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ABSTRACT
Background  T-cell immunoglobulin and ITIM domain 
(TIGIT) is identified as a novel checkpoint receptor that can 
facilitate immune escape via mediating T-cell exhaustion 
in tumors. However, the clinical significance and immune 
contexture correlation of intratumoral TIGIT+ CD8+ T-cells 
remain to be further explored in muscle-invasive bladder 
cancer (MIBC).
Methods  259 patients with MIBC from two clinical 
centers (Zhongshan Hospital, n=141; Shanghai Cancer 
Center, n=118) were analyzed to evaluate the prognostic 
value and immune contexture association of TIGIT+ CD8+ 
T-cells through immunohistochemistry. Fresh tumor tissue 
samples from 26 patients with MIBC were examined to 
discover the phenotype of this CD8 subpopulation by flow 
cytometry.
Results  High infiltration of intratumoral TIGIT+ CD8+ 
T-cells predicted poor overall survival (OS) and recurrence-
free survival (RFS) in MIBC. For patients with stage II 
MIBC with low infiltration of TIGIT+ CD8+ cells, adjuvant 
chemotherapy (ACT) could significantly prolong their OS 
and RFS. Intratumoral TIGIT+ CD8+ T-cell abundance was 
correlated with impaired CD8+ T-cell cytotoxicity and 
exhibited production of immunosuppressive cytokine 
IL-10. Further analysis of tumor-infiltrating immune cell 
landscape revealed TIGIT+ CD8+ T-cells were associated 
with suppressive immune contexture, including Th2 cells, 
regulatory T-cells, mast cells and neutrophils.
Conclusion  Intratumoral TIGIT+ CD8+ T-cell abundance 
could serve as an independent prognosticator for 
clinical outcome and a predictive biomarker for inferior 
ACT responsiveness. Intratumoral TIGIT+ CD8+ T-cell 
abundance correlated with dampened CD8+ T-cell 
antitumor immunity and immunosuppressive contexture 
abundance, highlighting a tumor-promoting role of TIGIT+ 
CD8+ T-cells.

INTRODUCTION
Bladder cancer, a complex disease associated 
with high morbidity and mortality rates, is the 
ninth most common malignant disease world-
wide.1 Approximately 25% of patients are 

diagnosed as muscle-invasive bladder cancer 
(MIBC), an advanced urothelial tumor with 
inferior prognosis.2 For these patients, the 
systemic cisplatin-based chemotherapy offers 
the chance to cure but still lacks enough 
evidence.3 4 Immune checkpoint inhibitors 
(ICIs) targeting program death-1 (PD-1)/
program death-ligand 1 (PD-L1) axis and 
cytotoxic T lymphocyte-associated antigen-4 
(CTLA-4) are emerging as a viable salvage 
treatment for patients in whom chemo-
therapy cannot control the disease, while 
the response rates are relatively low (21%).5 
Hence, biomarkers for predicting patient 
survival outcomes and efficacy of chemo-
therapy and ICIs are being pursued.

As we have previously reported, tumor-
infiltrating immune cells, including regula-
tory T-cells (Tregs), macrophages, mast cells 
and B cells, could affect the balance between 
antitumor immunity and immune evasion in 
MIBC.6–9 CD8+ T-cells, as the main effector 
immune cells, are critical to tumor initiation 
and progression and play a significant role 
in antitumor effect.10 However, CD8+ T-cells 
can be shifted from the effector state to the 
dysfunction state.11 Increasing studies have 
reported that intratumoral CD8+ T-cells are a 
highly heterogeneous population.12 A more 
precise identification of CD8+ T-cell subtypes 
is necessary for predicting disease progres-
sion and understanding the intrinsic anti-
tumor mechanism in patients with MIBC.

