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Abstract 12 

As the most common subtype of dementia, Alzheimer’s disease (AD) is characterized by a 13 

progressive decline in cognitive functions, especially in memory, thinking, and reasoning ability. 14 

Early diagnosis and interventions enable the implementation of measures to reduce or slow further 15 

regression of the disease, preventing individuals from severe brain function decline. The current 16 

framework of AD diagnosis depends on A/T/(N) biomarkers detection from cerebrospinal fluid or 17 

brain imaging data, which is invasive and expensive during the data acquisition process. Moreover, 18 

the pathophysiological changes of AD accumulate in amino acids, metabolism, neuroinflammation, 19 

etc., resulting in heterogeneity in newly registered patients. Recently, next generation sequencing 20 

(NGS) technologies have found to be a non-invasive, efficient and less-costly alternative on AD 21 

screening. However, most of existing studies rely on single omics only. To address these concerns, 22 

we introduce WIMOAD, a weighted integration of multi-omics data for AD diagnosis. WIMOAD 23 

synergistically leverages specialized classifiers for patients' paired gene expression and 24 

methylation data for multi-stage classification. The resulting scores were then stacked with MLP-25 

based meta-models for performance improvement. The prediction results of two distinct meta-26 

models were integrated with optimized weights for the final decision-making of the model, 27 

providing higher performance than using single omics only. Remarkably, WIMOAD achieves 28 

significantly higher performance than using single omics alone in the classification tasks. The 29 

model's overall performance also outperformed most existing approaches, highlighting its ability 30 

to effectively discern intricate patterns in multi-omics data and their correlations with clinical 31 

diagnosis results. In addition, WIMOAD also stands out as a biologically interpretable model by 32 

leveraging the SHapley Additive exPlanations (SHAP) to elucidate the contributions of each gene 33 

from each omics to the model output. We believe WIMOAD is a very promising tool for accurate 34 
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AD diagnosis and effective biomarker discovery across different progression stages, which 35 

eventually will have consequential impacts on early treatment intervention and personalized 36 

therapy design on AD. 37 

Keywords:  Alzheimer’s Disease, Multi-omics, Weighted Score Fusion, Early Diagnosis, DNA 38 

Methylation 39 

 40 

Introduction 41 

Alzheimer’s disease (AD) is the most common subtype of dementia, characterized by a 42 

progressive decline in cognitive functions, notably in memory, thinking, and reasoning [1]. It is 43 

closely associated with aging and exerts a persistent impact on cognitive functions [2]. With a 44 

national care cost growth of $24 billion from a year ago, reaching $345 billion overall in 2023, 45 

this neurodegenerative disease poses significant challenges for individuals and their families [3]. 46 

But according to previous study [4], AD is not an inevitable process of aging and there is the 47 

possibility to prevent or delay the development of this demensia in certain proportion of people. 48 

For primary healthcare and disease screening, the ability to achieve early and efficient diagnosis 49 

of AD is crucial for effective intervention and treatment [5].  50 

Typically, AD is characterized by the A/T/N framework [6]. The "A" component refers to 51 

amyloidosis-beta peptide accumulation [7–9], and the "T" aspect, tauopathy, represents 52 

hyperphosphorylated tau protein aggregation [10,11]. The "N" component, focusing on specific 53 

aspects of neurodegeneration [12], gives an overall picture of neuronal and synaptic loss in the 54 

patients’ brains. So far, the majority of research relies on phenotypic data, particularly brain 55 

imaging like Magnetic Resonance Imaging (MRI), Computed Tomography (CT) and Positron 56 

Emission Tomography (PET) [13,14]. With the advancements in artificial intelligence (AI) 57 
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algorithms [15], Chen et al. [16] have implanted U-Net, Multi-Layer Perceptron, and Graph Neural 58 

Network for 3-class AD diagnosis, and Al-Otaibi et al. [17] demonstrate the deep transfer learning 59 

on brain imaging with AutoEncoder structure, providing high classification performance. To 60 

aggregate different information extracted from multiple types of images, MMTFN introduced by 61 

Miao et al. [18] constructs a 3D multi-scale residual block layers and a Transformer network that 62 

jointly learns the representations from MRI and PET images of 720 subjects and gets a 94.61% 63 

accuracy between AD and Normal Control. Although the models are promising, utilizing the 64 

imaging data as model inputs results in However, idealized brain imaging of patients remains 65 

limited, and the neuropathological diagnosis is invasive and harmful to patients [19]. As 66 

pathophysiological changes gradually accumulate in amino acids, metabolism, and 67 

neuroinflammation, newly registered patients show considerable heterogeneity in the impaired 68 

cognitive domains which will lead to increasing diagnostic costs [20,21], underscoring the need 69 

for more precise and individualized diagnostic approaches [22–24]. 70 

With the progress in sequencing techniques, genetic data is increasingly being utilized as 71 

external validation in AD studies as the less-expensive and less-invasive measurement [25]. For 72 

example, researchers have identified many genetic risk factors for AD (e.g., APOE [26], CR1 [27], 73 

