains have been annotated, we used

SVMSignal to predict signal peptides and performed a compar-

ative study of the predicted signal peptide proteins of tuberculosis T
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strains. Our objective was to identify some critical proteins that

would be worth further investigation.

For our study, we selected seven interesting strains related to

tuberculosis: four strains from Mycobacterium tuberculosis and

three strains from Mycobacterium bovis in the HAMAP database

[26]. Specifically, the four strains of Mycobacterium tuberculosis

are MYCTU, MYCTA, MYCTF, MYCTK, where MYCTU is

the virulent H37Rv strain, MYCTA is the highly attenuated

H37Ra strain, MYCTF is the virulent strain family 11, and

MYCTK is the drug resistant KZN 1435 strain. The other three

strains are one strain of Mycobacterium bovis coded as MYCBO,

and two strains of Mycobacterium bovis bacillus Calmette–Guérin

(BCG) coded as MYCBP and MYCBT, respectively. MYCBP is a

BCG strain developed at the Pasteur Institute in Paris and

MYCBT is another BCG strain used in Japan. In the following

discussion, we use the species code instead of the full name to

represent each of the strains and the UniProt/Swiss-Prot accession

number to represent a protein.

To identify signal peptide proteins that characterize each

pathogen strain, we first applied SVMSignal to the seven

proteomes of the strains, and we were only interested in the

predicted signal peptide proteins. The statistics of the signal peptide

proteins in the seven proteomes, i.e., four strains from Mycobac-

terium tuberculosis and three strains from Mycobacterium bovis,

are shown in Table 5. There are 334 to 345 signal peptide

proteins, i.e., 8.33% to 8.73% of the total proteins, in each

proteome. Signal peptide proteins predicted to contain transmem-

brane domains account for 1.59% to 1.88% of the proteins in a

proteome. Furthermore, the number of multi-spanning trans-

membrane proteins is double that of single-spanning transmem-

brane proteins. The average length of signal peptides is 28 to 29

residues, and the average length of the entire bacteria pathogen in

the HAMAP database is 26.02. See the Discussion section and

Supporting Information (Datasets S2 and S3) for more details.

Comparative Study on the selected tuberculosis strains
To compare the seven tuberculosis strains, we used CD-HIT

[33] and the 30% similarity threshold to cluster the signal peptide

proteins by their sequences with signal peptides removed, i.e., their

secreted sequences. Since secreted proteins affect their hosts and

are of interest to us, we used them to cluster the corresponding

signal peptide proteins. The process generated 313 clusters, of

which 10 contained only one protein, whose similarity to all the

other sequences was less than 30%. We call such a signal peptide

protein a unique protein because it does not occur in any of the other

six proteomes. Table 6 lists all the unique proteins found in the

seven proteomes. MYCBP and MYCBT do not contain any

unique proteins, while each of the other five strains has at least one

unique protein. Interestingly, the human tuberculosis drug

resistant strain MYCTK has six unique proteins. Furthermore,

we removed signal peptides from the unique proteins and used

TMHMM [34,35] to predict whether their secreted sequences

contain transmembrane domains. Four of the unique proteins,

O06239, A5WU15, C6DWG6 and Q7U0W0, were predicted as

multi-spanning transmembrane proteins and also annotated as

transmembrane proteins in the UniProt/Swiss-Prot database.

Next, for each unique protein, we used BLAST to search

against the seven proteomes for similar proteins and the results are

shown in Table 6. Note that the homologous protein of each

unique protein is not signal peptide protein. The alignment results

of the homologous protein pairs are provided in Supporting

Information (Text S1). Six of the homologous protein pairs share a

very high sequence similarity (over 95%), namely, pairs O06239/

C6DPS4 (97.87%), A5U3R8/O07733 (95.54%), A5WU15/
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P72030 (98.54%), C6DL40/O53355 (97.57%), C6DSD8/

O06296 (98.55%), and Q7U0W0/C1ALY5 (99.72%). Another

three pairs of proteins share a sequence similarity higher than

60%, i.e., C6DUE9/O06291 (68.56%), C6DWG6/O05916

(61.07%), and C6DTY5/A5TZZ2 (79.86%). We examined all of

the protein pairs and distinguished two cases of homologous

proteins in comparison with their corresponding unique proteins.

In the first case, some N-terminal residues were missing, as well as

in the second case additional N-terminal residues were contained,

thereby disrupting the structure of signal peptides.