T-cell immunoglobulin and ITIM domain 
(TIGIT), also known as Vstm3 and VSIG9, 
is a novel coinhibitory receptor.13 Within 
the tumor microenvironment, TIGIT that is 
mainly expressed on NK cells, CD8+ T-cells, 
and Tregs can facilitate immune evasion in 
acute myeloid leukemia, colon cancer and 

http://bmjopen.bmj.com/
http://orcid.org/0000-0003-3494-3114
http://dx.doi.org/10.1136/jitc-2020-000978
http://dx.doi.org/10.1136/jitc-2020-000978
http://crossmark.crossref.org/dialog/?doi=10.1136/jitc-2020-000978&domain=pdf&date_stamp=2020-08-14


2 Liu Z, et al. J Immunother Cancer 2020;8:e000978. doi:10.1136/jitc-2020-000978

Open access�

melanoma.14–17 TIGIT inhibits immune responses medi-
ated by T-cells and NK cells through triggering CD155 
on dendritic cells (DCs) or tumor cells.13 Currently, 
several studies have paid close attention to the role of 
targeting TIGIT in antitumor immunity and facilitate 
the development of anti-TIGIT monoclonal antibodies 
(mAbs).18 Preclinical models indicated that anti-TIGITs 
have demonstrated synergy with anti-PD-1/PD-L1 treat-
ment.19 Previous studies have shown that a CD8+ T-cell 
subset expressing high levels of TIGIT infiltrated into 
multiple myeloma and glioblastoma multiforme, in which 
the TIGIT blockade strategies rapidly enhance the CD8+ 
T-cell-mediated immune response.20 21 However, the 
TIGIT+ CD8+ T-cell subset is poorly explored in MIBC, 
and the clinical significance of this subset still remains 
ambiguous.

In this study, we evaluated that intratumoral TIGIT+ 
CD8+ T-cells could be applied as a prognosticator and a 
predictive biomarker for adjuvant cisplatin-based chemo-
therapy with the retrospective analysis of 259 patients with 
MIBC from two independent clinical centers. Further-
more, we discovered an immunosuppressive contexture 
infiltration with TIGIT+ CD8+ T-cell abundance. This 
work is the first exploration of the comprehensive clinical 
value of TIGIT+ CD8+ T-cells in MIBC.

MATERIALS AND METHODS
Study cohort
This study enrolled two independent patient cohorts, 
including 393 patients with bladder cancer who were 
treated with radical cystectomy (RC) at Zhongshan 
Hospital of Fudan University from 2008 to 2012 (ZSHS 
cohort, n=215) and Fudan University Shanghai Cancer 
Center from 2002 to 2014 (FUSCC cohort, n=178). A total 
of 132 patients were excluded: 95 patients without MIBC, 
19 patients without urothelial carcinoma, and 18 patients 
with unavailabe clinical or follow-up data. Because of 
the immunohistochemistry (IHC) detachment, a spec-
imen was lost on the TMA in each cohort. Therefore, 259 
eligible patients with MIBC were included (ZSHS cohort, 
n=141; FUSCC cohort, n=118). There were 119 patients 
of the two cohorts who received adjuvant cisplatin-based 
chemotherapy and lasted at least one therapeutic cycle. 
Patients received follow-up every 3 months in the first year, 
every 6 months for 2 years and once per year afterwards, 
which included clinical history, physical examination and 
laboratory test. All follow-up data were collected until July 
2016. The overall survival (OS) and the recurrence-free 
survival (RFS) were defined the time from the date of RC 
to the date of death and the first recurrence, or to the last 
follow-up.

Immunohistochemistry
IHC staining was performed on formalin-fixed, paraffin-
embedded tissue microarray (TMA) as described 
previously.22 The IHC antibodies are listed in online 
supplementary table 1. In brief, the slides were baked at 

