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Abstract: In recent years, the demand for polymer compound solutions for the application of
bipolar plates in polymer electrolyte membrane fuel cells (PEMFC) has increased continuously
due to significant cost and lifetime advantages compared to metallic solutions. The main challenge
of the compounds is the high filler content required to ensure sufficient electrical conductivity
of the bipolar plates. The associated increase in viscosity and simultaneously increased thermal
conductivity limit the conventional injection molding process in terms of achievable flow path length
to wall thickness ratios (plate aspect ratio). In order to evaluate the extent to which highly modified
electrically conductive polymer material systems can be processed into thin-walled and highly
dimensionally stable bipolar plates, an injection compression molding process with dynamic mold
temperature control (ICM-DT) has been developed. For this purpose, a compound was prepared
from polypropylene (PP) and graphite-flakes. The compound was characterized with respect to
the achieved filler content, the electrical conductivity, as well as the pressure- and temperature-
dependent solidification range. The ICM-DT experiments were carried out by varying the maximum
mold temperature and the compression force. In addition, the process was designed with multiple
compression and decompression steps to account for a possible pressure-dependent solidification of
the compound. The plates were characterized with respect to the achieved plate aspect ratio and the
flow-path-dependent dimensional thickness stability. It was shown that the plate aspect ratio could
be increased by up to 125% with the maximum filler content compared to conventional injection
molding processes provided in the literature. With the multi-stage ICM-DT process, it was also
possible to optimize the thickness dimensional stability with a maximum deviation of 3% over the
flow path.

Keywords: injection compression molding; bipolar plate; fuel cell; thin-wall injection molding;
dynamic mold temperature control

1. Introduction

In the course of the energy system transformation and the electrification of the trans-
port sector, emission-free drive and storage concepts are becoming increasingly important.
In this context, the technology of the polymer electrolyte membrane fuel cell (PEMFC)
plays an important role in the commercial use of hydrogen as a possible energy storage
medium for mid- and long-distance concepts in the transport sector (truck, marine, and
aviation) as well as stationary and decentralized energy supply in the energy sector [1].
However, to make this technology usable and economically attractive for broad application
areas, the significant optimization of the total cost and lifetime of the fuel cell compared to
fossil fuel drive and storage concepts is required [2]. Ideally, the optimization of the stack
design and construction of the individual components should be performed in a manner
that improves the performance and lifetime of the cell [3] while keeping the thicknesses
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and volumes of the individual components as low as possible for cost and space reasons [4].
In addition to the design constraints, high demands are placed on the underlying materials.
Along the process chain, the bipolar plate shows the most pronounced requirement profile
and optimization potential, since it causes 30–40% of the total costs [5] and up to 80% of
the total weight of a fuel cell [6]. Thus, high electrical conductivities, sufficient mechanical
stability, and high corrosion resistance are required, along with low weight and installation
space volume, low costs, and optimized replication of channel structures for distributing
the process gases [2]. To meet this requirement profile, research is currently being con-
ducted on both metallic materials and polymer compound solutions. Although metallic
materials allow high electrical conductivities while maintaining high mechanical stability,
flexibility [7], and low component thickness [8], they are corroded and oxidized by the
reaction products released during the electrochemical reaction [9]. The consequences are a
deterioration in power output due to increased contact resistance and a reduced lifetime of
the cell [10], which is why expensive and complex corrosion coatings are usually applied [4].
Furthermore, the fabrication processes of metallic bipolar plates are limited either in terms
of efficiency and process costs [11] or in terms of the complexity of the channel structures
such that excessively high channel aspect ratios often cause dimensional errors as well as
cracks and wrinkles due to the excessive thinning of the substrate [12]. In contrast, polymer
compound-based bipolar plates offer an increasingly attractive technical and economic
alternative to metal solutions due to significant advantages such as reduced specific weight,
good corrosion resistance [13], durability [10], high functional integration within complex
3D geometries, and a low price [14].

The electrical insulation effect of polymers can be significantly influenced by fillers
and additives mixed into the polymer matrix. By adding conductive fibers, flakes, or
spheres consisting of, e.g., metals, conductive carbon black, graphite, and nanofillers such
as carbon nanotubes (CNT), the resistivity of the polymers can be reduced by several orders
of magnitude [15]. Multiple studies were carried out to achieve high electrical conductivity
of bipolar plates by different filler modifications. For example, mixtures of conductive
carbon black and graphite powder (total filler content: 80 wt.%) [16] or conductive car-
bon black and carbon microbeads (total filler content: 80 wt.%) [17], each in 2 mm thick
polyphenylene sulfide (PPS) plates, were able to achieve volume resistivities of 10−2 Ω·cm.
In addition, Rzeczkowski et al. [18] investigated the effect of adding expanded graphite
to a polypropylene (PP) matrix on the resulting electrical conductivity. They were able to
achieve a reduction in the average volume resistivity of about 1600% up to 15.9 S·cm−1

