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Abstract Emerging evidence from decision neuroscience
suggests that although younger and older adults show similar
frontostriatal representations of reward magnitude, older
adults often show deficits in feedback-driven reinforcement
learning. In the present study, healthy adults completed
reward-based tasks that did or did not depend on probabilistic
learning, while undergoing functional neuroimaging. We ob-
served reductions in the frontostriatal representation of pre-
diction errors during probabilistic learning in older adults. In
contrast, we found evidence for stability across adulthood in
the representation of reward outcome in a task that did not
require learning. Together, the results identify changes across
adulthood in the dynamic coding of relational representations
of feedback, in spite of preserved reward sensitivity in old age.
Overall, the results suggest that the neural representation of
prediction error, but not reward outcome, is reduced in old
age. These findings reveal a potential dissociation between
cognition and motivation with age and identify a potential
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mechanism for explaining changes in learning-dependent de-
cision making in old adulthood.
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Adult development and aging has been associated with rela-
tive stability in some aspects of motivational function but with
decreases in some aspects of cognitive function (Carstensen,
2006; Grady, 2008; Reuter-Lorenz & Lustig, 2005; Samanez-
Larkin & Carstensen, 2011; Samson & Barnes, 2013). Until
recently, the majority of studies into the cognitive neurosci-
ence of aging have examined separately either motivational or
cognitive function. However, an emerging literature on age
differences in reward learning and decision making has facil-
itated the examination of potential overlap or dissociation in
these processes. The initial set of neuroimaging findings from
this literature attributed deficits in reward learning in older age
to structural and functional differences in frontostriatal circuit-
ry (Eppinger, Himmerer, & Li, 2011; Himmerer & Eppinger,
2012; Samanez-Larkin & Knutson, 2014). Although older
adults show intact, or even enhanced, frontostriatal responses
to reward outcomes (Cox, Aizenstein, & Fiez, 2008;
Samanez-Larkin et al., 2007; Schott et al., 2007), they also
show decreased ventral striatal function in time-limited learn-
ing tasks (Chowdhury et al., 2013; Eppinger, Schuck,
Nystrom, & Cohen, 2013; Mell et al., 2009; Samanez-
Larkin, Kuhnen, Yoo, & Knutson, 2010). Some have sug-
gested that adult age differences in reward-based decision
making are due to a motivational deficit, such that older adults
are less sensitive to reward than are younger adults (Eppinger,
Nystrom, & Cohen, 2012). However, an alternative account of
these collected findings may be that, whereas sensitivity to
reward and previously learned reward associations remain
intact over the adult lifespan, a network of neural systems that
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supports novel reward learning changes with age. This view
suggests a potential dissociation between motivation and cog-
nition in the aging brain.

Accordingly, a recent review of behavioral research
showed the largest and most reliable adult age differences in
decision tasks that depend on learning novel stimulus—reward
associations, but few age differences in tasks that did not
require recent learning (Mata, Josef, Samanez-Larkin, &
Hertwig, 2011). Building on these findings, a diffusion
tensor-imaging study revealed that the structural connectivity
of the prefrontal cortex to the striatum could account for age
differences in probabilistic reward learning (Samanez-Larkin,
Levens, Perry, Dougherty, & Knutson, 2012). Together, this
prior evidence has suggested that although older adults show
intact sensitivity to reward magnitude (Samanez-Larkin et al.,
2007), decision-making deficits in older age may result from
decreased frontostriatal connectivity. This reduction in con-
nectivity may compromise the dynamic updating of reward
predictions (Eppinger et al., 2011).

A pair of recent studies have begun to determine which
specific facets of learning-related brain activity are disrupted
with age, by combining functional neuroimaging with models
of reinforcement learning (Chowdhury et al., 2013; Eppinger
etal., 2013). Reinforcement-learning models rely on the com-
putation of prediction errors (i.e., the difference between the
expected and received rewards), which are used to inform
subsequent actions and maximize reward over time
(O’Doherty, 2004; Pessiglione, Seymour, Flandin, Dolan, &
Frith, 2006; Schonberg, Daw, Joel, & O’Doherty, 2007;
Sutton & Barto, 1998). Neural representations of prediction
error are believed to originate in the midbrain (Hollerman &
Schultz, 1998; Schultz, 2006; Schultz, Dayan, & Montague,
1997) and have been observed in human neuroimaging across
arange of midbrain, ventral striatal, and medial frontal regions
in young adults (D’Ardenne, McClure, Nystrom, & Cohen,
2008; McClure, Berns, & Montague, 2003; O’Doherty,
Dayan, Friston, Critchley, & Dolan, 2003; Pagnoni, Zink,
Montague, & Berns, 2002); all of these regions are efferent
targets of ascending dopamine projections of the mesolimbic
path (Haber & Knutson, 2010; O’Doherty, 2004). Two recent
studies have identified adult age-related reductions in the
neural representation of prediction errors during learning in
the ventral striatum and medial frontal cortex (Eppinger et al.,
2013), and shown that dopaminergic drugs can enhance both
learning ability and prediction error signals in the ventral
striatum in old age.

