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Abstract: Cooling centers have played a significant role in reducing the risks of adverse health
impacts of extreme heat exposure. However, there have been no comparative studies investigating
cooling center preparedness in terms of population coverage, location efficiency, and population
coverage disparities among different subpopulation groups. Using a catchment area method with a
0.8 km walking distance, we compared three aspects of cooling center preparedness across twenty-
five cities in the U.S. We first calculated the percentage of the population covered by a single cooling
center for each city. Then, the extracted values were separately compared to the city’s heat indexes,
latitudes, and spatial patterns of cooling centers. Finally, we investigated population coverage dis-
parities among multiple demographics (age, race/ethnicity) and socioeconomic (insurance, poverty)
subpopulation groups by comparing the percentage of population coverage between selected sub-
population groups and reference subpopulation groups. Our results showed that cooler cities, higher
latitude cities, and cities with dispersed cooling centers tend to be more prepared than warmer cities,
lower latitude cities, and cities with clustered cooling centers across the U.S. Moreover, older people
(≥65) had 9% lower population coverage than younger people (≤64). Our results suggest that the
placement of future cooling centers should consider both the location of other nearby cooling centers
and the spatial distribution of subpopulations to maximize population coverage and reduce access
disparities among several subpopulations.

Keywords: cooling center; preparedness; heat waves; extreme heat; population coverage; subpopula-
tion groups; disparity

1. Introduction

Multiple studies have projected more intense, more frequent, and longer-lasting
heat waves in the future [1–3]. Enhanced and elongated heat waves will likely increase
future mortality and morbidity from cardiovascular, respiratory, heat-related, and renal
diseases [4–6]. However, most heat-related health outcomes are preventable. McGinnis
and Foege [7] and Mokdad et al. [8] showed that more than 50% of all deaths could be
prevented through behavior change alone.

Air conditioning may be the most effective way to prevent heat-related illnesses [9].
Bouchama et al.’s [10] meta-analysis indicates that individuals with home air conditioning
units and those who visit other air-conditioned places have a 77% and 66% lower likelihood
of heat-related mortality than their counterparts, respectively. Despite the protective
effects of residential air conditioning, it is often unaffordable due to high implementation,
maintenance, and running costs [11]. According to the U.S. Census Bureau’s American
Housing Survey (AHS) conducted in 2019, approximately 28.6% of housing units in the
U.S. did not have any type of air conditioning. Several subpopulations, who are already
disproportionately affected by heat waves due to limited financial and social resources, are
more likely to lack air conditioning units [12–14]. For instance, the same survey showed
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that the percentage of Black and Hispanic households with central air conditioning were
lower than those of White and non-Hispanic households (White: 72.2%, Black: 70.6%,
non-Hispanic: 72.4%, Hispanic: 65.1%). Some are also unable to use low-cost cooling
devices such as electric fans due to energy costs [12]. For this reason, previous studies
have highlighted the importance of public cooling spaces over private residential air
conditioning [12,15].

Many state and federal governments are preparing their adaptation plans (e.g., CDC’s
building resilience against climate effect program) to mitigate the impact of heat waves
based on a heat vulnerability index and early warning systems. Cooling centers would be
the integral part of the heat adaptation strategy and warning system [16]. Generally, cooling
centers are implemented and operated by a variety of stakeholders including municipalities,
fire departments, county agencies, and non-profit organizations, using existing facilities or
buildings such as community centers, senior centers, and libraries [17]. Although these
facilities help to reduce negative impacts on human health, the locations of cooling centers
are not always optimized to maximize access [9]. Furthermore, the locations do not consider
the spatial distribution of different demographic and socioeconomic subpopulation groups.
Given that each subpopulation group has a different level of adaptive capacity, it would
be beneficial to take into account different subpopulation groups when developing a
city-specific strategic allocation of cooling centers [15].

Several studies have focused on the optimal location of cooling centers [9,15]. To
measure the accessibility or population coverage of cooling centers, two methods have
been commonly used: a catchment area method [18] and a shortest path approach [17].
The former approach measures the level of access by counting the number of people within
a given catchment area defined by a certain distance or time. This approach assumes that
anyone within a catchment area can have an equal level of access to a facility. In other
words, there is no differentiation of proximity within the catchment area [19]. The latter
approach estimates the level of accessibility using a given time or distance from the demand
location (e.g., cooling center users) to the nearest facility (e.g., cooling centers), assuming
that access to one facility is sufficient [20]. Since we consider the number of people who
can walk to a cooling center within a given time or distance, the catchment area method is
a better measure to evaluate cooling centers’ population coverage level than the shortest
path approach.