by increasing the filler content from 10 to 80 wt.% in 2 mm thick plates. The underlying
mechanism of the decrease in electrical resistance is the sufficient contact and interaction
of the particles and fillers with each other so that they can form a conductive percolation
network [19]. Numerous studies have shown that the level of electrical conductivity is
directly proportional to the number of contact points of the individual filler particles and
thus strongly dependent on the filler content [20–22]. The filler content at which a per-
colation path is formed is called the percolation threshold and is strongly dependent on
the filler’s shape and size [15]. For example, platelets or rod-shaped fillers with a high
aspect ratio led to comparatively low percolation thresholds than spherical fillers [23,24]. In
addition, due to the higher probability of mutual interaction, the percolation threshold was
reached at lower filler contents for smaller particles compared to larger fillers. This results
in improved electrical conductivities with small particles of high aspect ratios, especially
at higher filler contents. Investigations on the influence of filler shape and size on the
electrical conductivity of highly filled compounds of PP and graphite (total filler content:
78 wt.%) for fuel cell applications were able to demonstrate a conductivity reduction in
spherical particles by a factor of 1.5 compared to platelet-shaped particles of the same
size. In addition, 5 µm platelets achieved a conductivity up to 2.5 times higher than 20 µm
platelets with the same filler content [25].

The viscosity of a polymer melt is a function of the molecular structure of the macro-
molecules and is determined by the interaction of the polymer chains with each other. In
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addition to the basic structural composition of the polymer (chain length/chain branching),
this is largely determined by the temperature [15], pressure [26], and shear conditions [27]
during the filling process in the injection molding process. Furthermore, the addition of
fillers results in significantly changed flow behavior due to flow restrictions caused by
the interaction between the polymer matrix and the filler particles, or by interaction and
agglomeration of the fillers with each other [28]. Thus, the viscosity of filled polymer melts
shows a clear dependence on the volume fraction of the fillers, the particle shape, the
average particle size and the particle size distribution [29]. Accordingly, higher volume
fractions and higher aspect ratios (length/thickness) of the fillers lead to an increase in melt
viscosity compared to the unfilled polymer [30]. For example, Mighri et al. [20] were able
to determine an increase in viscosity by a factor of 3–10 as a function of shear rate for a filler
content of 25 wt.% carbon black particles in a PP matrix compared to pure PP. Studies by
Markov were also able to attribute a viscosity increase by a factor of 5 in a polyamide 6 (PA6)
melt filled with anisometric copper platelets compared to isometric (spherical) particle
geometry at the same filler content, particle size, and shear rate due to the specific surface
area changing with the particle geometry [31]. Furthermore, the influence of particle size
on the viscosity of 30 vol.% graphite-flake filled PA6 melts has been determined. At lower
shear rates, viscosity increases strongly with decreasing particle size, whereas the effect
of particle size vanishes at higher shear rates [31]. The high filler content of the modified
compounds, required for sufficient electrical conductivity of the bipolar plates, results in
limitations in the possible thickness dimensions of current plate geometries in the injection
molding process. In recent studies, for example, plate dimensions of 80 × 80 × 2 mm3 [18]
or 30 × 30 × 1.5 mm3 [6] have already led to considerable replication and filling problems
in conventional injection molding.

In addition to the increased viscosity due to a high filler content, the temperature
dependence of viscosity is, furthermore, negatively influenced by increased thermal con-
ductivities of electrically modified polymer melts [32]. Due to the lack of free electrons
in unfilled polymers, thermal energy can only be transferred in the form of elastic waves,
so-called phonon oscillations, along the polymer chain or via van der Waals and hydrogen
bonds (secondary valence forces) to neighboring chain segments. As a result of the presence
of free mobile charge carriers in electrically conductive fillers, phonon vibrations can, thus,
be additionally transported via the filler network [19]. This results in an accelerated heat
transfer from the filled melt to the mold and, thus, further complicates the precise molding
of fine channel structures and high aspect ratios due to higher cooling rates [6].

Components with small dimensions show significantly different time-temperature-
pressure conditions during processing compared to macroscopic components. The in-
creased surface-to-volume ratio (S/V) of micro and thin-walled components results in
accelerated heat transfer between melt and mold [33]. Because of the faster cooling of the
melt across the component cross-section, flow resistance increases due to the temperature-
induced increase in viscosity. In addition, the rapidly solidified surface layers take up a
significantly larger proportion of the total flow cross-section compared to macroscopic com-
ponents. This often leads to filling and replication problems of fine surface structures [34].
Among other things, this is attempted to be compensated by high mold temperatures [35]
or high injection speeds [36]. The latter, in combination with reduced flow cross sections,
also results in an increased pressure requirement during filling [37]. For example, Yokoi
et al. [38] were able to measure injection pressures of up to 3000 bar at an injection speed
of up to 1000 mm·s−1 over a flow path of 150 mm at a plate thickness of 2 mm. The
highest pressures occur close to the gating point with simultaneous high deformation of the
polymer melt due to shear and elongation. With increasing distance to the gate, the flow
velocity and, therefore, the shear and pressure influence decrease due to the high-pressure
loss in the gate area. Investigations on thin-walled injection molded components have
shown that the inhomogeneous pressure distribution during the filling process results in
significant deviations in density [39] and thickness dimensions [40] along the flow path
length, both with dynamic and conventional isothermal mold temperature control. The
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highest density and thickness values are measured close to the gate, since the polymer
solidifies here under the full pressure effect, whereas, towards the end of the flow path, the
polymer solidifies almost without pressure effect [41]. Since the melt viscosity exhibits a
pronounced pressure dependence [42], the high injection pressures required in thin-wall
molding further increase the viscosity and thereby intensified the effect of replication and
dimensional stability problems.