Specifically, the first case of homologous proteins includes

O53355, C6DPS4, and O06296. Because some residues are

missing, the n-regions before the Ile, Leucine, and Valine

hydrophobic residues are shorter. Interestingly, O53355 in

MYCTU is a homolog of the unique protein C6DL40 in

MYCTK. Moreover, it is annotated as a high-confidence drug

target in the MYCTU strain without signal peptide annotation or

prediction. In contrast, the unique protein C6DL40 has more N-

terminal residues, including four positive residues of arginine,

which extend the n-region. This probably accounts for the signal

peptide structure. The pair comprised of C6DPS4 in MYCTK

and the unique protein O06239 in MYCTU is also interesting

because O06239 is annotated as a multi-spanning transmembrane

protein and a high-confidence drug target in UniProt. However,

UniProt/Swiss-Prot does not annotate O06239 as a signal peptide

protein, but SVMSignal indicates that a signal peptide exists.

The second case of homologous proteins includes O07733,

P72030, O06291, O05916, and A5TZZ2. Among them, O07733,

P72030 and A5TZZ2 have additional charge-intensive regions at

the N-terminus, but they do not have h-region followed. The other

two proteins, O06291 and O05916, have over 150 additional

residues at the N-terminus, and their remaining subsequences are

identical to their corresponding unique proteins. Although

SVMSignal predicts that O05916 may have cleavage sites, the

protein is not predicted as a signal peptide protein.

O06239 (Rv2136c) vs. C6DPS4 (TBMG_01845). The

unique signal peptide protein O06239 of MYCTU is encoded

by Rv2136c.The Rv2136c gene encodes a putative homologue of

E. coli’s UppP [36]. Since Mycobacterium tuberculosis (Mtb) has

the ability to block phagosome acidification and thereby

contributing to resist the drug bacitracin [37,38], researchers are

interested in discovering the genes responsible for Mtb’s acid

resistance. Vandal et al. used transposon mutagenesis to discover

genes for acid resistance, and then measuring the intrabacteria pH

Table 5. Basic statistics in the selected seven proteomes of Mycobacterium tuberculosis (*) and Mycobacterium bovis (**).

code name # proteins # SP proteins (%)
SP mean
length

# SPTM
proteins (%) # SPTM single

# SPTM
multi

MYCTU *Mycobacterium tuberculosis 3950 345 (8.73%) 28.4 71 (1.80%) 23 48

MYCTA *strain ATCC 25177/H37Ra 3990 345 (8.65%) 28.2 69 (1.73%) 22 47

MYCTF *strain F11 3905 334 (8.55%) 29.0 66 (1.69%) 22 44

MYCTK *strain KZN 1435/MDR 4024 335 (8.33%) 28.7 64 (1.59%) 22 42

MYCBO **Mycobacterium bovis 3910 334 (8.54%) 28.2 72 (1.84%) 22 50

MYCBP **strain BCG/Pasteur 1173P2 3891 336 (8.64%) 28.1 73 (1.88%) 25 48

MYCBT **strain BCG/Tokyo 172/ATCC 35737/TMC 1019 3906 340 (8.70%) 28.2 73 (1.87%) 25 48

doi:10.1371/journal.pone.0035018.t005

Table 6. List of unique proteins and their similar non-signal peptide proteins.

Unique proteins Similar proteins

Species ID gene
TMHMM
results

Seq.
length(after
cleaved) Species ID gene

SVMSignal
results

Seq.
length

type (similar
protein)

MYCTU O06239 Rv2136c multi-pass TM 282 (261) MYCTK C6DPS4 TBMG_01845 non SP 276 residues missing

MYCTA A5U3R8 MRA_1910 non TM 343(283) MYCTU O07733 Rv1899c non SP 359 residues addition

MYCTF A5WU15 TBFG_13829 multi-pass TM 1082(1051) MYCTU P72030 Rv3795 non SP 1098 residues addition

MYCTK C6DL40 TBMG_03351 non TM 481(457) MYCTU O53355 Rv3303c non SP 493 residues missing

MYCTK C6DUE9 TBMG_02759 non TM 362(329) MYCTU O06291 Rv1223 non SP 528 residues addition

MYCTK C6DWG6 TBMG_03065 multi-pass TM 262(239) MYCTU O05916 Rv0924c non SP 428 residues addition

MYCTK C6DSD8 TBMG_00349 non TM 138(120) MYCTU O06296 Rv0345 non SP 136 residues missing

MYCTK C6DTY5 TBMG_00617 non TM 111(89) MYCTA A5TZZ2 MRA_0618 non SP 139 residues addition

MYCTK C6DQS5 TBMG_03974 non TM 53(28) - - -

MYCBO Q7U0W0 Mb1023 multi-pass TM 358(330) MYCBT C1ALY5 JTY_1023 non SP 358 residue
replacement

MYCBP - - - - - - -

MYCBT - - - - - - - -

doi:10.1371/journal.pone.0035018.t006
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values of the knockout strains [37]. Initially, they took Rv2136c

and Rv3671c as candidates because the mutation in these two

genes would cause the strain sensitive to acid. However, they only

performed further analysis on Rv3671c because mutant

phenotypes of Rv2136c did not revert while the wild-type allele

‘‘in trans’’ was given. Later, Darby et al. deleted the Rv2136c gene

in the H37Rv strain, but could not obtain any phenotype in the

Rv2136c transposon mutant strain mentioned in Vandal et al.’s

experiment [39]. It is mentioned in the paper that they started

sequencing for the Rv2136c transposon mutant strain to verify

whether acid resistance is from mutated Rv2136c or other

mutated genes.