Some studies have also investigated disparities in access to cooling centers faced
by multiple subpopulation groups, rooted in differences in adaptive capacity among
groups [17,21,22]. Voelkel et al. [22] reported that Black people have better access to
public cooling centers, whereas older adults ≥ 65 years have less access in Portland, OR.
Nayak et al. [17] also found that more vulnerable census tracts have better accessibility
compared to less vulnerable census tracts using a heat vulnerability index covering multiple
demographic (age, nativity, race, ethnicity) and socioeconomic variables (employment,
language, income, housing, and environmental characteristics).

Regional characteristics such as location (i.e., latitude), heat index, and spatial patterns
of cooling centers may partially influence the level of cooling center preparedness. Previous
studies suggested that the cities at high latitudes are less prepared for extreme heat than
the cities at low latitudes in terms of physiological and technological adaptations [23–25].
Multiple studies documented high mortality and morbidity rates in high latitude cities as a
result of heat exposure as well [24–26]. In addition, some studies indicated that a dispersed
distribution of facilities may provide more efficient population coverage than a clustered
distribution [27,28].

To the best of our knowledge, there is no comparative study examining inter-city
cooling center preparedness. The present study compares three aspects of cooling center
preparedness: population coverage, location efficiency, and population coverage disparities
among multiple subpopulations in twenty-five U.S. cities. The study has three main
objectives. First, we compare population coverage levels across twenty-five cities by
calculating the percentage of the city population covered by a single cooling center of
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each city. Second, we investigate the relationship between population coverage level and
regional characteristics (i.e., latitude, HI, spatial patterns of cooling centers). Third, we
examine disparities in the level of population coverage among five demographic and
socioeconomic subpopulation groups.

2. Data and Methodology

This study analyzed data from twenty-five cities that have more than 300,000 people
and provide official cooling center locations through their government websites or geo-
graphic information system portals in the U.S. (Figure 1): Albuquerque, NM; Baltimore,
MD; Chicago, IL; Columbus, OH; Dallas, TX; Detroit, MI; Fresno, CA; Kansas City, MO;
Long Beach, CA; Louisville, KY; Memphis, TN; Mesa, AZ; Milwaukee, WI; Minneapolis,
MN; Nashville, TN; Oakland, CA; Philadelphia, PA; Phoenix, AZ; Portland, OR; Riverside,
CA; St. Louis, MO; San Antonio, TX; San Jose, CA; Stockton, CA; Washington, DC.
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(>300,000).

2.1. Data
2.1.1. Cooling Center

Cooling centers are air-conditioned facilities or buildings, such as libraries, commu-
nity centers, and senior centers, which are designed to provide people with food, drink,
and medical services during hot summer days [16,17]. To maintain consistency across
cities, we only included cooling centers listed as cooling shelters, libraries, community
centers, and senior centers, and excluded other private facilities such as supermarkets and
theaters. We collected the locations of cooling centers from two official data sources: (1)
city government’s websites and (2) government geographic information system portals.
More detailed information on data sources and the location of cooling centers can be found
in Table S1 and Figure S1.

2.1.2. Weather

Monthly level Parameter-elevation Regressions on Independent Slopes Model (PRISM)
data were used to calculate the 30-year daily average maximum HI of study areas. PRISM
data were developed to interpolate climate data in physiographically complex landscapes
based on 12,937 stations for precipitation, 9783 for maximum temperature, and 9871 for
minimum temperature [29]. The data provide spatially and temporally consistent 800 m
resolution weather data for the continental U.S. from 1895 to the present, using climate-
elevation regression and station weighting functions. We used each city’s centroid to
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extract daily maximum temperature and relative humidity from May through September
for 30 years (1990 to 2019). We then calculated the daily average maximum HI using
Equation (1) [30]. We converted the unit of HI from Fahrenheit to Celsius using Equation (2).

HI (◦F) = −42.379 + 2.049015T + 10.143331R − 0.224755TR − 6.83783 × 10−3T2 − 5.481717 × 10−2R2

+ 1.22874 × 10−3T2R + 8.5282 × 10−4TR2 − 1.99 × 10−6T2R2,
(1)

◦C = 5/9 × (◦F − 32), (2)

where T is air temperature (◦F) and R is relative humidity (%). F stands for Fahrenheit, and
C stands for Celsius.