Although these studies have made great progress in char-
acterizing age differences in this reward-learning-related neu-
ral signal, one limitation of the current literature is that no prior
studies have compared reward-feedback-related activation in
tasks that do or do not depend on learning in the same subjects
across adulthood. The goal of the present research was to
compare the neural activity associated with prediction error

across adult age, and further to determine whether age differ-
ences were limited to learning tasks or extended more gener-
ally to reward tasks that do not require learning. Accordingly,
we conducted neuroimaging and behavioral studies in a com-
munity sample of healthy adults. In the first study, an adult
lifespan sample of young, middle-aged, and older adults com-
pleted reward tasks that did or did not require learning, while
undergoing functional magnetic resonance imaging (fMRI).
In a second, behavioral study, we examined the behavioral
consequences of age differences in prediction error coding by
testing the limits of older adults’ learning ability through
various task demand manipulations (e.g., choice set size and
time available to learn) in a different sample of subjects.

Study 1
Method

Subjects A group of 39 healthy, right-handed adults (mean
age = 53 years, SD = 16, range 22-85; 21 female, 18 male)
completed a probabilistic reward-learning task while under-
going fMRI. A subset of 37 adults (mean age = 52 years, SD =
16, range 22-85; 20 female, 17 male) also completed a reward
task that did not depend on learning while undergoing fMRI
(see Supplementary Information S1). After completing the
reward tasks that either did or did not depend on learning,
subjects also completed a risky decision-making task while
undergoing fMRI. The results from the third task have ap-
peared in a previous publication (Samanez-Larkin et al.,
2010). A market research firm initially contacted individuals
who were representative of San Francisco area residents with
respect to sex, income, education, ethnicity, and occupation.
Age was uniformly distributed across the sample, and all
subjects had globally intact cognitive performance, as evi-
denced by Mini-Mental State Exam scores >26. All subjects
gave written informed consent, and the experiment was ap-
proved by the Institutional Review Board of Stanford
University.

Monetary incentive learning (MIL) task To examine age dif-
ferences in the functional representation of prediction error
during probabilistic learning, all 39 subjects completed the
MIL task (Knutson, Samanez-Larkin, & Kuhnen, 2011;
Samanez-Larkin, Hollon, Carstensen, & Knutson, 2008;
Samanez-Larkin et al., 2012) while undergoing fMRI. On
each trial, subjects saw and chose between one of three pairs
of fractal cues (gain acquisition, loss avoidance, or neutral).
After choosing one of the cues from a pair, subjects saw the
outcome associated with their choice (see Supplementary
Information S2). On average, one of the cues yielded a better
outcome, whereas the other yielded a worse outcome. In gain
cue pairs, the better cue had a higher probability of returning
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gains (66 % +$1.00 returns and 33 % +$0.00 returns) than did
the worse cue (33 % +1.00 and 66 % +$0.00); likewise, in loss
cue pairs, the better cue had a higher probability of returning
nonlosses (66 % —$0.00 and 33 % —$1.00) than did the worse
cue (33 % —$0.00 and 66 % —$1.00). In neutral cue pairs, the
choice of either cue had no impact on the outcomes (100 %
$0.00). Each trial lasted 10 s, and intertrial intervals were
drawn from a uniform distribution of 2, 4, or 6 s. The three
trial types were each presented 24 times in an individually
randomized order for each subject. Subjects completed a total
of 72 trials. Within each cue pair, the cues appeared with equal
frequency on the left or right side of the screen. The computer
randomly assigned each cue to either the better or the worse
outcome distribution at the beginning of each run, in a
counterbalanced fashion. Different cue pairs were used for
the practice and experimental sessions, in order to minimize
memory-related interference. Subjects were explicitly in-
formed about the cue probabilities before the practice session
and told to try to maximize their earnings throughout the
experiment. The subjects received cash for their performance
after the experimental sessions, but not for the practice ses-
sions. Measures of learning performance were assessed by
calculating the percentages of choices that matched the “bet-
ter” cue (i.e., had the higher probability of an advantageous
outcome; Knutson et al., 2011; Samanez-Larkin et al., 2012).