60°C for 6 hours, deparaffinized in xylene (three times, 
15 min each) and rehydrated in graded alcohol. Next, 
the slides were immersed in sodium citrate buffer (0.01 
M sodium citrate buffer, pH=6) for antigen retrieval and 
then blocked with 3% H2O2 in methanol at 37°C for 
30 min. For single IHC staining, the slides were incubated 
with the primary antibodies at 4°C overnight and visual-
ized by 3,3′-diaminobenzidine (DAB) stain system. For 
double IHC staining, after being processed as the same of 
single IHC DAB staining, the slides were incubated with 
the second primary antibodies at 4°C for 2 hours, and 
then Vector Blue AP Substrate Kit (Vector Laboratories) 
was applied. All TMA slides were evaluated under Leica 
DM6000 B Microsystems by PZ and LC independently, 
who were blinded to clinical data. The positive cells were 
enumerated from the representative view of the three 
sections in high-power field (HPF, ×200 magnification), 
and the mean value was adopted. The cut-off value was 
determined by X-tile V.3.6.1 (Yale University). For CD8+ 
T-cells, the cut-off value was 34 cells/HPF. For TIGIT+ 
CD8+ cells, the cut-off value was 8 cells/HPF.

Flow cytometry
Fresh samples, including tumor tissues (n=26) and peri-
tumor tissues (n=13), were collected from five different 
clinical centers (Zhongshan Hospital of Fudan Univer-
sity, Fudan University Shanghai Cancer Center, Ruijin 
Hospital, Shanghai General Hospital and Shanghai Ninth 
People’s Hospital). The peritumor tissues are obtained 
from an area of ≥2 cm from the tumor margin.

Single-cell suspension was performed as described.23 
Then samples were stained with the indicated mAbs 
for 30 min at 4°C after lysing red blood cells. Cells were 
stimulated for 5 hours with phorbol myristate acetate 
(50 ng/mL) and ionomycin (1 µg/mL) in the presence 
of GolgiStop protein transport inhibitor (1:1000) for 
intracellular cytokine measurement. Cells were stained 
with interested surface markers, and Fixation/Perme-
abilization Solution Kit (BD Biosciences) was used for 
intracellular protein staining according to the manufac-
turer’s instructions. Stained cells were washed and resus-
pended in phosphate-buffered saline/0.1% bovine serum 
albumin coupled with azide. Flow cytometry data were 
analyzed by FlowJo software (Tree Star, San Carlos, Cali-
fornia, USA). All flow cytometry antibodies are listed in 
online supplementary table 2.

Statistical analysis
Descriptive statistics was used to summarize patients’ base-
line characteristics and disease factors. Results are shown 
as mean±SD, and Mann-Whiney U test, Wilcoxon signed-
rank test, χ2 test and Spearman correlation analysis were 
used in this study. OS and RFS were determined by the 
Kaplan-Meier method, which was evaluated by log-rank 
tests. Multivariate analyses of the Cox regression model 
were applied to estimate HRs and 95% CIs. A two-tailed 
p value of <0.05 was considered statistically significant in 
our study. All statistical analyses were conducted using 
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IBM SPSS Statistics V.25.0, R V.3.5.1, GraphPad Prism 
Software V.8.0 and MedCalc V.15.

RESULTS
Residency of intratumoral TIGIT+ CD8+ T-cells correlates with 
disease progression in MIBC
The residency of TIGIT+ CD8+ T-cells in MIBC was iden-
tified through double IHC staining and flow cytometry 
(figure  1A,B and online supplementary figure 1). The 
patient characteristics are listed in online supplementary 
table 3. We found the proportion of patients with high 
TIGIT+ CD8+ T-cell infiltration expanded with progres-
sion of pathology Tumor (pT) or pathology Node (pN) 
stage (figure  1C). Moreover, the infiltration of TIGIT+ 
CD8+ T-cells, as well as the proportion of TIGIT+ CD8+ 
T-cell among CD8+ T-cells, was positively associated with 
the increased tumor stages (figure 1D and online supple-
mentary figure 2). Furthermore, compared with peri-
tumor tissues, we found that TIGIT+ CD8+ T-cells were 
dramatically more infiltrated in matched tumor tissues 
(figure  1E). In conclusion, these results confirmed the 
existence of TIGIT+ CD8+ T-cells in MIBC and indicated 
that intratumoral TIGIT+ CD8+ T-cells were correlated 
with MIBC progression.