In order to utilize the urgently needed cost and lifetime advantages of the polymers for
the application of bipolar plates, high filler contents are necessary for achieving sufficiently
high electrical conductivity. However, thermoplastic melts modified in this manner show
deteriorated replication and mold filling behavior due to significantly increased viscosity
and the negative effect of increased melt thermal conductivity. This leads to limitations
in the possible thickness dimensions and dimensional stability of previous bipolar plate
geometries in the injection molding process. A comparison with metallic bipolar plates,
which can already be manufactured in thicknesses of down to 100 µm [8], illustrates that
the specific weight advantage of the polymers cannot be utilized to date either. Since the
output voltage per cell is restricted to a maximum of 1.23 V, several cells connected in
series are required for higher voltages. This also results in considerably larger installation
space volumes and costs for thicker bipolar plates made of polymer compounds. The
objective of reducing the plate thickness cannot be achieved by higher injection speeds
and mold temperatures sufficiently, since this results in excessive pressure requirements
during filling [38] and inhomogeneous pressure and temperature fields [41] over the flow
path. This is caused by the reduced flow cross-section, irrespective of the type of mold
temperature control. At the component level, this is reflected in a deteriorated, flow-
path-dependent dimensional thickness accuracy [40] and molding accuracy of the channel
structures [6].

Therefore, the aim of this study is the development of an injection compression
molding process with dynamic mold temperature control (ICM-DT) for the realization of
thin-walled and highly filled bipolar plates with the highest possible thickness dimensional
stability. A dynamic mold temperature control is intended to maintain the flowability
of the polymer melt during the molding process. The combination of this strategy with
a compression molding process allows a two-dimensional holding pressure effect and
realization of high plate aspect ratios with the highest possible dimensional stability. In
addition to characterizing the compound with regard to process-relevant solidification
properties for analysing the ICM-DT process, electrical conductivity was determined as a
function of the filler content. During ICM-DT experiments, the compound with maximum
conductivity was used to determine the influence of mold temperature and compression
pressure on the resulting dimensional stability of the plate thickness. In order to take into
account a possible pressure-dependent solidification of the compound, a modified multi-
stage ICM-DT process has been designed and optimized with regard to the achievable
dimensional thickness stability and plate aspect ratio.

2. Materials, Specimen and Methods
2.1. Materials

For the experiments, flake-shaped graphite particles of the type GraphCOND (Georg H.
LUH GmbH, Walluf, Germany) with a percentile value of D90: 50–70 µm was compounded
at 50, 60, 70, and 80 wt.% proportions into a PP matrix type 505P (Sabic Corporation,
Riyadh, Saudi Arabia) by means of a twin screw extruder type ZSE HP 27 (Leistritz Group,
Nuremberg, Germany). Table 1 presents an overview of the main compounding parameters.
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Table 1. Main compounding parameters of the various compound materials.

Calculated
Graphite Content

(wt.%)

Dosing Speed
PP Sabic 505 P

(kg·h−1)

Dosing Speed
GraphCOND

(kg·h−1)

Nozzle
Temperature

(◦C)

Screw
Speed

(min−1)

50 2.5 2.5

270 150
60 2.0 3.0
70 1.5 3.5
80 1.0 4.0

2.2. Specimen

For the investigation of electrical conductivity, plate aspect ratio, and dimensional
accuracy, a plate specimen with variable plate thickness was used. The production using
ICM-DT was carried out on an injection molding machine type Arburg Allrounder 370 U
(Arburg GmbH + Co. KG, Lossburg, Germany). Figure 1 shows a schematic representation
of the injection mold (a) and the dimensions of the plate specimens with marks of the
positions of the ejector pins and indirect pressure sensors behind two of these (b).
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Figure 1. (a) Schematic representation of the injection mold; (b) plate specimen with the positions of
the ejector pins and indirect pressure sensors behind two of them (all dimensions in mm).

The compression stroke was performed via the main axis of the machine by means
of an embossing frame, which is supported by disc springs to the ejector-side mold plate,
enabling a variable adjustable component thickness between 0.5 and 4 mm. The dynamic
temperature control of the mold was carried out in the embossing frame as well as in the
temperature control cores close to the cavity on the nozzle and ejector side in a double
circuit of pressurized hot and cold water with a switchover unit close to the cavity. The
mold has temperature sensors on the nozzle and ejector sides as well as two indirect cavity
pressure sensors located behind the ejector pins at the positions near and far from the gate.