2.1.3. Road Network

Road network data were obtained through the OSMnx package in Python [31]. The
package provides various types of road networks by mode of transportation (e.g., car, bike,
walk), extracted from the OpenStreetMap. Multiple studies have used this package to
attain, analyze, and visualize complex transport-related variables (e.g., speed, travel time,
distance) [32–34]. The present study downloaded administrative boundaries and walkable
roads for all twenty-five cities. The downloaded street network data were then combined
with the cooling center location data to calculate the areas within a given walking distance
(i.e., 0.8 km).

2.1.4. Demographic and Socioeconomic Subpopulations

The U.S. Census Bureau American Community Survey (ACS) 2015–2019 5-year esti-
mates provide demographic and socioeconomic data at the census block group level. The
main purpose of the ACS is to measure the annual change in a community’s demographic
and socioeconomic characteristics of the U.S. population [35], supplying a wide range of
demographic (e.g., age, sex, race/ethnicity) and socioeconomic variables (e.g., income,
employment, education, housing). Based on previous research, we selected five of the most
important demographic and socioeconomic characteristics associated with heat-related
human health: age, race, ethnicity, income, and health insurance status [36–43]. Note that
the list of the characteristics used in the analysis is not intended to be exhaustive, but rather
representative of the main factors known to or suspected to be highly related to the impact
of heat waves.

Some demographic factors are highly associated with an individual’s ability to adapt
to extreme heat exposure. Previous studies have shown that people over 65 years are
more vulnerable than other age groups due to their degraded ability to detect thirst and
reduced autonomic ability to adjust skin blood flow [36–38]. Multiple studies have also
demonstrated Blacks are at higher risk of mortality and morbidity as a result of heat
exposure, which may be attributable to their relatively low socioeconomic status [39,40].
For example, the central AC prevalence among Black households was less than half of
the prevalence among households of other races in Chicago, Detroit, Minneapolis, and
Pittsburgh [43].

Socioeconomic status may also impact an individual’s vulnerability to extreme heat
by increasing or decreasing adaptive capacity before/during/after extreme heat events.
Multiple studies have shown that heat waves disproportionately affect low-income in-
dividuals [41] and those without health insurance [42]. With the consideration of these
influential factors, we investigated five subpopulation groups: age (≥65 years), race (Black),
ethnicity (Hispanic), poverty (below poverty level), and health insurance status (popula-
tion uninsured).

2.2. Methodology

Our analytic framework can be divided into three parts. First, we compare the level of
cooling center population coverage across twenty-five U.S. cities. We then examine the re-
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lationship between population coverage and regional characteristics such as latitudes, HIs,
and spatial pattern of cooling centers. Third, we explore access disparities in population
coverage levels among various subpopulation groups. All procedures used in this study
are briefly illustrated in Figure 2.

Int. J. Environ. Res. Public Health 2021, 18, x 5 of 17 
 

 

2.2. Methodology 
Our analytic framework can be divided into three parts. First, we compare the level 

of cooling center population coverage across twenty-five U.S. cities. We then examine the 
relationship between population coverage and regional characteristics such as latitudes, 
HIs, and spatial pattern of cooling centers. Third, we explore access disparities in popula-
tion coverage levels among various subpopulation groups. All procedures used in this 
study are briefly illustrated in Figure 2. 

 
Figure 2. Schematic flow chart illustrating all procedures in this study. 

We employed a catchment area method to measure the level of cooling center popu-
lation coverage for each city. This method counts the number of people within a given 
distance from a cooling center, assuming that anyone within the same catchment area has 
equal access to the cooling center. Based on existing literature [9,17,44], we selected a 0.8 
km, which corresponds to a 15-min walking distance, catchment area. Since the boundary 
of the catchment area does not perfectly overlap with the boundaries of block groups, we 
estimated the population size based on the size of the overlapping area, assuming that the 
population is uniformly distributed throughout the block group [19]. For example, if a 
catchment area overlaps with 20% of the census block group with a population of 1000, 
we assumed that 200 people (1000 × 0.20) live in the overlapping area. To avoid double-
counting people within the catchment areas derived from multiple cooling centers, we 
merged all separate catchment areas into one large catchment area (see Figure S2 for de-
tails). 

To calculate the level of cooling center population coverage for each city, we devised 
two measures: total population coverage (TPC) and standardized population coverage 
(SPC). We calculated TPC by dividing the total population in catchment areas by the total 

Figure 2. Schematic flow chart illustrating all procedures in this study.