Intratumoral TIGIT+ CD8+ T-cells act as a prognosticator for 
survival outcome in MIBC
The prognostic ability of TIGIT+ CD8+ T-cells was 
next explored. We found that CD8+ T-cell infiltration 
could prolong the OS of patients with MIBC both in 
the ZSHS cohort and the FUSCC cohort (p=0.023 and 
p=0.007, figure  2A). However, the RFS showed no 
difference with CD8+ T-cell strata (p=0.859 and 
p=0.142, figure  2B). Interestingly, the TIGIT+ CD8+ 
cells high infiltration group possessed inferior OS and 
RFS than the TIGIT+ CD8+ cells low infiltration group 
in both cohorts (OS: p=0.010 and p=0.013, figure 2C; 
RFS: p=0.009 and p=0.047, figure  2D), which was 
entirely contrary to the prognosis of CD8+ T-cell infil-
tration. Additionally, multivariate Cox regression anal-
ysis showed that TIGIT+ CD8+ T-cell infiltration was 
an independent prognostic factor for patients with 
MIBC after adjustment for age, gender, grade, lympho-
vascular invasion, adjuvant chemotherapy (ACT), 
pathological T/N stage and CD8+ T-cell infiltration as 
confounders (online supplementary table 4). There-
fore, TIGIT+ CD8+ T-cells proved to be an independent 
unfavorable factor to predict survival and recurrence 
in patients with MIBC.

Figure 1  Intratumoral TIGIT+ CD8+ T-cells accumulate in MIBC and correlate with tumor progression. (A) Double 
immunohistochemistry staining for TIGIT (blue) and CD8 (brown) in MIBC tissues. Black arrowheads indicate TIGIT+ CD8+ T-
cells. (B) Comparison of TIGIT+ CD8+ T-cell infiltration in tumor and peritumor tissues of patients with MIBC. (C) Proportion of 
patients with high/low TIGIT+ CD8+ T-cell infiltration in pT stage and pN stage. (D) Association of TIGIT+ CD8+ T-cell infiltration 
with pT stage and pN stage. (E) Comparison of TIGIT+ CD8+ T-cells among CD45+ cells in tumor and peritumor tissues of 
patients with MIBC. *P<0.05, **P<0.01, ***P<0.001 by χ2 test, Mann-Whitney U test and paired t-test. pT, pathology Tumor; pN, 
pathology Node; MIBC, muscle-invasive bladder cancer; TIGIT, T-cell immunoglobulin and ITIM domain.
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Intratumoral TIGIT+ CD8+ T-cells could predict ACT 
effectiveness within patients with stage II MIBC
ACT has been widely used in the treatment for patients 
with MIBC with pT3/4 or pN+ disease.24 Thus, we eval-
uated whether intratumoral TIGIT+ CD8+ T-cell abun-
dance was associated with ACT responsiveness. Both 
cohorts were combined for further investigation. In 
all patients or patients with stage III MIBC, intratu-
moral TIGIT+ CD8+ T-cell infiltration failed to predict 
ACT responsiveness (online supplementary figure 3). 
No evidence suggested that ACT could improve OS 
or RFS in patients with stage II MIBC (OS: p=0.087, 
RFS: p=0.128; figure  3A,D). CD8+ T-cells still failed 
to predict ACT effectiveness in patients with stage II 
MIBC (online supplementary figure 4). However, after 
dividing patients into TIGIT+ CD8+ T-cells high and low 
infiltration subgroups, we found that ACT successfully 
prolonged both OS and RFS in patients with low TIGIT+ 
CD8+ T-cell infiltration (OS: p=0.043, RFS: p=0.013; 
figure  3C,F), while no survival benefit was observed 
in patients with high TIGIT+ CD8+ T-cell infiltration 
(OS: p=0.261, RFS: p=0.769; figure 3B,F). In addition, 
univariate Cox regression analysis was performed to 
assess the relationship between TIGIT+ CD8+ T-cell infil-
tration and ACT benefit, which suggested that patients 
with stage II MIBC with TIGIT+ CD8+ T-cells low infil-
tration could receive more benefit from ACT (OS: HR, 
0.340, 95% CI, 0.114 to 0.950, p=0.049; RFS: HR, 0.239, 
95% CI, 0.070 to 0.817, p=0.022; online supplementary 
table 5). Herein, these results suggested that TIGIT+ 