The process cycle of the ICM-DT experiments is schematically shown in Figure 2a.
First, the mold is heated to the investigated mold temperature. Afterwards, the melt is
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injected into the mold, which is opened by an embossing gap. Finally, the material is
molded to the plate geometry by a speed- and force-controlled compression stroke up
to the compression forces in order to be investigated. After an isobaric and isothermal
holding phase, the mold is cooled to the demolding temperature while maintaining the
cavity pressure constant.
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schematic illustration of the multistage ICM-DT process.

For the investigation of the electrical conductivity, different compounds were pro-
cessed using the same parameter settings. The main process parameters are listed in Table 2,
with bold values indicating the mold temperature and compression force used. Since the
surface layer has an electrically insulating effect, it has to be removed by means of a surface
treatment. Within this study, oxygen plasma etching was applied to remove the electrically
insulating surface layer uniformly and in a defined manner from the produced plates,
which were used for measuring the electrical conductivity. For this purpose, an etching
device type Tepla 440 (Technics Plasma GmbH, Kirchheim, Germany) was utilized to treat
the plates for 5 × 5 min with 500 W power output.

To study the achievable plate aspect ratios and the stability of sample thickness in
the ICM-DT process, compression force was varied and evaluated in three factor steps
at a mold temperature of 170 ◦C. The same has been performed for three different mold
temperatures at a constant compression force of 400 kN. These parameters were chosen
based on the analytical process design. All other molding parameters were kept constant.
In each case, five test specimens were produced per setting. An overview of the main
process parameters for the investigation of achievable plate aspect ratios and the stability
of sample thickness in the ICM-DT process is also shown in Table 2.
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Table 2. Main process parameters of the production of the plate specimens for the determination of
the electrical conductivity (bold values) and the achievable plate aspect ratio as well as thickness
dimensional accuracy.

Parameter (Unit) Value

Mold temperature Tm (◦C) 150/160/170
Heating time th (s) 180

Melt temperature TM (◦C) 270
Compression gap sc (mm) 2.0

Injection flowrate vi (cm3·s−1) 25.4
Compression speed vc (mm·s−1) 15.0

Compression force Fc (kN) 100/250/400
Isothermal und isobaric compression time tiso (s) 10

Cooling time tcool (s) 80
Demolding temperature Td (◦C) 60

In order to consider a pressure-dependent solidification of the melt, the process
sequence was additionally designed as multi-stage ICM-DT process. In a first compression
stage with high compression speed (15 mm·s−1) and high compression force (400 kN), the
replication of the plate aspect ratios should be ensured. In a pressure relief stage within
0.5 s to 10 kN compression force, the flowability of the polymer should be restored within
the completely filled cavity. Afterwards, a second compression at a slow speed (1 mm·s−1)
up to a lower compression force (100 kN) is applied. Thus, the necessary flow processes for
material compensation can take place with moderate pressure buildup. The three-stage
process sequence is shown in Figure 2b. The parameter setting at the different compression
stages are shown in Table 3. The other parameters were the same as for the determination
of the electrical conductivity which are listed in Table 2.

Table 3. Parameter setting of the multi-stage ICM-DT at the different compression stages.

Parameter (SI-Unit) Value

Compression speed stage 1 vc1 (mm·s−1) (tc1) 15.0
Compression force stage 1 Fc1 (kN) 400

Isothermal und isobaric compression time stage 1 tiso1 (s) 5
Compression speed stage 2 vc2 (mm·s−1) (tc2) 15.0

Compression force stage 2 Fc1 (kN) 10
Isothermal und isobaric compression time stage 1 tiso2 (s) 5

Compression speed stage 3 vc3 (mm·s−1) (tc3) 1.0
Compression force stage 3 Fc3 (kN) 100

Isothermal und isobaric compression time stage 3 tiso3 (s) 10

2.3. Thermogravimetric Analysis

ICM-DT experiments for investigating possible thickness dimensional deviations at
high filler contents and minimum wall thickness were carried out with the compound
with maximum filler content. This material has been selected due to the requirement of
high electrical conductivity for the application field of bipolar plates. For this material,
the actual filler content was determined by a thermogravimetric analysis in a TGA Q5000
(TA Instruments, New Castle, DE, USA) under nitrogen atmosphere because the greatest
deviations are to be expected here in the metering process of compounding. The filler
content was evaluated after the thermal decomposition of the polymer at a temperature
of 500 ◦C. In addition, to ensure that no decomposition of the graphite started at this
temperature or was distorted by carbonaceous residues of the PP, pure graphite powder
and pure PP were measured accordingly.
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2.4. Analytical Process Characterization

The crystallization of PP shows a strong pressure dependence [43]. Thus, the selection
of a mold temperature above the crystallization temperature range for the ICM-DT exper-
iments is not satisfactory to ensure that the polymer is still sufficiently flowable during
the filling process via the compression stroke. To be able to evaluate and interpret the
solidification behavior of the material in combination with the generated process data, the
compound was characterized analytically with regard to its pressure-dependent crystal-
lization behavior. For this purpose, the absolute position of the solidification range of the
compound was first determined by means of differential scanning calorimetry (DSC) in
a TMDSC Q1000 (TA Instruments, New Castle, DE, USA) at a cooling rate of 20 K·min−1.
The pressure dependence of the solidification range was determined by pressure-volume-
temperature (pvT) measurements in a Rheograph 25 (Goettfert Werkstoff Prüfmaschinen
GmbH, Buchen, Germany) in the temperature range of 60–220 ◦C at pressure levels of 200,
400, 800, 1200, and 1600 bar. The linear regression of the crystallization onset temperature
as a function of pressure in the pvT measurements in combination with the absolute po-
sition of the crystallization peak from the DSC measurements allowed the calculation of
the pressure-dependent shift of the crystallization range. This methodology enabled the
evaluation of the measured pressures and temperatures during the ICM-DT process with
respect to the solidification behavior of the compound. With this knowledge, whether a
pressure or temperature induced solidification sets during the process can be investigated.