Monetary incentive delay (MID) task To examine the func-
tional representation of reward outcomes in the absence of
probabilistic learning, 37 subjects also completed the MID
task (Knutson, Fong, Bennett, Adams, & Hommer, 2003;
Samanez-Larkin et al., 2007; Wu, Samanez-Larkin,
Katovich, & Knutson, 2014) while undergoing fMRI. On each
trial, subjects saw a cue, responded with a buttonpress to a
target, and then received feedback (see Supplemental
Information S2). Each trial lasted 8§ s, and intertrial intervals
were drawn from a uniform distribution of 2, 4, or 6 s. A total
of six cue types (Win $0.00, Win $0.50, Win $5.00, Lose
$0.00, Lose $0.50, and Lose $5.00) explicitly stated whether
each trial was a potential gain or loss trial, as well as the
amount of money at stake. The six trial types were each
presented 15 times in an individually randomized order for
each subject. The subjects completed a total of 90 trials. Task
performance was manipulated by altering the average duration
of the target with an adaptive timing algorithm (seeded with
that individual’s mean reaction time in prescan practice) that
tracked performance across the task to maintain a 66 % hit rate
for each cue type.

fMRI data collection and analysis Neuroimaging data were
collected using a 1.5-T General Electric MRI scanner using a
standard birdcage quadrature head coil. High-resolution struc-
tural scans were acquired using a T1-weighted spoiled GRAS
S sequence (TR = 100 ms, TE = 7 ms, flip = 90°), facilitating
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localization and coregistration of the functional data. After
acquiring the anatomical scans, all subjects first completed the
MID task and then the MIL task. Twenty-four 4-mm-thick
slices (in-plane resolution 3.75 x 3.75 mm, no gap) extended
axially from the mid-pons to the top of the skull. Functional
scans of the whole brain were acquired at a repetition time of
2 s, with a T2*-sensitive in-/out- spiral pulse sequence (TE =
40 ms, flip = 90°) designed to minimize signal dropout at the
base of the brain (Glover & Law, 2001). Preprocessing and
whole-brain analyses were conducted using the AFNI
(Analysis of Functional Neural Images) software (Cox,
1996). For preprocessing, voxel time series were sync-
interpolated to correct for nonsimultaneous slice acquisition
within each volume, corrected for three-dimensional motion,
slightly spatially smoothed (FWHM = 4 mm), converted to
percentage signal change (relative to the mean activation over
the entire experiment), and high-pass filtered. Visual inspec-
tion of the motion correction estimates confirmed that no
subject’s head moved more than 4 mm in any dimension from
one volume acquisition to the next.

The preprocessed time series data for each individual were
used in two sets of analyses. A first set of time-course-based
analyses examined age differences in select brain regions,
based on recent evidence for abnormal prediction error sig-
naling and structural declines in the medial frontal cortex and
ventral striatum in old age (Chowdhury et al., 2013; Eppinger
et al., 2013; Samanez-Larkin et al., 2012). For these time-
course-based analyses, volumes of interest were specified
anatomically on the basis of previous studies of age differ-
ences in learning and decision making (Samanez-Larkin et al.,
2010; Samanez-Larkin et al., 2012), and measures of percent-
age signal change were extracted from the same regions by
conditions of interest in both the MIL and MID tasks. These 8-
mm-diameter spheres were shifted within individuals to en-
sure that only data from gray matter were extracted.

A second set of analyses used multiple regression to ex-
amine group effects and age differences across the whole brain
(see Supplementary Information S3). In the whole-brain anal-
yses, the regressors of interest were convolved with a gamma-
variate function that modeled a prototypical hemodynamic
response before inclusion in the regression model.

The MIL task whole-brain regression model consisted of a
set of two orthogonal regressors of interest: prediction error on
gain trials, and prediction error on loss trials. In this parametric
model, the prediction errors were fully signed and varied
across trials and subjects. For full details on the estimation
of prediction error and model fit, see Supplementary
Information S3. Additional regressors of noninterest included
residual motion and baseline, linear, and quadratic trends.

The MID task regression model consisted of a set of four
orthogonal regressors of interest: gain ($0.50, $5.00) versus
nongain ($0.00) anticipation, loss ($0.50, $5.00) versus
nonloss ($0.00) anticipation, gain (hit: $0.50, $5.00) versus
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nongain (miss: $0.50, $5.00) outcome, and nonloss (hit:
$0.50, $5.00) versus loss (miss: $0.50, $5.00) outcome.
Additional regressors of noninterest included task periods
(anticipation and outcome), residual motion, and baseline,
linear, and quadratic trends.

Maps of the ¢ statistics representing each of the regressors
of interest were transformed into z scores, resampled at
3.75 mm’, and spatially normalized by warping to Talairach
space. These ( coefficient maps were then regressed on linear
and quadratic age effects (continuous independent variables).
The independent variables were mean-centered so that the
resulting model intercept revealed regions of the brain that
correlated significantly with that regressor of interest across
the sample, controlling for age. Voxelwise thresholds for
statistical significance at the whole-brain level were set at p
<.001, uncorrected. The minimum cluster size of seven 3.75-
mm?® voxels for a p < .05 whole-brain corrected threshold was
estimated using AFNI’s AlphaSim (Cox, 1996). Small-
volume correction was applied to the ventral striatum at the
same threshold (p < .001) by removing the cluster criterion
(which was too large to allow for detection of activation in
regions as small as the nucleus accumbens).