In our study, the protein O06239 contains its similar non-signal

peptide protein C6DPS4 of MYCTK as a long subsequence and

has additional 6 amino acids ‘‘MTAAPA’’ starting from the N-

terminus. But these two proteins are predicted by our predictor to

have dramatically different prediction results, one having signal

peptide and the other none. The additional amino acids show

strong amphiphilicity and the secondary structure predictor JPred

3 predicted that there is a highly probable helix structure [40].

Therefore, the N-terminal segment of O06239 may very likely

form an amphipathic helix.

Furthermore, we also noticed that the Rv2136c encoded

proteins have different sequence lengths, for example,

NP_216652.1 (276 aa), CAB08657.1 (276 aa), O06239.2

(282 aa). These sequences are reported to have length differing

at six amino acids, and such finding on Rv2136c encoded proteins

seems to be controversial. Notably, the homologous proteins

O06239 and C6DPS4 have lengths of 282 and 276, respectively.

As Rv2136c encoded proteins are reported to have different

lengths, the sequence of Rv2136c encoded proteins need to be

further verified.

Furthermore, O06239 is a predicted membrane protein

containing five transmembrane domains as annotated in Uni-

prot/Swiss-Prot and is predicted by SVMSignal to have an

extensively cleavable region. If the longer sequence indeed

contains a cleavable signal peptide, then this transmembrane

protein will be secreted to elsewhere or remain in membrane after

signal peptide cleaved. If the correct sequence is the short version,

then the protein will not be secreted and forms a transmembrane

protein with an N-terminal amphipathic helix. In summary, the

first 100 amino acids of O06239 and C6DPS4 are different and

thus result in different signal peptide prediction results. Moreover,

the Rv2136c transposon mutant strain of H37Rv strain is acid

resistant same as Rv3671c; however, the Rv2136c knockout strain

is not sensitive to acid. Is this phenomenon related to whether the

existence of signal peptide in the Rv2136c encoded sequence? The

sequence of Rv2136c encoded protein needs to be further

clarified.

A5U3R8 (MRA_1910) vs. O07733 (Rv1899c). The non-

signal peptide protein O07733 of MYCTU encoded by the gene

Rv1899c was determined as a unique protein in Mycobacterium

bovis BCG strain when compared with H37Rv, which was

confirmed by 2-DE and mass spectrometry [41]. It is also

suggested that this protein may be related to virulence attenuation

[41].

Herrmann et al. [42] studied post-translationally modification,

specifically glycosylation, of Mycobacterium tuberculosis proteins.

They considered protein of Rv1899c as a candidate for O-

glycosylation lipoprotein; however, its glycosylation was not

confirmed in their experiment. Later, this protein was annotated

as one of H37Rv membrane proteins as determined by one-

dimensional SDS gels with LC-MS (liquid chromatography-mass

spectrometry) [43]. Interestingly and contradictorily, this protein

was annotated as exported lipoprotein by 2-DE combined with

MALDI-TOF MS and LC-MS/MS [44]. Note that O07733 is

annotated as uncharacterized protein, but annotated in GO as

plasma membrane and extracellular region. It becomes a question

worth of further investigation whether O07733 encoded by

Rv1899c is localized at the membrane or exported extracellular.

The homologous proteins A5U3R8 (MRA_1910) and O07733

(Rv1899c) have 343 amino acids and 359 amino acids,

respectively. O07733 contains A5U3R8 as a subsequence and

has additional 16 amino acids at the N-terminus. Both of them

have only one weak hydrophobic core near the N-terminus. If

O07733 is a membrane protein, the only hydrophobic region

would be the membrane core. Moreover, this hydrophobic region

may form an amphipathic helix because high amphiphilicity

around the region are observed from SVMSignal’s visualization of

biochemical profiles and the secondary structure predictor JPred 3

[40] predicts it as a helix.

Furthermore, the protein sequence of O07733 provided by

UniProt/Swiss-Prot is slightly different from the protein sequence

annotated for the gene Rv1899c (CAB10035.1) in the GenBank,

the former 359 amino acids and the latter 343 amino acids. It is

worthwhile to verify the sequence of Rv1899c protein and

determine the existence of signal peptide therein. Note that

NetOGlyc [45] predicts several glycosylation sites on O07733, and

proteins with signal peptide are more probable to have O-

glycosylation. If SVMSignal’s prediction on O07733 as non-signal

peptide protein is correct, it may explain why the Rv1899c protein

did not occur in the experiment reported in [42] and supports the

experiment in [43] that Rv1899c is a membrane protein. Its

homologous protein A5U3R8 of the attenuated strain MYCTA is

predicted to contain signal peptide by SVMSignal, and the

existence of signal peptide may support glycosylation.