We employed a catchment area method to measure the level of cooling center pop-
ulation coverage for each city. This method counts the number of people within a given
distance from a cooling center, assuming that anyone within the same catchment area
has equal access to the cooling center. Based on existing literature [9,17,44], we selected a
0.8 km, which corresponds to a 15-min walking distance, catchment area. Since the bound-
ary of the catchment area does not perfectly overlap with the boundaries of block groups,
we estimated the population size based on the size of the overlapping area, assuming that
the population is uniformly distributed throughout the block group [19]. For example,
if a catchment area overlaps with 20% of the census block group with a population of
1000, we assumed that 200 people (1000 × 0.20) live in the overlapping area. To avoid
double-counting people within the catchment areas derived from multiple cooling cen-
ters, we merged all separate catchment areas into one large catchment area (see Figure S2
for details).

To calculate the level of cooling center population coverage for each city, we devised
two measures: total population coverage (TPC) and standardized population coverage
(SPC). We calculated TPC by dividing the total population in catchment areas by the
total population in the city and multiplying it by 100, which indicates the percentage
of population covered by cooling centers within 0.8 km (Equation (3)). This measure is
useful to directly compare the percentages of a total population covered by cooling centers
between cities. However, this measure allows the cities with more cooling centers to always
have a higher population coverage than the cities with fewer cooling centers. For example,
Chicago, IL, with 99 cooling centers would have a better population coverage level than
Fresno, CA, with 4 cooling centers. As an alternative, we used SPC which measures the
percentage of population covered by a single cooling center by dividing the TPC by the
number of cooling centers in the city (Equation (4)). This measure enabled us to compare
the percentage of total population coverage per cooling center by city.

TPC =
Total number of people in catchment areas

Total number of people in a city
× 100, (3)

SPC =
TPC

Total number of cooling centers in a city
. (4)
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We then examined the relationships between the SPCs and regional characteristics
such as latitudes, HIs, and spatial patterns of cooling centers. Latitudes and HIs were
examined with scatter plots and Pearson’s correlation coefficients, and the spatial pattern
of cooling centers were investigated using the average nearest neighbor (ANN) ratio. The
ANN ratio is commonly used to measure the degree of clustering or dispersion of events
by comparing the actual distance and the hypothetical distance extracted from a random
distribution [45]. The ratios near zero, near one, and greater than one are likely to indicate
clustering, random distribution, and dispersion, respectively. We calculated an ANN ratio
by dividing the observed average nearest distance between two cooling centers by the
expected average nearest distance when they are randomly distributed. In this process, we
generated referenced random distributions following population density, assuming that
cooling centers are located in more populated areas.

Finally, we investigated disparities in population coverage levels among multiple
subpopulation groups by comparing the SPCs between selected subpopulation groups and
reference subpopulation groups. We selected a different reference subpopulation group for
each selected subpopulation group: population ≥ 65 years (reference: population ≤ 64),
Black (non-Black), Hispanic (non-Hispanic), population with insurance (population with-
out insurance), and population below poverty level (population above poverty level). We
respectively calculated SPCs for the selected subpopulation groups and their reference
groups. Then, we divided the SPC of the selected subpopulation group by the SPC of the
reference subpopulation group to find the SPC-ratio between the two groups (Equation (5)).
If two groups have the same level of population coverage, the SPC-ratio is one. On the
other hand, when the SPC of the selected subpopulation group is lower than the SPC of
the reference group, the SPC-ratio is lower than 1. This means the selected subpopulation
has a lower population coverage level compared to the reference group. Similarly, when
the SPC-ratio is higher than 1, the population coverage level for the selected subpopulation
group is higher than the one for the reference subpopulation group. Since these selected
subpopulation groups are more likely to experience higher heat-related health impacts,
we postulated that they should have a higher population coverage level compared to its
counterpart (reference subpopulation).

SPC − ratio =
SPC of selected subpopulation
SPC of reference subpopulation

. (5)