CD8+ T-cells high abundance predicted suboptimal 
ACT responsiveness within patients with stage II MIBC. 
Patients with low TIGIT+ CD8+ T-cell infiltration could 
benefit more from ACT.

Intratumoral TIGIT+ CD8+ T-cell abundance impairs CD8+ 
T-cell antitumor immunity in patients with MIBC
Coinhibitory receptors, also known as immune check-
points, are often coexpressed on dysfunctional CD8+ 
T-cells.25 Compared with TIGIT- CD8+ T-cells, TIGIT+ 
CD8+ T-cells expressed higher levels of immune check-
points, including PD-1, CTLA-4, Lag-3 and Tim-3 (online 
supplementary figure 5A). Meanwhile, TIGIT+ CD8+ 
T-cells had a higher level of proliferative marker (Ki-67), 
effector markers (interferon (IFN)-γ, tumor necrosis 
factor (TNF)-α and interleukin (IL)-2) and cytolytic 
marker (CD107a) compared with their TIGIT− coun-
terparts (online supplementary figure 5B–D), which 
inferred that TIGIT+ CD8+ T-cells could be closely related 
to a terminally exhausted CD8+ T-cell phenotypes as previ-
ously reported.26

The global characterization of CD8+ T-cells was subse-
quently investigated according to TIGIT+ CD8+ T-cell 
abundance. We found that CD8+ T-cells in TIGIT+ CD8+ 
T-cells high infiltration tumors expressed increased 
immune checkpoints, including PD-1, CTLA-4 and Lag-3 
(figure  4A) while exhibiting more proliferative ability 
(Ki-67) than their counterparts in TIGIT+ CD8+ T-cells low 
infiltration tumors (figure 4B). Additionally, the effector 
cytokines (IFN-γ and TNF-α) and cytotoxicity activation 

Figure 2  Intratumoral TIGIT+ CD8+ T-cell infiltration yields poor prognosis in muscle-invasive bladder cancer. (A,B) Kaplan-
Meier curves for OS (A) and RFS (B) according to high/low CD8+ T-cell infiltration in the ZSHS cohort (n=141) and the FUSCC 
cohort (n=118). (C,D) Kaplan-Meier curves for OS (C) and RFS (D) according to high/low TIGIT+ CD8+ T-cell infiltration in the 
ZSHS cohort (n=141) and the FUSCC cohort (n=118). Log-rank test was performed for Kaplan-Meier curves. FUSCC, patients 
with bladder cancer who were treated with radical cystectomy at Fudan University Shanghai Cancer Center from 2002 to 2014; 
OS, overall survival; RFS, recurrence-free survival; TIGIT, T-cell immunoglobulin and ITIM domain; ZSHS, patients with bladder 
cancer who were treated with radical cystectomy at Zhongshan Hospital of Fudan University from 2008 to 2012.

https://dx.doi.org/10.1136/jitc-2020-000978
https://dx.doi.org/10.1136/jitc-2020-000978
https://dx.doi.org/10.1136/jitc-2020-000978
https://dx.doi.org/10.1136/jitc-2020-000978
https://dx.doi.org/10.1136/jitc-2020-000978
https://dx.doi.org/10.1136/jitc-2020-000978
https://dx.doi.org/10.1136/jitc-2020-000978