A5WU15 (TBFG_13829) vs. P72030 (Rv3795). The protein

P72030, also called EmbB protein, of MYCTU encoded by gene

Rv3795 was a drug target. The first line drug Ethambutol (EMB)

can inhibit three proteins EmbA, EmbB, and EmbC in

tuberculosis. Ethambutol targeted proteins, i.e., Emb proteins,

are critical to synthesis arabinogalactan which is involved in cell

wall. The mutation of the embB gene can be observed in

Ethambutol-resistant strain [46]. Genetic polymorphisms of embB

can also be observed in several drug-resistance strains [47].

Though the structures of tuberculosis Emb membrane proteins

have not been solved, the C-terminal hydrophilic domain was

solved in 2011, and the finding supports the suggestion that Emb

proteins function as dimers, the combination of EmbC/EmbC and

EmbA/EmbB [48].

The protein A5WU15 of MYCTF is identical to P72030 except

lack of the first 16 amino acids at the N-terminus. SVMSignal

predicted A5WU15 as signal peptide protein due to its deletion of

the 16 amino acids, making the n-region suitable for forming

signal peptide. If A5WU15 really contains signal peptide, the

cleaved sequence will somewhat affect the structure of EmbB

through removing the first transmembrane domain and the

cleaved positive residues may also affect topology.

C6DL40 (TBMG_03351) vs. O53355 (Rv3303c). The

protein O53355, named LpdA, of MYCYU is encoded by the

Rv3303c gene. The LpdA had been thought as a probable Mtb’s

dehydrogenases; however, it was verified as a NAD(P)H quinone

reductase [49]. The protein of Rv3303c was also supposed to

contribute to the virulence because the NAD(P)H quinone

reductase may remove reactive oxygene [50]. Using qRT-PCR

to compare Rv3303c between H37Rv strain and the attenuated

H37Ra strain, the result shows that the lpdA transcript was rarely

detected in the H37Ra strain, but up-regulated significantly in the

Tuberculosis Analysis by Signal Peptide Prediction

PLoS ONE | www.plosone.org 7 April 2012 | Volume 7 | Issue 4 | e35018



H37Rv strain [51]. Therefore, the overexpression of the Rv3303c

may increase Mtb’s ability against oxidative stress.

The protein structure of O53355 was solved in 2004 [49] and

deposited in Protein Data Bank as 1XDI. The N-terminal region

forms a part of the structure, and thus it is confirmed that this

protein does not have a cleavable signal peptide. It is consistent

with the prediction result of SVMSignal, which predicted O53355

having no signal peptide though containing an extensively

cleavage region.

The protein O53355 and its homolog in the KZN 1435 strain,

i.e., C6DL40 of MYCTK, share 471 amino acids in common.

O53355 has additional 22 amino acids at C-terminus, and

C6DL40 has 10 additional amino acids of ‘‘HRRRARLWAV’’ at

the N-terminus, extending the moderate hydrophobic region and

forming a possible signal peptide by the possible n-region of four

arginines. If the sequence of C6DL40 is correct and the signal

peptide exists, then we can suppose that LpdA of the KZN 1435

strain will be very likely secreted out and thus increase the ability

against oxidative stress.

Moreover, in the sequence alignment of disulfide reductases

including LpdA, only a motif ‘‘GGGPAG’’ near the N-terminus is

observed and lies in the predicted signal peptide domain of KZN

1435 strain. Since the possible interaction residues R (245), S

(213), and Q (214) of the Rv3303c protein do not lie in the signal

peptide domain, cleaving signal peptide may not affect the

function of quinone reductase [49].

C6DUE9 (TBMG_02759) vs. O06291 (Rv1223). The

Rv1223 gene encodes the protein HtrA1 in Mtb, i.e., O06291,

which was reported as a single-spanning transmembrane protein

[32,52,53]. Since this protein has only one hydrophobic region,

which forms a transmembrane domain, it is consistent with

SVMSignal’s prediction that there is no cleavable N-terminal

signal peptide.

The HtrA family proteins in Mtb include HtrA1 (encoded by

Rv1223), HtrA2 (Rv0983) and HtrA3 (Rv0125); however, only

HtrA2’s structure has been determined at 2.0 Å, i.e., 2Z9I in the

Protein Data Bank [54]. It was proved that HtrA2 of Mtb is

related to virulence since deletion of the Rv0983 gene in the

mouse model extends the survival [54]. However, the knockout of

htrA1 from H37Rv strain cannot obtain generation, and thus

htrA1 is supposed to be an essential protein in Mtb [54].