3. Results
3.1. Descriptive Summary

Table 1 shows the descriptive summary of twenty-five study areas. Note that some
block group boundaries do not fall within city limits, which could underestimate or
overestimate city populations. Among the study areas, Chicago, IL, (2.7 million people) and
Riverside, CA, (0.3 million people) were the most and least populated cities, respectively,
with six cities over 1 million, fourteen cities between 0.5 and 1 million, and five cities less
than 0.5 million. Approximately, 10% to 17% of the population were ≥65 years of age across
all cities. Blacks were the majority race in Baltimore, MD (62.4%), Detroit, MI (78.3%), and
Memphis, TN (64%), whereas San Jose, CA (3.0%), Mesa, AZ (4.0%), and Albuquerque, NM
(3.2%), had the lowest proportion of Black populations. More than 50% of the population
in Riverside, CA (54.2%), and San Antonio, TX (63.6%), identified as Hispanic, while less
than 5% in St. Louis, MO (4.0%), identified as Hispanic. The percent of population below
the federal poverty level ranged from 8.7% (San Jose, CA) to 35.0% (Detroit, MI), and the
uninsured ranged from 3.7% (Washington, DC) to 23.2% (Dallas, TX). HIs ranged from
24.7 ◦C (Oakland, CA) to 36.1 ◦C (Phoenix, AZ), though Oakland (37◦ N) and Phoenix
(33.5◦ N) are located in similar latitudes. More details on the spatial patterns of HI can be
found in Figure S3. For cooling centers, Chicago, IL, and Washington, DC, have over fifty
cooling centers while Fresno, CA, has only four.
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Table 1. Descriptive characteristics.

City
Heat
Index
(◦C)

Cooling
Center
(Count)

Total
Population

Age (%) Black (%) Hispanic (%) Insurance (%) Poverty Level (%)

≥65 ≤64
(Ref) Yes No

(Ref) Yes No
(Ref) No Own

(Ref) Below Above
(Ref)

Albuquerque, NM 28.8 45 568,755 14.7 85.3 3.2 96.8 49.9 50.1 8.1 91.9 17.0 83.0
Baltimore, MD 27.8 11 609,032 13.6 86.4 62.4 37.6 5.3 94.7 6.6 93.4 21.2 78.8

Chicago, IL 25.5 99 2,712,529 12.4 87.6 29.5 70.5 28.8 71.2 9.7 90.3 18.4 81.6
Columbus, OH 27.0 29 913,582 10.5 89.5 28.1 71.9 6.1 93.9 8.8 91.2 19.0 81.0

Dallas, TX 33.4 45 1,357,894 10.5 89.5 23.9 76.1 41.4 58.6 23.2 76.8 18.6 81.4
Detroit, MI 26.0 24 674,841 13.6 86.4 78.3 21.7 7.7 92.3 8.4 91.6 35.0 65.0
Fresno, CA 31.0 4 549,961 11.7 88.3 7.1 92.9 49.3 50.7 8.3 91.7 25.0 75.0

Kansas City, MO 28.5 28 505,856 12.9 87.1 27.4 72.6 10.4 89.6 11.6 88.4 15.7 84.3
Long Beach, CA 25.9 5 469,937 11.5 88.5 12.6 87.4 42.6 57.4 8.5 91.5 16.7 83.3
Louisville, KY 28.9 25 658,837 15.1 84.9 23.1 76.9 5.5 94.5 5.3 94.7 15.3 84.7
Memphis, TN 31.4 18 677,513 12.6 87.4 64.0 36.0 7.0 93.0 13.7 86.3 24.5 75.5

Mesa, AZ 35.7 7 516,705 17.0 83.0 4.0 96.0 27.6 72.4 12.2 87.8 15.0 85.0
Milwaukee, WI 25.2 16 594,722 10.5 89.5 38.7 61.3 19.0 81.0 9.3 90.7 25.4 74.6

Minneapolis, MN 25.6 6 420,324 10.0 90.0 19.2 80.8 9.6 90.4 6.6 93.4 19.1 80.9
Nashville, TN 30.2 13 665,708 11.8 88.2 27.5 72.5 10.5 89.5 12.1 87.9 15.1 84.9
Oakland, CA 24.7 5 425,097 13.1 86.9 23.8 76.2 27.0 73.0 7.9 92.1 16.7 83.3

Philadelphia, PA 27.6 29 1,579,075 13.4 86.6 42.1 57.9 14.7 85.3 8.1 91.9 24.3 75.7
Phoenix, AZ 36.1 30 1,649,286 10.7 89.3 7.1 92.9 42.5 57.5 14.0 86.0 17.9 82.1
Portland, OR 25.4 27 655,855 12.9 87.1 5.8 94.2 9.9 90.1 6.5 93.5 13.7 86.3
Riverside, CA 29.4 7 329,396 10.7 89.3 6.1 93.9 54.2 45.8 9.5 90.5 13.9 86.1
St. Louis, MO 28.7 37 308,174 13.1 86.9 46.4 53.6 4.0 96.0 10.8 89.2 21.8 78.2