In all fMRI analyses, care was taken to minimize potential
confounds associated with age differences in subject character-
istics, brain morphology, and hemodynamics (Samanez-Larkin
& D’Esposito, 2008). What appear to be main effects of age
reported in the tables are analogous to Age x Condition interac-
tions, since the dependent variables in these models are coeffi-
cient maps resulting from the first-level analyses. Each individ-
ual’s brain was warped into Talairach space with reference to
hand-placed anatomical landmarks. The structural and functional
brain-imaging data were inspected for abnormalities in each
individual. Four additional individuals not included in the num-
bers reported above were excluded from all analyses, because of
a structural abnormality (71-year-old male), excessive motion
(26-year-old male, 74-year-old male), or extreme BOLD signal
change values (>3 SDs above/below the sample mean for con-
trasts of interest; 25-year-old male).

Although gain and loss conditions were included in both
tasks, all results and discussion focused on MIL gain learning
and MID gain outcome trials. Prior research had revealed age
differences in the processing of monetary losses, even in the
absence of learning (Samanez-Larkin et al., 2007, Wu et al.,
2014). The goal of the present study, however, was to examine
how age differences in gain learning emerged, given prior
evidence for the preservation of reward magnitude represen-
tations in old age. Full results from the loss conditions appear
in Supplementary Information S6.

Results

To examine age differences in neural responses during reward
learning (even in the face of preserved responses to reward

outcomes), 39 healthy adults of varying ages (age range 22—
85) completed a probabilistic-learning task while undergoing
fMRI. Given prior evidence for age differences in the process-
ing of monetary losses, even in the absence of learning
(Samanez-Larkin et al., 2007; Wu et al., 2014), our analyses
focused on the gain-learning conditions (findings from the
loss conditions appear in Supplementary Information S6).

MIL task behavioral results The results with a larger sample
size (N = 77) showed age differences (main effect of age) in
performance on the MIL task. This finding results from the
fact that older adults less often chose the higher expected
value cue during both gain and loss learning—particularly
during the early phase of learning (see Supplementary
Information S4). The Age X Valence (gain, loss) interaction
was not significant in this larger sample (see Supplementary
Information S4), suggesting that older subjects learned less
from probabilistic feedback overall. In the subsample of sub-
jects who underwent fMRI (N = 39), averaged performance
across both gain and loss learning was not associated with age,
[ =-.26, p =10, possibly due to a lack of power to detect
behavioral effects in this smaller subsample.

MIL task neural results In initial analyses, we examined
activation time courses extracted from the bilateral medial
prefrontal cortex (MPFC), anterior cingulate cortex (ACC),
and nucleus accumbens (NAcc) (Fig. 1), on the basis of
recently reported learning-related age differences in frontal
cortex and striatum (Eppinger et al., 2013; Samanez-Larkin
et al., 2012). Beyond the regions of interest we focused on
here, a larger circuit including the midbrain, striatum, and
prefrontal cortex is involved in the computation and represen-
tation of values and prediction errors. Although some have
suggested that age differences may primarily be due to rising
dopamine from the midbrain to the ventral striatum and
MPFC (e.g., Chowdhury et al., 2013, Eppinger et al., 2013),
other evidence suggests that these effects may be more dis-
tributed and may be broader than a purely dopaminergic
decline with age (Samanez-Larkin et al., 2012). These prior
studies together informed our selection of regions in the
present article.

Within these brain regions of interest, positive prediction
error time courses were constructed from the average of the
signals from all trials with positive prediction errors. Similarly,
negative prediction error time courses were constructed from
the average of signals from all trials with negative prediction
errors. Trials were included in these averages on the basis of
prediction errors estimated from the model described in the
supplementary information (S3). Across age groups, activa-
tion was significantly higher on trials with a positive than with
a negative prediction error in the MPFC, #38) = 3.40, p <
.001, and NAcc, #38) = 3.12, p < .01, but not in the ACC,
#38)=0.85, p =.39. The difference in neural activity between
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Fig. 1 Reward-learning (MIL) task, time-course-based results: Time
courses of activation comparing positive to negative prediction errors
during the learning task in younger (age range 22-44; N = 12), middle-
aged (age range 45-60; N = 13), and older (age range 64-85; N = 14)
adults. Black lines are positive prediction errors, and gray lines are

trials in which we found a positive versus a negative predic-
tion error decreased as age increased in the MPFC, 3=-45,p
<.01,NAcc, f=-.39,p<.05, and the ACC, 5=—-46,p <.01.