2.5. Electrical Conductivity

First, the effects of the surface treatment were documented by microscopic images
taken in the secondary electron detector of a scanning electron microscope type Ultra
Plus (Carl Zeiss Microscopy GmbH, Jena, Germany) at an accelerating voltage of 10 kV
under 1500-fold magnification. Afterwards, the electrical resistance of the plates was
characterized by means of contacting via two tungsten manipulator tips (tip radius 7 µm)
in the current range of −1000–1000 mA in a Precision Semiconductor Analyser 4156C
(Agilent Technologies, Santa Clara, CA, USA), shown in Figure 3. To avoid the falsification
of the results by co-determination of the line resistances RL1 and RL2, the measurement was
performed in a four-wire circuit. By evaluating the resulting voltage, the ohmic resistance
R of the samples was determined via the derivative of the voltage–current curve. To
determine the specific resistivity or the specific conductivity, the real cross-sectional area A
of the current passage in the plate was determined by measuring the contacting point of
the measuring tip using a laser scanning microscope type VK-X1000 (Keyence Corporation,
Osaka, Japan) with a 20-fold magnification and the laser measuring mode, Figure 3.

To obtain the same contacting force and measuring position between the measuring
tips for each plate, they were first set to the exact same opposite position without plates
via the micromanipulators and the microscope. This resulted in the formation of furrows
and material buildup on the sample surfaces when measuring with the plates between the
measuring tips, since the needle is first pulled a short distance over the sample surface
before the exact opposite position is reached. However, the actual contact point was
always circular in shape and could, therefore, be easily detected by the optical evaluation
software. By determining plate thickness d at the contacting point by means of an external
micrometer, specific resistivity ρ and specific conductivity σ of the different compounds
were determined using Equations (1) and (2), respectively.

ρ = R ∗ A
d

(1)

σ =
1
ρ
=

1
R
∗ d

A
(2)
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Figure 3. Schematic illustration of the measurement of the electrical resistance of the manufactured
plate specimens.

2.6. Plate Aspect Ratio and Dimensional Accuracy

The aspect ratio of the plate specimens produced under variation of the process
parameters was calculated from the quotient of the minimal achieved flow path length
(measured with a caliper gauge from the gate pin) and the average thickness of the plate
specimens over the flow path, which are both shown in Figure 4. The thickness dimensional
accuracy was evaluated using 10 measuring points with the outside micrometer along the
flow path of the specimens, each at a distance of 5 mm. The measured thicknesses were
normalized to the initial measuring point at the gate pin.
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3. Results and Discussion
3.1. Filling Content

Figure 5 shows the results of the thermogravimetric analysis of the compound with a
maximum calculated filler content of 80 wt.%. The measurement of the compound shows
a clear decrease in mass from approx. 400 ◦C, which is completed at approx. 500 ◦C. The
average residual mass of the compound determined at 500 ◦C mc,res(500 ◦C) is 77.0 wt.%,
Figure 5a.
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Figure 5. (a) Thermogravimetric analysis of the compound with maximum graphite content; (b) ther-
mogravimetric analysis of the pure Graphite particles; (c) thermogravimetric analysis of the pure PP.

The results of the measurement of pure graphite show that there is hardly any decrease
in mass at the measured temperatures. At 500 ◦C, a residual mass mg, res(500 ◦C) of about
99.8 wt.% graphite was evaluated, Figure 5b. The measurement error due to carbonaceous
residues from the degraded PP was determined by measuring the pure PP and determining
the residual PP mass content at 500 ◦C mpp,res(500 ◦C) to approx. 0.98 wt.%, Figure 5c.
Thus, the resulting filler content in the compound fc used for the ICM-DT experiments is
calculated according to Equation (3) to 75.8 wt.% and is in good agreement with the set
filler content from the compounding.

fc = mc, res(500 ◦C)− mpp, res(500 ◦C)−
(
100 − mg,res(500 ◦C)

)
(3)
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3.2. Analytical Process Characterization