Though HtrA1 of the H37Rv stain (O06291) is different from

HtrA1 (Q92743) in human, but the SPD (serine protease domain)

and PDZ (protease domain z) domains in this two species are still

conserved as these two domains in HtrA proteins are conserved

from bacteria to mammalian [55,56].

Interestingly, human HtrA1 which contains an insulin-like

growth factor binding domain is suggested to have signal peptide,

and then secreted out [55]. SVMSignal predicted the only

hydrophobic region of human HtrA1 as signal peptide h-region,

and also supported this argument.

In comparison with O06291, the HtrA1 sequence of KZN 1435

strain simply lacks the first 166 residues at the N-terminus, thus

move the only hydrophobic region and two positive charge

residues forward to an appropriate position for forming a signal

peptide. If the sequence of KZN 1435 strain is correct and signal

peptide exists, the HtrA1 of KZN 1435 strain may be secreted out.

Moreover, some bacteria, e.g., helicobacter pylori, secrete their

HtrA to extracellular, thereby increasing their virulence [55].

Since the sequence of the gene TBMG_02759 recorded in the

GeneBank does not start from the standard start codon, it is worth

of further investigation to verify the HtrA1 sequence of KZN 1435

strain and its possibility of having a signal peptide.

C6DWG6 (TBMG_03065) vs. O05916 (Rv0924c). The

Rv0924c encodes the MntH protein, i.e., O05916, in the Mtb

H37Rv strain. The tuberculosis MntH is an orthologue of the

Nramp protein (natural resistance associated macrophage protein),

which mediates the divalent cation transportation. The pathogen

manganese transporter may compete with the host. If a host has

defects Nramp1, then the host is inclined to be infected. If Nramp

transporter of a pathogen gets mutation, then virulence is

attenuated. The Nramp proteins are conserved from bacteria to

mammalian and the mutation have been shown to attenuate the

virulence [57].

The protein of Rv0924c was initially thought to be a pH-

dependent divalent cation transporter [58]. Later it was reported

that the mntH knockout in the mouse model did not influence the

virulence [59,60]. However, Papp-Wallace and Maguire [57]

suggested that the above conclusion is not yet definite and thought

that there may be some other proteins, .e.g., sitABCD, that might

compensate the loss of mntH [57]. The MntH protein in the Mtb

H37Rv strain is a multi-spanning transmembrane protein, since

the orthologue MntH protein of E. coli was determined as an

eleven transmembrane-segment protein [61]. The difference of

MntH sequences between KZN 1435 strain and H37Rv strain is

that C6DWG6 lacks the first 166 residues from the N-terminus in

O05916. If the MntH sequence of KZN 1435 strain is correct,

then the structure of this transmembrane protein is definitely

different from that of H37Rv, because of lacking at least four

transmembrane domains. Additionally, if the signal peptide truly

exists, the first hydrophobic region will further be cleaved and

affect the structure, the topology of the MntH needs to be

examined again.

Discussion

Using cleavage site information to predict signal
peptides

SVMSignal first predicts the potential cleavage sites of a

sequence and then predicts the signal peptide sequence. If we

consider sequences that possess potential cleavage sites as signal

peptides, the naı̈ve predictor denoted as ‘‘Cleavable’’ in Table 3

achieves nearly perfect sensitivity on the benchmark SPDB and SP

datasets, irrespective of the type of organism. It seems that the

information in signal peptide cleavage sites can be learned easily;

however, Cleavable predicted several false-positive signal peptides,

and also failed to classify transmembrane proteins and globular

proteins with poor MCCs and specificities, as shown in Table 1

and Table 4, respectively. The above observation implies that

cleavage site information may be easy to learn, but it is not

sufficient to characterize a signal peptide. We believe that

including the structural information of signal peptides in the

Cleavable predictor could improve signal peptide prediction

significantly, as evidenced by SVMSignal’s high sensitivity,

specificity, and MCC on the benchmark datasets. In particular,

the classification was improved from the Cleavable predictor by

over 50% in MCC. This finding implies that learning signal

peptide structures is an effective modeling approach.

Large-scale signal peptide analysis of the HAMAP
database

Bacteria are a major type of human pathogen, and their

secreted proteins often affect hosts. Since the annotations of

microbial proteomes in the UniProt/Swiss-Prot database are

incomplete, we conducted a large-scale secreted protein analysis of

the HAMAP database. We applied SVMSignal to the HAMAP

database (release Feb 2011), which contains 91 archaea, 1130
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bacteria, and 71 eukaryota proteomes, to predict signal peptide

proteins, and then determined the secreted proteins accordingly.