For whole-brain analyses, we used a reinforcement-
learning model to fit behavior and generate estimates of pre-
diction error at each trial (see Supplementary Information S3).
We then used estimated prediction errors to identify brain
areas that correlated with this signal during learning. Unlike
the time course analyses above, which collapsed all prediction
errors independent of size, the whole-brain analyses provided
coefficients for the parametric effect of prediction error. The
whole-brain analysis identified a cluster in the MPFC in which
activation correlated with prediction error across age groups
(Table 1, Fig. 2A). Differences as a function of age were
evident in the correlation between neural activity and predic-
tion errors. At a whole-brain cluster-corrected threshold, age
differences emerged in ACC activation, indicating a greater
correlation for younger than for older subjects (Table 1,
Fig. 2B) consistent with the time-course-based analyses
above.

MID task neural results A subset of 37 of the adults (age
range 2285 years) also completed the MID task while under-
going fMRI. Unlike the MIL task, performance on the MID
task does not require learning. As above, we began our anal-
ysis with time courses extracted from predicted volumes of
interest and the followed these analyses with whole-brain
regression. Across age groups, activity was significantly
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negative prediction errors. MPFC = medial prefrontal cortex; ACC =
anterior cingulate cortex; NAcc = nucleus accumbens. Error bars indicate
SEMs. White regions highlight feedback intervals adjusted for hemody-
namic lag

higher for gain than for nongain outcomes in the MPFC,
#36) =3.57, p <.01, and NAcc, #(36) = 5.82, p <.0001, and
marginally higher in the ACC, #36) = 1.93, p = .06.
Furthermore, the difference in activity between gain and
nongain outcomes did not vary across age groups in the
MPFC, 5= .18, p = .29, or NAcc, 8= .11, p = .53 (Fig. 3).
In fact, unlike the learning task (MIL), the difference between
gain and nongain outcomes in the MID task increased with
age in the ACC, 3= .40, p <.05. The findings replicated prior
evidence for preserved frontostriatal functional reward activa-
tion in tasks that do not require learning.

The whole-brain analysis of reward outcome in the MID
task revealed a cluster in the medial frontal cortex (Table 2,
Fig. 4A) where activation was modulated by reward outcome
(gain vs. nongain), aggregating across all subjects. At the
whole-brain cluster-corrected threshold, no regions showed
significant effects of age (Table 2, Fig. 4B).

Interim discussion

On the basis of the evidence that neural activity associated
with prediction errors is reduced at older ages in Study 1,
particularly in the prefrontal cortex, we predicted that age
differences in learning would be magnified as learning de-
mands increased. To test this hypothesis, a separate group of
18 younger adult (age range 19-33) and 30 older adult (age
range 67-86) subjects completed a behavioral task that in-
cluded twice as many cues as the MIL task (four instead of
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Table 1 Regions modulated by prediction error at outcome in the task that required learning (MIL)
Region R A S zZ Voxels Volume
Across All Subjects

R Medial frontal gyrus 4 49 -3 517 66 3,480

R Ventral putamen / Nucleus accumbens 15 8 -7 3.87 4 [SVC] 211

R Posterior cingulate gyrus 8 —49 34 4.27 18 949

L Inferior parietal lobule =52 -49 38 395 8 422
Age Differences (Older > Younger)

L Anterior cingulate —4 38 8 -3.98 7 369

R Middle temporal gyrus 49 -34 —4.02 9 475

L Posterior cingulate -11 —41 4 -3.65 9 475
Quadratic Effect of Age

none

Average effects are reported across all subjects, along with main and quadratic effects of age. p <.001 for all activations, N = 39. SVC, small volume

corrected

two) from which to choose and learn. Additionally, we wanted
to test the hypothesis that even in this more demanding learn-
ing task, older adults could perform as well as younger adults
if given adequate time. Specifically, if deficits exist in learning
from feedback (as indicated by the results above), perfor-
mance should differ by age during early stages of learning,
but not at asymptote. By contrast, were age-related differences
to exist in the reward signals themselves (which was not

P< .0001

P< JueiN .0001

Fig. 2 Reward-learning (MIL) task, whole-brain results. (A) Regions of
the brain where activation was significantly modulated by prediction error
at outcome across age during learning. (B) Regions of the brain where the
modulation of activation by prediction error showed age differences.
Cooler colors correspond to negative z scores, which indicate a reduced
modulation of activation as age increased. R =right. A right/left, anterior/
posterior, or superior/inferior value is listed in the upper corner of each
statistical map. The anatomical underlay is an average of all subjects’
spatially normalized structural scans

suggested by the neuroimaging data in Study 1), then learning
should be biased in a manner than could not be overcome with
more learning trials.

Study 2
Method

Subjects Eighteen younger (ages 19-33) and 30 older (ages
67-86) adults completed a modified version of the MIL task
on a laptop in an interview room in the Psychology
Department (see Supplementary Information S1). Study 2
did not include fMRI. Right-handed subjects were recruited
either by a market research firm or through local online
advertisements (e.g., Craigslist) in the San Francisco Bay area.