The results of the derivation of the pressure dependent crystallization range of the
compound based on DSC and pvT measurements are shown in Figure 6. As displayed
in Figure 6a, a crystallization onset temperature of approx. 142 ◦C, a crystallization peak
temperature of approx. 135 ◦C, and a crystallization offset temperature of approx. 130 ◦C
were measured. From the pvT investigations, the pressure dependence of the crystalliza-
tion could be determined by a linear regression of the crystallization onset temperature,
Figure 6b. The absolute position of the crystallization range of the pvT measurements
at 0 bar pressure can only be calculated with the 2-domain Tait model and is distorted
by the slow cooling rate of 2 K·min−1. For this reason, the equations for calculating the
pressure-dependent shift of the crystallization range were derived from the determined
slope of the pressure-dependent crystallization temperature of the pvT measurements and
the determined y-intercepts as the absolute position of the solidification range of the DSC
measurements, Figure 6c.
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Figure 6. (a) Determination of the absolute position of the crystallization range based on DSC
measurements; (b) determination of the pressure dependence of the crystallization range based on
pvT measurements; (c) combination of the pressure dependence of the crystallization range from the
pvT measurements and the absolute position of the crystallization range of the DSC measurements to
determine the pressure- and temperature-dependent process window.
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Accordingly, at the selected mold temperatures of 150, 160, and 170 ◦C, the pressure-
temperature range shown in Figure 6c above the dashed straight lines does not yet result in
any pressure-dependent solidification of the material. Thus, even if the melt is completely
cooled to mold temperature during the injection process, it is ensured that pressures of
up to 1600 bar can be applied at a mold temperature of 170 ◦C. At a mold temperature of
150 ◦C, pressures of approx. 750 bar can be applied to mold the high plate aspect ratio
without complete pressure-induced crystallization of the material.

3.3. Electrical Conductivity

The results of plasma etching, necessary for characterizing the electrical conductivity
of the compounds, are exemplified by the compound with a maximum filler content of
75.8 wt.% in Figure 7. The picture of the untreated sample in Figure 7a shows that a compact
and segregated polymer layer is formed on the surface of the samples.

Polymers 2022, 14, x FOR PEER REVIEW 13 of 21 
 

 

3.3. Electrical Conductivity 
The results of plasma etching, necessary for characterizing the electrical conductivity 

of the compounds, are exemplified by the compound with a maximum filler content of 
75.8 wt.% in Figure 7. The picture of the untreated sample in Figure 7a shows that a com-
pact and segregated polymer layer is formed on the surface of the samples. 

 
Figure 7. Scanning electron microscope images of the untreated (a) and the plasma-treated (b) sam-
ple surface. 

The fountain flow within the injection molding cavity initially leads to an alignment 
of the fillers perpendicular to the flow direction at the flow front and in the boundary 
layer to the mold wall. Within the subjacent shear zone, they are then oriented in the flow 
direction, resulting in an almost complete segregation of the particles in the rapidly solid-
ified boundary layer [44]. Investigations on the microstructure formation in the surface 
layers of unfilled PP as a function of mold temperatures have shown that even when the 
mold is tempered in the crystallization temperature range of the polymer, a fine crystalline 
to almost optically amorphous microstructure is formed in the surface region of the sam-
ples [45]. Figure 7b shows that the rapidly solidified boundary layer with this type of mi-
crostructure can be effectively removed by surface treatment using plasma and, thus, ef-
fectively expose the electrically conductive fillers. Thus, after plasma treatment, the 
graphite particles are exposed on the surface, making it much easier to couple the electri-
cal current into the plate. For an industrial scale, a faster removal of the rapidly solidified 
boundary layer is required. Therefore, laser ablation could be a suitable method. 

The determination of the specific conductivity and specific resistance of the different 
compounds as a function of the graphite content is shown in Figure 8a. The measurements 
show an expected decrease in resistivity with increasing graphite content and an increase 
in electrical conductivity. 

Figure 7. Scanning electron microscope images of the untreated (a) and the plasma-treated (b) sample
surface.

The fountain flow within the injection molding cavity initially leads to an alignment
of the fillers perpendicular to the flow direction at the flow front and in the boundary
layer to the mold wall. Within the subjacent shear zone, they are then oriented in the
flow direction, resulting in an almost complete segregation of the particles in the rapidly
solidified boundary layer [44]. Investigations on the microstructure formation in the
surface layers of unfilled PP as a function of mold temperatures have shown that even
when the mold is tempered in the crystallization temperature range of the polymer, a fine
crystalline to almost optically amorphous microstructure is formed in the surface region
of the samples [45]. Figure 7b shows that the rapidly solidified boundary layer with this
type of microstructure can be effectively removed by surface treatment using plasma and,
thus, effectively expose the electrically conductive fillers. Thus, after plasma treatment, the
graphite particles are exposed on the surface, making it much easier to couple the electrical
current into the plate. For an industrial scale, a faster removal of the rapidly solidified
boundary layer is required. Therefore, laser ablation could be a suitable method.

The determination of the specific conductivity and specific resistance of the different
compounds as a function of the graphite content is shown in Figure 8a. The measurements
show an expected decrease in resistivity with increasing graphite content and an increase
in electrical conductivity.
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Figure 8. (a) Determined specific resistance and specific conductivities of the compounds produced
in comparison with literature values [16]; (b) visualization of ideal and non-ideal contacting based on
exemplary voltage–current curves.