SVMSignal’s prediction results on the entire HAMAP database

are provided in Supplementary Data at http://bio-cluster.iis.

sinica.edu.tw/SVMSignal. Here, we consider some general

statistics, which are detailed in Table S1. First, the average

percentage of signal peptide proteins in each proteome is 8.13% in

the archaea, 13.34% in the bacteria, and 10.07% in the

eukaryotes. Second, in the archaea, Halalkalicoccus jeotgali (strain

DSM 18796/CECT 7217/JCM 14584/KCTC 4019/B3) has the

lowest percentage of signal peptide proteins (4.63%), and

Methanoplanus petrolearius (strain DSM 11571/OCM 486/

SEBR 4847) has the highest percentage (14.32%). In the bacteria,

Zinderia insecticola (strain CARI) has 0%, i.e., no signal peptide

proteins, and Bdellovibrio bacteriovorus has the highest percent-

age (32.51%). In the eukaryotes, Hemiselmis andersenii has the

lowest percentage (0.80%), and Pediculus humanus subsp. corporis

has the highest percentage (26.76%.) Finally, the average length of

signal peptides is 26.56 residues in the archaea, 26.02 residues in

the bacteria, and 23.41 residues in the eukaryota.

Transmembrane proteins with signal peptides in HAMAP
proteomes

We also examined transmembrane proteins with signal peptides

in all microbial proteomes of HAMAP because some crystallized

transmembrane proteins contain signal peptides that are easily

confused with transmembrane domains. We removed signal

peptides from the proteins and used TMHMM [34,35] to predict

whether the cleaved proteins contained transmembrane domains.

The average percentage of transmembrane proteins with signal

peptides in the archaea, bacteria and eukaryotes are 3.14%, 2.62%

and 2.10%, respectively. In the archaea, Methanosphaera

stadtmanae (strain DSM 3091) has the lowest percentage

(1.37%), and Aciduliprofundum boonei (strain DSM 19572/

T469) has the highest percentage (4.74%). In the bacteria,

Carsonella ruddii (strain PV) and Zinderia insecticola (strain

CARI) have 0% and Arcobacter nitrofigilis (strain ATCC 33309/

DSM 7299/LMG 7604/NCTC 12251/CI) has the highest

percentage (5.76%). In the eukaryotes, Hemiselmis andersenii

has 0%, and Caenorhabditis elegans has the highest percentage

(4.62%).

Web service
SVMSignal provides a web service that accepts queries with up

to 10,000 sequences in FASTA format. As well as the prediction

results, SVMSignal provides the calculated biochemical proper-

ties, including the free energy, polarity, average volume and

charge index of each residue. The properties are presented in a

compact profile graph for visualization to help users examine

potential signal peptide structures, such as the n-region, h-region,

and c-region. Users can download all the information in the first

100 residues, including predictions in FASTA format, all the

profile values in tab-delimited text format, and the graphs of the

profiles.

Materials and Methods

SVMSignal-a hierarchical SVM-based predictor
SVMSignal performs signal peptide prediction in two stages

using support vector machines (SVMs) as classifiers, as illustrated

in Figure 1. It predicts signal peptides from the first 100 residues of

each protein sequence. The first SVM classifies every residue into

around the cleavage site, denoted by ‘‘C’’, or outside the cleavage

site, denoted by ‘‘L.’’ Since protein sequences containing signal

peptides have cleavage sites, the results from the first classifier can

help the user determine whether a protein sequence contains a

signal peptide. The second classifier integrates the predictions of

the first classifier and other features to classify each residue into the

signal peptide region denoted by ‘‘s’’ or the non-signal peptide

region denoted by ‘‘L.’’ Note that the last predicted residue of the

signal peptide is denoted by ‘‘C.’’ If a protein sequence does not

contain any signal peptides, all of the 100 residues will be assigned

the label ‘‘L’’.

More specifically, the first classifier is a residue-wise predictor.

Given a protein sequence, the residue to be predicted is centered

in a window of length 17. The features derived from a 17-mer

sequence for prediction include: (i) position-specific free energy of

transmembrane helix insertion [62] to describe the hydrophobic

core, called free energy for convenience; (ii) amphiphilicity [63];

(iii) charge index [64]; (iv) polarity [65]; (v) residue volume index

[66], and (vi) amino acid composition. For the first and last eight

residues in the first classifier, we use small values to complete the

columns corresponding to non-existing residues. The second

classifier is a chain-wise predictor that uses the following features:

(i) the prediction results from the first classifier; (ii) the first five

feature profiles with a dimension of 100 used in the first predictor;

and (iii) a novel nonlinear pattern feature that captures the

relationships between any two of the five feature profiles, e.g., the

sequence distance between positively charged residues and the

hydrophobic region. All of the features are normalized to a [0, 1]

closed interval.