San Antonio, TX 33.7 25 1,589,745 11.9 88.1 7.0 93.0 63.6 36.4 16.3 83.7 17.3 82.7
San Jose, CA 25.9 5 1,060,954 12.5 87.5 3.0 97.0 31.5 68.5 5.1 94.9 8.7 91.3
Stockton, CA 29.3 5 329,698 12.5 87.5 10.6 89.4 43.8 56.2 6.9 93.1 18.0 82.0

Washington, DC 28.3 79 692,683 12.1 87.9 46.3 53.7 11.0 89.0 3.7 96.3 16.2 83.8

Average 28.8 25 820,646 12.3 87.7 25.9 74.1 24.9 75.1 9.6 90.4 18.8 81.2
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3.2. Population Coverage Level Comparison between Cities

Figure 3a illustrates TPCs with colored circles. TPCs show the percentage of the total
population within all catchment areas in a city. We calculated the percentage of people
within the walking distance (i.e., 0.8 km) from cooling centers. Washington, DC (57.5%),
and Fresno, CA (1.9%), had the highest and lowest coverage, respectively, with an average
of 10.3% and a standard deviation of 11.9% over twenty-five cities. St. Louis, MO (27.1%),
and Chicago, IL (25.9%), also had relatively high TPCs, while Phoenix, AZ (3.0%), Nashville,
TN (2.7%), Mesa, AZ (2.1%), and San Jose, CA (2.1%), had low TPCs. The cities where the
TPC is greater than 20% tended to be located in the midwestern and eastern U.S.
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As mentioned in the methodology, assessing population coverage levels without
considering the number of cooling centers could provide misleading information since the
cities having more cooling centers would have higher TPCs. To standardize, we calculated
SPC by dividing TPC by the number of cooling centers to represent the percentage of the
total population covered by a single cooling center in a city. Figure 3b shows SPCs using



Int. J. Environ. Res. Public Health 2021, 18, 4801 9 of 16

colored circles. Oakland, CA (1.4%), and Long Beach, CA (1.4%), were ranked high and
Phoenix, AZ (0.1%), San Antonio, TX (0.1%), and Dallas, TX (0.1%), were ranked low with
an average of 0.5% and a standard deviation of 0.4% over twenty-five cities. Interestingly,
southern states with high HI such as Arizona, Texas, and New Mexico had low SPCs while
western coast, midwestern, and northeastern states with low HI such as California, Oregon,
and New York had high SPCs. Readers can refer to Table S2 for detailed information on
each city’s TPC and SPC.

3.3. The Association between Latitude/HI and SPC

The associations between SPCs and both HI and latitude were explored using scatter
plots and Pearson’s correlation coefficients (Figure 4). We found a negative association
between HIs and SPCs (R = −0.553, p-value = 0.004) (Figure 4a). This suggests that the
cities having higher HIs tend to have a lower level of population coverage (low SPCs).
For example, the cities where HIs are greater than 33 ◦C (e.g., Dallas, TX; San Antonio,
TX; Mesa, AZ; Phoenix, AZ) tended to have lower SPCs than the cities where HIs are
lower than 26 ◦C (e.g., Oakland, CA; Long Beach, CA). While the association between SPC
and latitude was not statistically significant, a positive relationship was found (R = 0.232,
p-value = 0.264) (Figure 4b).
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3.4. The Association between ANN Ratio and SPC

Figure 5 presents the association between ANN ratios and SPCs. As previously
described, ratios near zero, near one, and greater than one are likely to indicate clustering,
random distribution, and dispersion, respectively. We found a clustering pattern in six
cities (Albuquerque, NM; Louisville, KY; Mesa, AZ; Minneapolis, MN; Phoenix, AZ; San
Antonio, TX) and a dispersion pattern in three cities (Chicago, IL; Long Beach, CA; Oakland,
CA). The Pearson’s correlation coefficient represented a positive relationship between ANN
ratios and SPCs (R = 0.652, p-value < 0.001). This suggests that the cities where cooling
centers are clustered may provide better population coverage levels compared to the cities
where they are dispersed.
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3.5. Disparity in Population Coverage Level for Subpopulation Groups

The disparity in population coverage levels for selected subpopulation groups was
assessed by the SPC-ratio. SPC-ratio values greater and less than one represent higher and
lower population coverage levels of selected subpopulations relative to reference subpop-
ulations, respectively. An SPC-ratio value of one indicates the equal level of population
coverage between two groups.