5Liu Z, et al. J Immunother Cancer 2020;8:e000978. doi:10.1136/jitc-2020-000978

Open access

molecules (granzyme B (GZMB)) expressed by CD8+ 
T-cells were decreased in TIGIT+ CD8+ T-cells high infil-
tration tumors (figure 4C,D). These results indicated that 
high TIGIT+ CD8+ T-cells were associated with impaired 
CD8+ T-cell antitumor immunity. In addition to CD8+ 
T-cells, CD45+ T-cells in TIGIT+ CD8+ T-cells high infiltra-
tion tumors expressed increased immune checkpoints, 
including PD-1, CTLA-4 and Tim-3, while the percentage 
of CD45+ T-cells expressing effector cytokines (IFN-γ and 
TNF-α) decreased in TIGIT+ CD8+ T-cells high infiltra-
tion tumors. (online supplementary figure 6). Interest-
ingly, we found that TIGIT+ CD8+ T-cells could produce 
immunosuppressive cytokine IL-10 (online supplemen-
tary figure 5E). TIGIT+ CD8+ T-cell infiltration was also 
found positively associated with intratumoral IL-10+ CD8+ 
T-cells and IL-10 expression in the tumor microenviron-
ment (figure  4E,F). These results preliminarily verified 
our conjecture that intratumoral TIGIT+ CD8+ T-cell 
abundance may contribute to immune suppression and 
dampen CD8+ T-cell immune response in MIBC.

Intratumoral TIGIT+ CD8+ T-cell abundance contributes to 
immunosuppressive contexture in patients with MIBC
Next, the association between immune contexture and 
TIGIT+ CD8+ T-cell abundance was explored in MIBC. 
Eleven types of immune cells were evaluated inthe ZSHS 
cohort (figure  5A, n=141). The representative images 
of immune cells are illustrated in online supplementary 
figure 7. TIGIT+ CD8+ T-cell infiltration was positively 

correlated with protumor Th2 cells (Spearman r=0.317, 
p<0.001), Tregs (Spearman r=0.309, p<0.001), mast cells 
(Spearman r=0.334, p<0.001), neutrophils (Spearman 
r=0.178, p=0.035) infiltration and antitumor NK cells 
(Spearman r=0.183, p=0.029), and M1 macrophages 
(Spearman r=0.251, p=0.003) infiltration (figure  5B,C). 
These data indicated that intratumoral TIGIT+ CD8+ 
T-cell abundance indicated tumor-promoting immune 
microenvironment in MIBC.

DISCUSSION
Currently, CD8+ T-cells were regarded as a protec-
tive factor in various solid tumors, including bladder 
cancer.27 28 However, CD8+ T-cells remain heterogeneous, 
and several subtypes of intratumoral CD8+ T-cells are 
associated with poor clinical outcomes.29 TIGIT, a novel 
coinhibitory receptor, can promote tumor growth and 
drive the exhaustion of tumor-infiltrating lymphocytes, 
including CD8+ T-cells in multiple cancer types.14 15 20 In 
this study, we reported that intratumoral TIGIT+ CD8+ 
T-cell abundance was positively correlated with tumor 
development and enriched in MIBC tissues. Contrary to 
CD8+ T-cells in MIBC, TIGIT+ CD8+ T-cells were identified 
as an adverse prognosticator through the retrospective 
analysis of a considerable population.

The application of ACT is supported by recent data 
while still lacking enough evidence.4 It is showed that 
a tumor immune microenvironment may influence the 