Biochemical features
The five features used in the both predictors are described

below. The free energy profile, amphiphilicity profile and polarity

profile are normalized, respectively, by the sigmoidal functions

given by 1{1= 1ze{energyð Þ, 1{1= 1zeamð Þ and

1{1= 1ze{poð Þ, where ‘‘energy’’ denotes the free energy of

transmembrane helix insertion estimated by Hessa et al.’s method

[62]; ‘‘am’’ denotes the amphiphilicity derived by Mitaku et al.’s

method [63]; and ‘‘po’’ denotes the mean residue polarity

calculated by Radzicka and Wolfenden’s method [65]. The

charge profile is obtained by defining positively charged residues

as 1, neutral residues as 0.5, and negatively charged residues as 0

based on the index used by Klein et al. [64]. The volume profile is

used by Pontius et al. [66] and normalized by dividing the

maximum volume value 237.2.

To determine the amino acid composition of each window, we

use the natural language processing method described in Leopold

and Kindermann [67]. A protein subsequence of length l can be

treated as a document, which is a vector containing twenty types of

words, corresponding to amino acids. First, we calculate the

frequencies of the amino acids in each document in the training

data. Let the word wk be the kth type of amino acid. In addition,

let k = 1, 2 … 20, f wk,d
train
i

� �
be the frequency of wk in document

i; and let f wkð Þ denote the frequency of wk in all N documents in

the training data, i.e., f wkð Þ~
PN

i~1 f wk,dtrain
i

� �
. Second, we

calculate the importance weights of the amino acids, denoted by

r~ r1,r2, � � � ,r20ð Þ in all the documents in the training data by the

equation rk~log Nz
PN

i~1

f wk ,dtrain
ið Þ

f wkð Þ log
f wk ,dtrain

ið Þ
f wkð Þ ,k~1,2, � � � ,20.

The amino acid composition feature is given by the component-wise

product of f wk,d
test
i

� �
and r, and then normalized by the L2 norm.

A feature value close to 1 means the corresponding residue is

more hydrophobic and more amphiphilic, is positively charged,

and has a larger volume and a higher polarity. In the first classifier,

we fill 0.5 as features for nonexistent residues in windows centered

Tuberculosis Analysis by Signal Peptide Prediction

PLoS ONE | www.plosone.org 9 April 2012 | Volume 7 | Issue 4 | e35018



by residues of the N-terminus and C-terminus for all profiles,

except charge and volume, we fill zero.

SVMSignal displays the feature profiles on the web service.

Figure 2 shows an example of feature profiles. The green curve

denotes the free energy, the red dots are charge indices; the gray

curve represents the polarity; the blue dotted curve indicates the

residue volumes; the orange curve represents the amphiphilicity;

the blue vertical lines are predicted potential cleavage sites; and the

red vertical line is the predicted cleavage site after post-processing.

The visualization of biochemical feature profiles helps users

recognize signal peptide structures. This example shows a clear

signal peptide structure, which is given by the charged residues

followed by the hydrophobic core and then by the c-region

containing the small neutral and polar residues. Furthermore,

there are several potential cleavage sites after the hydrophobic

core, but only one of them lies near more polar and small residues.

Novel profile pattern features used to capture the
relationship between two biochemical profiles

Given any two of the above five biochemical features, we can

define a nonlinear profile pattern feature to capture the

relationship between two profiles by determining the distance of

a shift between the profiles’ peaks. For example, to model the

signal peptide structure of charged residues in the n-region

followed by the hydrophobic residues in the h-region, we shift the

charge profile by some amino acids (i.e., distance) and compute

the dot product of the free energy profile and the shifted charge

profile. A larger dot product implies a better match between the

profile peaks, and the shift distance determines the sequential

relationship. If maximizing the above dot product yields a positive

shift, it implies that the charged residues are followed by a

hydrophobic core.

Specifically, let f be a vector corresponding to a feature profile,

where f(i) is the feature value of the ith residue for i = 1,2,…,100;

and f(i) is 0 otherwise. Similarly, let g be a vector corresponding to

another feature profile. We determine the best shift S1 by the

maximum dot product derived by Equation (1). To capture a

profile’s skewness near the beginning and end positions, i.e.,

positions 1 and 100, we reverse the profile g and then find the best

shift S2, as shown in Equation (2).

S1~ arg max
s

X100

i

f ið Þ:g i{sð Þ,s~ {99,{98, � � � 0, � � � 98,99f gð1Þ

S2~ arg max
s

X100

i

f ið Þ:g s{ið Þ,s~ {99,{98, � � � 0, � � � 98,99f gð2Þ

Figure 1. The hierarchical architecture of SVMSignal.
doi:10.1371/journal.pone.0035018.g001
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Furthermore, we normalize the nonlinear features S1 and S2

extracted from the f and g profiles by simply using the range of

possible shifts, i.e., normalized S1~ S1z100ð Þ=199. In this way,

we calculate twenty nonlinear pattern features for all permutations

of the five biochemical profiles.