A comparison to the resistivity ranges of 1012–1016 Ω·cm provided in literature for
pure polymers without fillers [19] shows that the percolation threshold is already reached
with a filler content of 50 wt.%. However, high conductivities, as required for bipolar
plate applications, are only achieved with filler contents of up to 80 wt.%. Since pure
polymer can be considered a technical insulator due to its high resistivity values, the
increase in electrical conductivity can be attributed exclusively to the increase in filler
content. A filler content exceeding the pure percolation threshold leads to an increased
contact probability of adjacent filler particles and, thus, to the formation of additional
conducting paths along which the electrical current can flow. These results are in good
agreement with investigations on the influence of the graphite content on the electrical
conductivity of injection molded PPS plates (dimensions 60 × 60 × 2 mm3), which are also
shown in Figure 8a [16].

Nevertheless, at maximum filler content, high standard deviations were measured for
the specific conductivity and specific resistivity. This could be attributed to a falsification of
the measurement results due to a non-ideal ohmic contact between the measuring tips and
the plates. Due to the possible contacting of graphite particles that are not ideally connected
to the percolation network or particles with a thin insulating residual polymer layer, a
contact with non-linear resistivity behavior can form according to Li et al. [46] instead of an
ideal ohmic contact, Figure 8b. The evaluation of the resistance as the slope of the linear
regression model of the voltage–current curves and the contact over the small measurement
tip radius led to significant measurement scatter. The optimization of the determination of
the electrical properties by means of a special four-pole measuring electrode is, therefore,
the subject of current investigations.

3.4. Plate Aspect Ratio and Dimensional Accuracy

Figure 9 shows a comparison of the molded plate aspect ratio with literature values
for the production of highly filled bipolar plates. It can be seen that significantly higher
plate aspect ratios can be achieved using the ICM-DT process.
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Figure 9. Molded plate aspect ratio as a function of mold temperature and set compression force
compared with literature values [18,47].

The calculated plate aspect ratios in literature refer to significantly thicker plate ge-
ometries. For example, in studies on the processing of a PP graphite compound filled
up to 80 wt.% into bipolar plates, the limits of injection molding processing were already
reached with plate dimensions of 80 × 80 × 2 mm3 or an aspect ratio of 40 [18]. An older
investigation on the molding accuracy of highly filled PPS graphite compounds (filler
content 75 wt.%) using an injection molding process with dynamic mold temperature
control (IM-DT) achieved slightly higher plate aspect ratios of ~48 with plate dimensions
of 142.5 × 80 × 3 mm3 [47]. In the course of the present investigations, it was also tested
whether the plates could be molded using a conventional injection molding and IM-DT
process with the same mold, whereby only the embossing step was removed from the pro-
cess sequence and the mold was completely closed at the start of the cycle. However, in this
study, the production of completely filled plates according to this process sequence was not
possible with any adjustment from mold temperature, injection speed, melt temperature,
and holding pressure. In contrast, the molded aspect ratio using ICM-DT with the best
setting (170 ◦C, 400 kN) could be increased by up to 125% compared to isothermal injection
molding in [18] and by up to 90 % compared to IM-DT in [47]. These values represent
minimum values since the plates were completely filled at a mold temperature of 170 ◦C
and a compression force of 250 kN. The standard deviation of the data points when the
mold is completely filled refers to slightly different thickness dimensions of the plates.
Thus, the maximum possible plate aspect ratio in ICM-DT could not be identified and is,
therefore, the subject of future investigations at the Institute of Polymer Technology. In this
context, high compression forces and high mold temperatures favor the replication quality.
However, if the compression force is set too low at 100 kN or mold temperatures < 170 ◦C,
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the mold’s cavity is not sufficiently replicated. It can be concluded that using the ICM-DT
process significantly increased flow path lengths to wall thickness ratios can be achieved,
particularly in the area of thin-walled components, despite high filling contents.

Even though the processing of highly filled materials into thin-walled planar compo-
nents such as bipolar plates appears possible with the ICM-DT process, the evaluation of
the thickness dimensional stability shows significant dimensional deviations over the flow
path length. Here, low mold temperatures and high compression forces resulted in the
greatest deviations within the plate, as displayed in Figure 10a,b.
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Figure 10. Nominal thickness dimensional stability over the flow path as a function of mold tem-
perature (a) and compression force (b) as well as the associated maximum cavity pressures during
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The evaluation of the pressure signals in the mold at the positions near and far from
the gate at the time of compression shows a significant pressure difference between the
two measuring positions. This state is also persisted during the isobaric and isothermal
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holding phase and during the cooling phase, as shown in Figure 10a*,b*. For this reason,
the compression force instead of the pressure signal is depicted in Figure 10. Due to
the pressure-induced flow that underlies injection molding and injection compression
molding, this difference would normally have to be compensated by flowing material. The
magnitude of the pressure difference increases analogously to the thickness deviations
with decreasing mold temperature and increasing compression force. Therefore, it can
be assumed that the reduction in the flow cross-section during the compression step and
the simultaneous increase in the surface-to-volume ratio leads to the faster cooling of
the compound and a significant increase in pressure in the gating area. Since pressure
decreases continuously towards the end of the flow path, the material can still flow at the
end of the plate, but no more material can be fed to the end of the flow path from the areas
near the gate. If the maximum pressures measured near the gate are compared with the
analytical determination of the pressure-dependent solidification range of the compound,
it becomes clear that, at a mold temperature of 170 ◦C and a pressure of about 1000 bar, the
pressure-dependent onset temperature of crystallization is already reached. Only at the
lower compression forces of 100 kN and 250 kN, this pressure undershot in the area close
to the gate so that better thickness equalization can take place within the mold by flowing
of the material. Thus, the plates produced with the lowest compression force showed
insufficient molding of the cavity but, at the same time, the highest dimensional stability
with respect to thickness. With mold temperatures of 160 and 150 ◦C, the solidification of
the material already starts at lower pressures, which is why significantly greater thickness
deviations have been be measured.