Figure 3  Intratumoral TIGIT+ CD8+ T-cell infiltration predicts suboptimum responsiveness to ACT in patients with stage II 
MIBC. (A–C) Kaplan-Meier curves for overall survival with ACT application strata in patients with stage II MIBC (A), TIGIT+ CD8+ 
T-cells high subgroup (B) and TIGIT+ CD8+ T-cells low subgroup (C). (D–F) Kaplan-Meier curves for recurrence-free survival 
with ACT application strata in patients with stage II MIBC (D), TIGIT+ CD8+ T-cells high subgroup (E) and TIGIT+ CD8+ T-cells 
low subgroup (F). Log-rank test was performed for Kaplan-Meier curves. ACT, adjuvant chemotherapy; MIBC, muscle-invasive 
bladder cancer; TIGIT, T-cell immunoglobulin and ITIM domain.
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chemotherapeutic efficacy.30 Our previous studies have 
uncovered the contribution of certain immune contex-
ture to ACT resistance, including tumor-infiltrating 
masT-cells, neutrophils, B cells and an immunotype 
A/B classification.6–9 Though no association was found 
between CD8+ T-cell infiltration and ACT beneficial, 
TIGIT+ CD8+ T-cell abundance could predict a subop-
timal ACT responsiveness, which further exhibited the 
potential heterogeneity of intratumoral CD8+ T-cells. 
The identification of certain CD8+ T-cell subpopula-
tion could assist in guiding adjuvant therapy. Of note, 
the usage of ACT was not randomized; there could be 
possible bias introduced by comparing those groups. 
The confounders could be the tumour, node, metastasis 

stage of the patients and other possible factors. Through 
adjusting these confounders, we found that intratu-
moral TIGIT+ CD8+ T-cell infiltration failed to predict 
ACT responsiveness in all patients or patients with stage 
III MIBC. However, in patients with stage II MIBC, ACT 
successfully prolonged both OS and RFS in patients 
with low TIGIT+ CD8+ T-cell infiltration. We would 
further validate our findings in a prospective, larger, 
multicentered randomized trial in the future.

The expression of TIGIT on NK cells and Tregs 
often relates to cytotoxicity inhibition and enhanced 
suppressive function.16 17 Present findings revealed that 
TIGIT expressed on CD8+ T-cells downregulated T-cell 
cytotoxicity and activation,31 supporting our results 

Figure 4  Intratumoral TIGIT+ CD8+ T-cell infiltration impairs CD8+ T-cell antitumor immunity in patients with muscle-invasive 
bladder cancer. (A) Expression of coinhibitory receptors (PD-1, n=24; CTLA-4, n=16; Tim-3, n=14; Lag-3, n=17) on CD8+ T-
cells in TIGIT+ CD8+ T-cells high/low infiltration group. (B) Expression of proliferation marker (Ki-67, n=16) on CD8+ T-cells in 
TIGIT+ CD8+ T-cells high/low infiltration group. (C) Expression of effector cytokines (IFN-γ, n=23; TNF-α, n=23; IL-2, n=19) 
on CD8+ T-cells in TIGIT+ CD8+ T-cells high/low infiltration group. (D) Expression of cytotoxicity activation molecules (GZMB, 
n=19; CD107a, n=18; PRF-1, n=8) on CD8+ T-cells in TIGIT+ CD8+ T-cells high/low infiltration group. (E) Correlation between 
TIGIT+ CD8+ T-cells among CD45+ cells and IL-10+ CD8+ T-cells among CD45+ cells based on the results of flow cytometry. (F) 
Correlation between TIGIT+ CD8+ T-cells and IL-10+ cells based on the evaluation of immunohistochemistry staining. *P<0.05, 
**P<0.01 by Mann-Whitney U test. PD-1, program death-1; CTLA-4, cytotoxic T lymphocyte-associated antigen-4; IFN, 
interferon; IL, interleukin; GZMB, granzyme B; ns, no significance; TIGIT, T-cell immunoglobulin and ITIM domain.
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that TIGIT+ CD8+ cell abundance impaired CD8+ T-cell 
antitumor immunity. Additionally, TIGIT+ CD8+ T-cells 
were associated with suppressive immune contexture, 
including Th2 cells, Tregs, mast cells and neutro-
phils,32 of which mast cells and neutrophils infiltrating 
into MIBC were identified as protumor immunocytes 
in our previous studies.7 9 A confusing point was that 
TIGIT+ CD8+ T-cells were positively correlated with M1 
macrophages. One possible explanation could be that 
the elevated M1 macrophages triggered an antitumor 
immunity. In order to escape the antitumor immunity, 
the tumor microenvironment upregulated the expres-
sion of TIGIT on CD8+ T-cells. It is showed that TIGIT 
is highly expressed on NK cells,13 which might be the 
cause of the positive correlation between TIGIT+ CD8+ 
T-cells and NK cells. Early studies revealed that TIGIT 
could exert immunoregulatory function through 
multiple mechanisms, including promoting IL-10 by 
Tregs and dendritic cells,17 33 suppressing the activity 
of its costimulatory counterpart CD22634 or directly 
inhibiting the intrinsic recruitment of Src homology 
domain containing tyrosine phosphatase (SHP).35 
Interestingly, we found that TIGIT+ CD8+ T-cells have 
the capacity for IL-10 production, which could be 
one explanation for the CD8+ T-cell dysfunction and 
immunoevasive microenvironment in tumors with high 
TIGIT+ CD8+ T-cell infiltration. Although there were 
limited reports about IL-10 producing CD8+ T-cells in 