Expanded MIL task On each trial, subjects saw and chose
between fractal cues and then viewed the outcome associated
with their choices. The expanded MIL task was different from
the standard MIL task described above in Study 1, in four
ways. First, the task used in Study 2 only included a gain
condition (without a loss condition). Second, the choice set
size was doubled, so that subjects chose from four (instead of
two) cues on each trial. The probabilities of winning $1
associated with each of the four cues were 40 %, 50 %,
60 %, and 70 %. Third, in this task subjects were not given
the probability distributions as priors. The only information
provided was that in each round some cues would be better
than others (i.e., would be associated with a higher probability
of winning $1), and that none of the cues would always pay $1
or $0. Fourth, two different block length conditions were
included, instead of just one. The short block included

@ Springer



678

Cogn Affect Behav Neurosci (2014) 14:672—682

Younger Adults
MPFC 0.25
<
T
c
(o]
R
0285 T 8 10
ACC 0.25
<
T
oy
00 2 L e s
2
-0.25
2 4 6 8 10
NAcc 0.25
<
I %
C
(*2]
O O K7
2
-0.25
2 4 6 8 10
Time (TRs)

Fig. 3 Simple-reward (MID) task, time-course-based results: Time
courses of activation comparing gains to nongains during the task that
did not require learning in younger (age range 22-44; N = 12), middle-
aged (age range 45-60; N = 13), and older (age range 64-85; N = 12)
adults. Black lines are gain outcomes (+$0.50, +$5.00), and gray lines are

25 trials, and the long block included 75 trials. All sub-
jects played two rounds of each block length condition,
for a total of four blocks (in the order short, long, short,
long) and 200 trials. Different stimuli were used in each
condition and block. Different cue sets were used for each
block of trials. Learning performance was assessed by
computing the overall percentage of choices allocated to
either of the two highest-probability cues (60 %, 70 %) in
each round. All subjects first played a practice version of
the learning task. They received a fixed compensation of

Middle-Aged Older Adults
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nongain (+$0) outcomes. MPFC = medial prefrontal cortex; ACC =
anterior cingulate cortex; NAcc = nucleus accumbens. Error bars indicate
SEMs. White regions highlight feedback intervals adjusted for hemody-
namic lag

$20 per hour, as well as 10 % of their total earnings
during the task. Two additional subjects (older adults not
included in the numbers reported above) were excluded
from all analyses for adopting a win—stay, lose—shift strat-
egy on every single trial.

Results

We gave participants two versions of the extended MIL task. A
short condition included 25 trials to learn the stimulus-reward

Table 2 Regions modulated by reward outcome (+$ vs. +0) in the task that did not require learning (MID)

Region R A S V4 Voxels Volume (mm?)
Across All Subjects
L Medial frontal gyrus —-11 60 1 4.24 53 2,795
L Middle frontal gyrus 22 4 46 4.01 8 422
Linear Effect of Age (OA > YA)
none
Quadratic Effect of Age
R Inferior frontal gyrus 30 11 —14 —4.89 10 527
L Inferior frontal gyrus =30 8 —11 3.81 10 527
R Lentiform nucleus / Amygdala 23 0 —11 3.69 7 369
R Precuneus 4 79 42 -3.88 19 1,002
R Cuneus 11 -90 4 —4.99 31 1,635

Average effects are reported across all subjects, along with main and quadratic effects of age. p < .001 for all activations, N = 37
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A

P< .0001

Fig. 4 Simple-reward (MID) task, whole-brain results. (A) Regions of
the brain where activation was significantly greater for monetary gains
than for nongains at outcome across age. (B) No significant age differ-
ences in reward modulation were apparent at outcome in the MID task. R
= right. A right/left, anterior/posterior, or superior/inferior value is listed
in the upper corner of each statistical map. The anatomical underlay is an
average of all subjects’ spatially normalized structural scans

associations, and a long condition included 75 trials. The short
condition was similar in length to the task used in Study 1 (which
had included 24 trials), but an increased choice set size and
reduced distance between expected values (10 % instead of
33 %) of the choice options increased the difficulty. Analysis
of the behavioral results revealed a significant main effect of task
length, F{(1, 46) = 7.49, p < .01, such that individuals performed
better on the longer blocks (75 trials) when more time was
available to learn than in the shorter blocks (25 trials). The main
effect of age was not significant, F(1, 46) =2.30, p = .14, but a
Block Length x Age Group interaction, F(1, 46) =4.60, p < .05,
revealed that the influence of age on learning differed between
the block length conditions. Follow-up ¢ tests revealed signifi-
cantly higher levels of performance in the long than in the short
block for the older adults, #29) = 3.99, p < .001, but no
difference between conditions for the younger adults, #17) =
0.375, p = .71. As a result, in this larger behavioral sample,
younger adults outperformed older adults in the short block
condition, #46) = 2.60, p < .05, but not in the long block
condition, #46) =—-0.28, p = .78 (Fig. 5).