In contrast, the results of the multistage process show a significantly improved thick-
ness dimensional accuracy with simultaneously high molding accuracy of the plates.
The determined plate aspect ratio of the multistage ICM-DT process was 91.3 ± 0.9 and,
thus, corresponds to the achieved maximum value of the single-stage ICM-DT process
(91.7 ± 2.8). The achieved thickness deviation of the multistage process reached a max-
imum of 3% over the flow path in comparison to 20% at the single-stage ICM-DT at
maximum aspect ratio and is shown in Figure 11. The results illustrate that the multistage
ICM-DT process made it possible to circumvent the pressure-induced solidification of the
melt in the single-stage process. Thus, the first compression stage with high compression
speed and high compression force initially allowed the plate to be completely molded. The
second pressure relief stage restored the flowability of the compound at the high mold
temperature so that material equalization within the plate could be achieved by the third
compression stage with low compression speed and compression force. Accordingly, an
adapted multi-stage ICM-DT process enables the processing of highly filled compounds
into thin-walled planar bipolar plates with high thickness dimensional stability and high
flow path lengths to wall thickness ratios. The extent to which this process can be used to
replicate fine channel structures with high aspect ratios is the subject of current research
activities.
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4. Conclusions

In this study, an injection-compression molding process with dynamic mold tem-
perature control (ICM-DT) was investigated with regard to its ability to produce plate
specimens (as an example for PEMFC bipolar plates) with high dimensional stability
and high flow path length to wall thickness ratio (plate aspect ratio) from a highly filled
polypropylene–graphite compound. For this purpose, four different compounds with
different filler contents were prepared and investigated with respect to their electrical con-
ductivity. The compound with maximum conductivity was characterized regarding its true
filler content (75.8 wt.%) and the pressure-dependent solidification behavior. Additionally,
it was investigated in the process by varying the mold temperature and the compression
force with respect to achievable plate aspect ratios and thickness deviations over the flow
path. The results of the ICM-DT experiments showed that high compression forces and
high mold temperatures led to an increased plate aspect ratio by up to 125% compared
to conventional processes from the current literature. It should be mentioned that the
maximum possible aspect ratios in the ICM-DT process could not be investigated with
the underlying plate specimen, since plate geometry can already be completely molded
with certain parameter combinations. Moreover, the attempts to produce the present plate
geometry with the highly filled compound in conventional injection molding or injection
molding with dynamic mold temperature control were unsuccessful. Nevertheless, the
plates in the ICM-DT process exhibited very high thickness deviations over the flow path.
Here, low mold temperatures and high compression forces led to the greatest deviations.
This effect could be attributed to a pressure-dependent solidification of the material in
the gating area by means of the material characterization and the cavity pressure sen-
sors. In order to eliminate this effect, a multi-stage process design was used in which the
plate geometry is molded in a first compression stage with high compression force, high
mold temperature, and high compression speed. In a second stage, the flowability of the
melt is restored by decompression. In a subsequent third stage, the homogenization of
the thickness dimensional stability is ensured by flow compensation processes with low
compression speed and compression force. The multi-stage embossing process reduces
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the maximum deviation of the thickness over the flow path from approximately 20% to
only 3% over the flow path, while keeping the maximum achieved plate aspect ratio with
approximately 91 unchanged, compared to the single-stage process.
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Abbreviation

PEMFC Polymer electrolyte membrane fuel cell
CNT Carbon nanotubes
PPS Polyphenylene sulfide
PP Polypropylene
PA6 Polyamide 6
S/V Surface to Volume ratio
ICM-DT Injection compression molding with dynamic mold temperature control
IM-DT Injection molding with dynamic mold temperature control
DSC Dynamic differential calorimetry
pvT Pressure–volume–temperature measurement
R Electrical resistance
RL,x Line resistance
A Cross sectional area of the current passage
d Plate thickness
ρ Specific resistivity
σ Specific conductivity
Tm Mold temperature
Td Demolding temperature
Tc Crystallization temperature
Tc,b Temperature of crystallization onset
Tc,m Temperature of crystallization peak
Tc,e Temperature of crystallization offset
Fc,x Compression force in stage x
vc,x Compression speed in stage x
Tiso,x Isothermal and isobaric compression time in stage x
th Heating time
TM Melt temperature
sc Compression gap
vi Injection flowrate
tcool Cooling time
fc Filling content
mc/pp/g,res Residual mass of the compound/polypropylene/graphite
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