Post-processing to determine cleavage sites
Potential cleavage sites are determined according to the residues

predicted with ‘‘C’’ labels by the first classifier. Since the first

classifier performs residue-wise prediction, the residues labeled

with ‘‘C’’ may occur sparsely anywhere in the query. First, we

identify the ten-residue region nearest the N-terminus that

contains the most ‘‘C’’ labels. We consider ten-residue regions

because we defined five residues around the cleavage site as

positive data. Next, we determine the position of the last residue in

the signal peptide from the residues with ‘‘C’’ labels in the region

that minimizes the total distance between the positions of all ‘‘C’’

labels.

Training the SVM predictors
As the first predictor of SVMSignal is residue-wise and needs to

handle a large number of unstable training samples, we use

DTSVM [68] to train the first classifier. In the training stage, for

each sequence containing a signal peptide, we label the five

residues before and after the cleavage site, a total of 10 residues, as

‘‘C’’ for positive data and ‘‘L’’ for negative data because residues

near the cleavage site may have similar biochemical properties.

DTSVM requires both training and validation sets, so we divide

the Phobius 2004 dataset [16] (described later) into 80% for

training, 10% for validation, and 10% for cross-validation. The

second classifier is a chain-wise predictor and contains 2654

protein chains for training. Because the sample size is not large, we

use LIBSVM [69] with an RBF kernel function to train the model

directly. Then, we integrate the two classifiers to perform 10-fold

cross-validation on the Phobius dataset to determine the

parameters ‘‘cost’’ (21.5 = 2.8284) and ‘‘gamma’’ (224.5 = 0.0442)

in the kernel function of LIBSVM.

Training dataset
To avoid over-estimating our predictor’s performance, we use

the Phobius dataset [16] to train SVMSignal. The dataset contains

247 transmembrane protein sequences, 45 transmembrane protein

sequences with signal peptides, 1,275 sequences containing signal

peptides without transmembrane domains and 1,087 protein

sequences that do not have signal or transmembrane domains.

Benchmark datasets
SPdb dataset. We downloaded SPdb (release 5.1) [19], a

signal peptide database containing signal sequences of archaea,

bacteria, viruses and eukaryotes with all the sequences derived

from Swiss-Prot (release 55.0 2008). Then, taking all 2,512

experimentally verified signal peptide sequences in the dataset, we

used CD-HIT [33] to filter out sequences whose first 100 residues

shared at least 30% sequence similarity with sequences in the

Phobius training dataset. The process produced a dataset of 656

sequences, which we call the SPDB dataset.

UniProt/Swiss-Prot and PDBTM datasets. To evaluate

the predictors’ ability to distinguish signal sequences from non-

signal sequences, we compiled a dataset from UniProt/Swiss-Prot

(downloaded in December 2010) and PDBTM [21] (downloaded

on November 5, 2010). We divided the dataset into three disjoint

groups, i.e., sequences containing signal peptides (denoted by SP),

sequences containing only transmembrane domains (denoted by

TM), and sequences that did not contain transmembrane

domains or signal peptides (denoted by G). The SP dataset was

obtained by querying signal peptides in UniProt/Swiss-Prot with

the evidence code ‘‘experiment’’ or ‘‘probable’’. Note that the SP

dataset includes some signal peptides with ‘‘Transmembrane

[KW-0812]’’ or ‘‘Membrane [KW-0472]’’ annotations. The TM

dataset was obtained by querying ‘‘Transmembrane’’ annotated

with ‘‘experiment’’ or ‘‘probable’’ evidence codes in UniProt/

Swiss-Prot and removing any data with the signal peptide

annotation in any evidence code. We further enlarged the TM

dataset by extracting sequences in PDBTM with structures solved

by X-rays with a resolution less than 4.0 Å. The G dataset

contained sequences without signal peptides or TM annotations.

Finally, for each dataset we filtered out sequences whose first 100

residues share at least 30% similarity with sequences in the

Phobius training dataset by using CD-HIT. The resulting SP,

TM, and G datasets contained 901, 104, and 5,755 sequences,

respectively.

Supporting Information

Text S1 The alignments of unique proteins and their
homologous proteins.

(TXT)

Figure 2. An example, O95994 (AGR2_HUMAN), of biochemical feature profiles in a 100-residue N-terminal subsequence predicted
to contain a signal peptide.
doi:10.1371/journal.pone.0035018.g002
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Dataset S1 Accession IDs of the benchmark datasets.
(XLS)

Dataset S2 The results of SVMSignal prediction on the
seven selected tuberculosis strains.
(ZIP)

Dataset S3 Accession IDs of proteins predicted as signal
peptide proteins in the seven selected tuberculosis
strains.
(XLS)

Table S1 General analysis of proteomes in the HAMAP
database.

(XLS)
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