Figure 6 illustrates which subpopulation groups and cities are more (low SPC-ratio;
red color) or less (high SPC-ratio; blue color) vulnerable in terms of population coverage.
Averaged across cities, the results showed that individuals ≥ 65 years have 0.91 times
lower population coverage relative to individuals ≤ 64 years. In other words, older adults
(≥65 years) were 9% less covered by cooling centers than younger adults (≤64 years). The
SPC-ratio for Black and Hispanic subpopulation groups varied by cities. For example,
while San Jose, CA showed low SPC-ratio for Black (0.58) and high SPC-ratio for Hispanic
(3.59), Louisville, KY (Black: 3.03; Hispanic: 0.63), Milwaukee, WI (Black: 1.48; Hispanic:
0.44), and Nashville, TN (Black: 3.23; Hispanic: 0.39), showed an opposite pattern.

From the inter-city comparison, we observed Minneapolis, MN (1.80), and Detroit,
MI (0.88), had the highest and lowest SPC-ratio with a mean of 1.24 across all cities. We
found several subpopulations in some cities, including Detroit, MI (0.88), Dallas, TX (0.93),
Washington, DC (0.94), Milwaukee, WI (0.96), Portland, OR (0.98), St. Louis, MO (0.98), and
Philadelphia, PA (0.99), had a lower population coverage level than other cities on average.
On the other hand, Albuquerque, NM (1.20), Memphis, TN (1.22), and San Antonio, TX
(1.54), seemed to have a good level of population coverage for all subpopulations even
though city-averaged SPC was not high. Some cities such as Nashville, TN (Black: 3.23;
Hispanic: 0.39; Poverty: 3.51), and Louisville, KY (Black: 3.03; Hispanic: 0.63; Poverty:
2.63), had a substantially different level of population coverage to different subpopulation
groups. Readers can find separate SPCs for selected subpopulation groups and reference
groups in Table S3.
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4. Discussion

This analysis found that the total population coverage per cooling center had a neg-
ative association with HI and a positive association with latitude. These results indicate
that the cooler cities at high latitudes tend to be better prepared than the warmer cities
at low latitudes. This contradicts our belief that the warmer cities at low latitudes are
more prepared than the cooler cities at high latitudes for heat waves [24,46]. We suspect
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this may be related to a different regional rate of housing units with air conditioning. For
example, the households in warmer cities at low latitudes are more likely to have home air
conditioning compared to the households in cooler cities at high latitudes. According to the
U.S. Census Bureau’s AHS, 92.2% of houses in Dallas, TX (2019), San Antonio, TX (2017),
and Phoenix, AZ (2019), where the average daily HI is higher than 32 ◦C from May through
September, have central air conditioning, whereas only 64.9% of houses in Detroit, MI, San
Jose, CA, Long Beach, CA, Minneapolis, MN, Chicago, IL, Portland, OR, and Milwaukee,
WI, where HI is lower than 26 ◦C, have central air conditioning. Since most of the houses
in warmer cities at low latitudes have their own air conditioning at home, public cooling
centers might not be needed in those cities.

This study also found disparities in population coverage by age. On average, the older
subpopulations were approximately 9% less covered by cooling centers than the reference
group (≤64) across all twenty-five cities. This result is well-aligned with Voelkel et al. [22],
which showed older adults ≥ 65 tended to have less access to cooling centers in Portland,
OR. Our result suggests that older people may struggle more to use cooling centers than
other subpopulation groups due to their relatively limited population coverage level. Their
limited mobility led by physical constraints may place another barrier to access to cooling
centers [47,48]. Our result indicates that the spatial distribution of different subpopulations
should be considered when determining future cooling center locations.

Moreover, this study found a strong positive association between spatial patterns
of cooling centers and population coverage per cooling center. As White [27] noted, the
dispersed distribution of facilities does not always ensure better population coverage than
the clustered distribution. Nevertheless, our study showed that the cities with clustered
cooling centers tended to have a lower population coverage level than the cities with
dispersed cooling centers. This result might be caused by the overlapping catchment areas
generated from two adjacent cooling centers. For example, if the distance between two
cooling centers is less than 1.6 km, they should share their catchment areas based on the
0.8 km buffer used in this study. This could lead to redundancies in catchment areas and
ultimately have smaller population coverage. On the other hand, if the distance between
cooling centers is sufficiently distant (i.e., >1.6 km), each cooling center would not share its
catchment area with other adjacent cooling centers and provide better population coverage.
Our results suggest that it is necessary to allocate cooling centers in consideration of the
distance between other adjacent cooling centers.