the tumor immune microenvironment, specific CD8+ 
T-cells producing IL-10 on antigen recognition could 
be observed in chronic infection like hepatitis B virus 
(HBV) and human T-cell lymphotropic virus type 
1 (HTLV-I).36 37 The intrinsic mechanism of TIGIT 
shaping the dysfunction state of CD8+ T-cells needs 
further investigation.

Intriguingly, the phenotype of TIGIT+ CD8+ T-cells 
presented a high level expression of both immune check-
points and effector molecules, which were identified as 
terminally exhausted CD8+ T-cells with cytotoxicity but 
short-lived in tumor immunity.26 Thus, these subpop-
ulations presented inferior tumor control compared 
with the poorly cytotoxic but long-survived counterpart 
(progenitor exhausted CD8+ T-cells). Immune check-
point blockade therapy, such as nivolumab (anti-PD-1) 
and atezolizumab (anti-PD-L1), presented a confirmed 
but relatively low response rate on advanced cancer of 
urinary bladder (19.6% and 13.4%).38 39 It is reported 
that PD-1 blockade shows no act on terminally exhausted 
CD8+ T-cells.26 Therefore, the existence of TIGIT+ CD8+ 
T-cells in MIBC may be one explanation for the low 
response rate of anti-PD-1 therapy. On the other hand, 
whether TIGIT+ CD8+ T-cells could predict traditional 
immune checkpoint blockade efficacy should be inves-
tigated. Moreover, the combination of anti-PD-1 and 
anti-TIGIT presented a considerable efficacy in glioblas-
toma multiforme.21 The immunotherapeutic potential 

Figure 5  Intratumoral TIGIT+ CD8+ T-cell infiltration shapes immunosuppressive contexture in patients with muscle-invasive 
bladder cancer. (A) Heatmap displaying scaled expression of various immune cell types between high/low percentage of TIGIT+ 
CD8+ T-cells. (B,C) Correlation between TIGIT+ CD8+ T-cell infiltration and CD8+ T-cells, CD4+ T-cells, Th1 cells, Th2 cells, 
regulatory T-cells, natural killer cells, M1 macrophages, M2 macrophages, mast cells and neutrophil infiltration based on the 
evaluation of immunohistochemistry staining. P<0.05 by Spearman rank correlation test. TIGIT, T-cell immunoglobulin and ITIM 
domain.
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of TIGIT and the synergistic effect of double immune 
checkpoint blockade in MIBC are worthy of further study.

CONCLUSION
In summary, the current investigation identified intra-
tumoral TIGIT+ CD8+ T-cell abundance as an adverse 
prognostic factor for clinical outcome and a predictive 
biomarker for suboptimal ACT responsiveness in MIBC. 
Furthermore, intratumoral TIGIT+ CD8+ T-cell abun-
dance correlated with impaired CD8+ T-cell antitumor 
immunity and shaped immunosuppressive contexture, 
highlighting its tumorgenic role. These findings indi-
cated that TIGIT might be a potential immunothera-
peutic target in MIBC.
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