Discussion

In spite of decreases across adulthood in a number of fluid
cognitive abilities, researchers have found evidence of stabil-
ity, and even improvement, in motivation and crystallized
cognitive abilities across adulthood (Agarwal, Driscoll,

1.00 YA

0.75 |
I

Learning

[

25 Trials 75 Trials

Fig. 5 Study 2 expanded MIL task behavior. Although younger adults
outperformed older adults in the short block condition (25 trials), the
older adults performed as well as the younger adults in the long block
condition (75 trials). Error bars indicate SEMs. YA = younger adults; OA
= older adults. "p < .05

0.50

Gabaix, & Laibson, 2009; Carstensen, 2006; Grady, 2008;
Li, Baldassi, Johnson, & Weber, 2013; Nashiro, Sakaki, &
Mather, 2012; Samanez-Larkin, 2013; Samanez-Larkin &
Carstensen, 2011). The present findings are consistent with
this dissociation between cognition and motivation, providing
evidence for both decline and preservation of function with
age. We observed both age differences in frontostriatal func-
tion related to reward learning and preserved responses to
reward outcomes.

In the first study, neural correlates of prediction error were
reduced during learning in older subjects, despite evidence for
intact responses to reward outcomes in a task that did not
involve learning. These seemingly discrepant findings are
nonetheless consistent with the behavioral literature showing
compromised decision making in older individuals when tasks
involve novel learning—in both humans (Mata et al., 2011)
and rodents (Gilbert etal., 2011; Simon et al., 2010). Although
these behavioral findings may implicate regionally selective
neural decline, initial human neuroimaging studies suggested
that this dissociation may not be as simple as differential
degradation of distinct brain regions. Instead, although indi-
vidual brain regions may remain functional in some circum-
stances, neural circuits may not effectively transmit signals in
others. Accumulating evidence suggests that reward process-
ing recruits frontal and striatal activity independent of age
(Cox et al., 2008; Hosseini et al., 2010; Samanez-Larkin
et al., 2007), but that frontostriatal circuits are not as readily
deployed when new learning is necessary (Aizenstein et al.,
2006; Eppinger et al., 2013; Mell et al., 2009; Samanez-
Larkin et al., 2010). The findings are also relatively consistent
with a seminal study on reward processing and aging that
showed age-related reductions in reward prediction signals,
but similar if not enhanced reward outcome signals in old age
(Schott et al., 2007; see also Samanez-Larkin & Knutson,
2014, for more detailed discussion of this early study).
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The documented age differences in neural activity in the
frontal cortex and striatum during the learning-based task are
consistent with other recent evidence for abnormal prediction
error signaling in old age (Chowdhury et al., 2013; Eppinger
et al., 2013). However, the present study extended this recent
work by directly comparing age differences in neural signals
during reward tasks that both did and did not require learning
(Study 1) and testing the limits of learning ability across age
(Study 2).

Consistent with previous findings, younger and older
adults differed in their striatal neural responses during learn-
ing. However, the lack of differences in striatal responses
during the reward task that did not require learning suggested
that this region may not be the core source of impairment.
Instead, age differences in frontostriatal activation may result
from decreased communication between a network of regions
across adulthood. These age differences in connectivity could
be due to a variety of disruptions, including midbrain dopa-
mine projections to the ventral striatum and prefrontal cortex
(Chowdhury et al., 2013), medial prefrontal glutamatergic
input to the ventral striatum (Samanez-Larkin et al., 2012),
thalamic connectivity to these regions, or some combination
of these. The present findings, together with other recent work
(Chowdhury et al., 2013), may identify a potential functional
consequence of reduced structural connectivity. If prediction
errors are not communicated effectively through the system,
striatal activity may be altered in old age.

The present analyses focused on adult age differences in
neural activity for monetary gain outcomes. Although a be-
havioral meta-analysis revealed a lack of valence bias (gain
vs. loss) in decision making that does not require learning
(Mata et al., 2011), some have suggested that age and valence
may interact in learning (Eppinger et al., 2011, 2013). Prior
studies that have included neural measures of reward sensi-
tivity and behavioral measures of learning have provided
evidence for a valence asymmetry in the neural correlates of
reward anticipation (i.e., greater activation for potential gains
than losses in old age) but lack of a valence asymmetry in the
neural correlates of reward outcome processing and behavior-
al learning (Samanez-Larkin et al., 2007). Consistent with
these neural findings, the present learning results did not
reveal an Age x Valence interaction in learning, even in a
larger behavioral sample (see Supplementary Information S4).
This is inconsistent with a similar recent study that provided
evidence for larger behavioral differences in learning from
gains than from losses (Eppinger et al., 2013). Given incon-
sistencies in the behavioral literature on Age x Valence inter-
actions in learning, in the present study we focused on the gain
conditions of both tasks in order to isolate learning-related
differences. However, the pattern of neural effects that
emerged in the loss conditions of both tasks was similar to
(but weaker than) those observed in the gain conditions. We
did observe reduced MPFC activity correlated with prediction

@ Springer

error during loss learning in older age, but the neural re-
sponses to loss outcomes in a nonlearning task did not differ
between age groups (see Supplementary Information S6).