Finally, we exhibited substantially different inter-city and within-city subpopulation
coverage levels. For example, some cities (e.g., Minneapolis, MN; Nashville, TN; Fresno,
CA; Louisville, KY; San Jose, CA) seemed to have better subpopulation coverage than other
cities (e.g., Detroit, MI; Dallas, TX; Washington, DC). We suspect this variation might be
associated with the population density of cooling center locations. For example, if more
cooling centers happen to be located near the densely populated areas of subpopulations,
the city would have a better subpopulation coverage level. On the other hand, if more
cooling centers happen to be placed near sparsely populated areas, this city would have a
lower subpopulation coverage level. This large variation supports city-specific strategies
for allocating cooling centers for extreme heat events.

Our findings align with Sustainable Development Goals (SDGs) proposed in the
United Nation’s 2030 Agenda “Transforming Our World: The 2030 Agenda for Sustainable
Development” [49]. The 17 SDGs aim to improve health and well-being, increase equity,
and boost economic growth while tackling climate change. Our study helps ensure human
health and well-being (Goal 3), increase equity (Goal 10), and prepare future climate change
(Goal 13) by providing information that could inform equitable heat wave adaptation
planning and healthcare resource allocation. Specifically, our results suggest that those
cities with high HIs, at lower latitude, and with clustered cooling centers were relatively
less well prepared than those cities with low HIs, at higher latitude, and with dispersed
cooling centers. We also found that older people have a lower coverage level than other
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age groups. This study provides key information that can inform future cooling center
planning approaches that consider population coverage and equity and align with SDGs.

There are at least three limitations in this study. First, multiple cooling centers likely
located near city boundaries were not included in some cities (Baltimore, MD; Louisville,
KY; Milwaukee, WI; Portland, OR; Riverside, CA) due to limited data availability. This
could have possibly underestimated the population coverage level. However, since we
considered 0.8 km as a catchment area of cooling centers, the potential underestimation
would be very small. Second, while this analysis only considered 2019 and 2020 data,
the location of cooling centers may change every year. However, we believe the overall
result may not be significantly different from other years because most cooling centers
use existing facilities such as public libraries, senior centers, or community centers which
are fixed. Third, we calculated HIs with daily maximum temperature and minimum
relative humidity. Because we did not use the corresponding humidity when maximum
temperature was observed, there could be some differences between actual HIs and the
calculated HIs. Despite these limitations, this study can help better understand cooling
center preparedness of twenty-five cities in the U.S.

This study brings to light at least four future research questions. Our study showed
that some cities (e.g., Long Beach, CA; Oakland, CA) had better population coverage
levels than other cities (e.g., Dallas, TX; Phoenix, AZ). Future research could investigate
common factors that make the difference between cities. Second, the large variation of
multiple subpopulation groups within a city warrants further study. For example, our
result showed that several cities (e.g., Nashville, TN; Louisville, KY; San Jose, CA) had
extreme population coverage disparities for Black and Hispanic populations. Third, it
would also be worthwhile to propose optimal locations of cooling centers while taking into
account other private cooling center facilities such as supermarkets, shopping malls, or
theaters. In addition, including empirical data sets such as health outcomes in the analysis
could provide more robust results regarding the impact of cooling centers on the general
public and subpopulation groups.

5. Conclusions

This paper assessed and compared cooling center preparedness across twenty-five
U.S. cities. We showed that the level of population coverage per cooling center is negatively
associated with HIs and positively related to latitudes. We also observed that the cities with
dispersed cooling centers tended to have a better population coverage level than the cities
with clustered cooling centers. Furthermore, this paper revealed that older people (≥65)
had the least population coverage level across the research areas and subpopulations.

There are several implications of this research for public health practice and policy.
First, establishing heat wave adaptation plans and strategies, which consider current
locations of cooling centers and spatial distributions of vulnerable subpopulation groups,
would help cover more vulnerable people and reduce disparities among subpopulation
groups. Second, our results could help prioritize healthcare resource allocation planning
for high-risk subpopulations, not only for cooling centers, but also other facilities such
as emergency departments or hospitals. Third, our findings support the need for lower
latitude and high HI cities to prepare and be ready for adverse health impacts from heat
waves. Even though housing units in these cities are more likely to have air conditioning
than other cities, this does not mean every housing unit has air conditioning. Some
cooling center users live in more vulnerable places (e.g., places where people are afraid to
take a walk or to open windows due to the fear of crime) and have less protection (e.g.,
insurance, air conditioning), and future extreme heat could disproportionately impact
them. Therefore, we believe incorporation of information about cooling center locations
and spatial distribution of populations at highest risk into adaptation and healthcare
planning is critical for improving health equity and reducing the overall public health
burden of the negative health effects of heat exposures.
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