One important difference between the fMRI tasks that did
and did not require learning was that different magnitudes of
rewards were at stake (i.c., $0 and $1 in the MIL task, and $0,
$0.50, and $5 in the MID task). A related potential limitation
of Study 1 was that participants completed the MID task
before the MIL task, so the reward magnitudes offered in the
MIL task may have seemed smaller, and this may have con-
tributed to reduced motivation. More specifically, an alterna-
tive account of age differences in neural response to MIL
versus MID outcomes might be that older adults are less
sensitive to smaller-magnitude rewards. However, the same
pattern of relatively intact representation of reward value at
outcome across age groups was present within the low-
magnitude $0.50 trials in the MID task, which were half the
magnitude of the outcomes in the MIL task (see
Supplementary Information S7). Thus, the neural activation
differences between tasks are not simply attributable to differ-
ences in the reward magnitudes. Another minor difference
between the tasks was that the whole-brain MIL task results
emerged from a parametric model of prediction error based on
the fit of a reinforcement-learning model to choice data,
whereas the MID task results were based on a simple com-
parison of gains to nongains (which does not depend on
assumptions about subject choice behavior). However, a sec-
ond whole-brain analysis that directly compared gains (posi-
tive prediction error) to nongains (negative prediction error) in
the MIL task revealed similar results (see Supplementary
Information S5). Thus, the age differences reported do not
depend on the fit of the learning model.

Although we found age differences in neural activity dur-
ing reward learning, older adults are not always impaired
when decision making requires novel learning. In some situ-
ations older adults can even outperform younger adults
(Worthy, Gorlick, Pacheco, Schnyer, & Maddox, 2011).
Older adults are sometimes more likely than younger adults
to adopt simpler decision strategies (Mata & Nunes, 2010;
Mata, von Helversen, & Rieskamp, 2010; Mata, Schooler, &
Rieskamp, 2007; Worthy & Maddox, 2012), which may fa-
cilitate some decisions. Some evidence emerged in the present
findings that older adults were relatively more likely to im-
plement simple strategies (e.g., lose—shift; see Supplementary
Information S8). These findings do not clarify, however,
whether strategy differences can account for age differences
in neural recruitment, or whether reduced neural recruitment
forces adoption of simpler strategies. Although we observed
no significant interactions of age with strategy use in Study 1,
the use of different strategies was more evident in Study 2.
One possible interpretation is that diminished neural represen-
tation of prediction error may prevent older subjects from
maintaining a strong preference for the higher-probability
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cue. Importantly, reduced reliance on prediction error and a
greater tendency to use simple strategies may work well in
some situations (Worthy et al., 2011; Worthy & Maddox,
2012). In general, the success of simple choice strategies de-
pends on both the choice context and older peoples’ ability to
take advantage of intact cognitive strengths (Mata et al., 2012).

Although we observed behavioral age differences in learn-
ing in a larger sample in Study 1 (see Supplementary
Information S4) and between younger and older adults in
Study 2, learning differences in the Study 1 subsample that
underwent functional imaging were not significant. This was
most likely due to reduced power to detect behavioral effects
in this smaller group. Other studies with larger sample sizes
have shown significant age differences in learning using sim-
ilar tasks (Eppinger et al., 2011). Although the scanned older
adults may have had less learning impairment than their peers,
if this were the case, the evidence for age differences in neural
activity during learning is even more striking.

The lack of age differences in the behavior of scanned
subjects may also relate to specific task design details. With
only two choices, subjects will sometimes choose the better
option even when they have formed relatively weak prefer-
ences. To address this possibility, we conducted a separate
behavioral study to explore the limits of older adults’ learning
ability. Study 2 demonstrated that when task difficulty increases
(by increasing choice set size and decreasing expected value
differences between the cues), the learning impairment in older
adults grows more pronounced. However, a task length manip-
ulation in Study 2 also showed that, given more time to learn,
older adults can approximate the levels of performance shown
by younger adults even in a more difficult task.

Overall, the results suggest that neural representation of
prediction error, but not reward outcome, is reduced in old
age. The findings reveal a dissociation between cognition
and motivation with age and identify a potential mecha-
nism for explaining changes in learning-dependent deci-
sion making in old adulthood. In spite of the reductions in
neural activity correlated with prediction error at older
ages that we observed here in Study 1 and the deficits
in time-limited learning in the behavioral literature, Study
2 demonstrated that supportive task conditions can reme-
diate these deficits. Thus, in addition to identifying reduc-
tions in neurobiological function, these findings may help
inform the design of interventions that will support better
decisions in individuals of all ages. One implication, con-
sistent with prior research (Mata et al., 2011), is that
learning demands should be minimized for older adults
who are making decisions in a novel setting.
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