ABCA7 [28], etc.) identified by Single Nucleotide Polymorphism (SNP) in Genome-Wide 74 

Association Studies (GWAS) [29,30]. Transcriptomic analysis is also essential for biomarker 75 

detection in complex diseases like AD. Guo and Yang [31] applied a transcriptome-wide 76 

association study (TWAS) with reference transcriptomic data from brain and blood tissues and 77 

detected 141 risk genes while Methys et al. [32] utilized advanced single-cell transcriptome 78 

analysis and found cell-type specific disease-associated changes across various degrees of AD, 79 

which can provide a molecular and cellular foundation for further investigation. As one of the main 80 
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components of the epigenetic data and highly correlated with aging [33], DNA methylation level 81 

is found to be increased in peripheral cells of AD patients while correlating with worse cognitive 82 

performances and APOE polymorphism [34,35]. However, considering the intricate nature of the 83 

aging process and the progression of neurodegenerative disorders, relying on one data modality 84 

only may underestimate other related risk factors in this complicated process, since one omics can 85 

not convey all the information needed. 86 

To enhance the effectiveness of current AD research, integrating genetic data could greatly 87 

improve the accuracy, reliability, and interpretability of the computational model [36–38]. 88 

However, how to combine data from different omics layers to provide a holistic view of biological 89 

systems remains the major challenge of this field. One general solution is to summarize all results 90 

from transcriptomic, proteomics, metabolomics, etc., on brains and other tissues and form a 91 

comprehensive understanding of the impact of one gene alterations in individual clinical 92 

trajectories [39–42]. Factor analysis, which represents high-dimensional variables to a smaller 93 

number of latent factors, is also brought up in multi-omics research (MOFA, multi-omics factor 94 

analysis) [43]. iCluster [44], JIVE [45] , and SLIDE [46] are all commonly used tools that jointly 95 

model associations and the variance-covariance structure within each data type while reducing the 96 

dimensionality for clustering. In AD studies, Bao et al. [47] proposed a structural Bayesian factor 97 

analysis framework named SBFA that incorporates imaging and biological data for functional 98 

assessment questionnaire (FAQ) score prediction. In addition, various integration or ‘fusion’ 99 

methodologies have been introduced through data concatenation with AI-based algorithms [48–100 

50], but models that focus on AD studies are rare [51]. Clinical information is also incorporated in 101 

the integration process for better diagnosis performance [52]. 102 
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Despite these advancements, significant gaps remain in integration studies. Firstly, most 103 

genomic studies focus on SNPs or gene expression data, with less attention on methylation data, 104 

which is highly related to aging and AD [53–55]. Secondly, widely used direct data concatenation 105 

[56] for integration may lose some key information for each data modality, as each omics will have 106 

different representations and data formats. To fill this gap, we proposed WIMOAD, which assigns 107 

distinct weights for the prediction score of each omics classifier and integrate the results from 108 

different data modalities to do the final decision-making, for different stages diagnosis of AD. Our 109 

major contribution can be summarized as follows: 110 

(1) We proposed a stacked weighted score-based multiomics (gene expression and methylation 111 

data from ADNI)  fusion model for Alzheimer’s disease diagnosis, which has surpassed the 112 

performance of using single omics alone, as well as the existing integration methods. 113 

(2) The stacking part of the ensemble model has dramatically improved the overall classification 114 

outcome on both single omics and the integration of two omics 115 

(3) The proposed model is accurate, easy to use, time-saving, and interpretable from a biological 116 

view as we apply the Shapley Value [57] to quantify the contribution of individual genes for 117 

model decision-making, which will help for new biomarker detection. 118 

 119 

Materials and Methods 120 

Datasets 121 

The data used in this paper are from the genetic section of the Alzheimer’s Disease 122 

Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). ADNI is a longitudinal multicenter 123 

study that collected clinical, imaging, genetic, and biochemical biomarkers for early detection and 124 

tracking of recruited cohorts across different time points. For our model, we collected the data of 125 
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591 people’s gene expression and methylation profiles as model input following the criteria that 126 

the genetic profiles from different omics are paired for a certain sample (Originally we have 744 127 

gene expression profiles and 649 methylation data records. The rest of the samples which only has 128 

one omics data were eliminated). Among them,  there are 203 Normal Controls (CN) subjects (age: 129 

74.45 ± 5.78, F/M: 101/102), 180 Early Mild Cognitive Impairments (EMCI) subjects (age: 71.44 130 

± 7.11, F/M: 81/ 99), 113 Late Mild Cognitive Impairments (LMCI) subjects (age: 72.74 ± 7.67; 131 

F/M: 45/68), which is 293 Mild Cognitive Impairments (MCI) and 95 Alzheimer’s Diseases (AD) 132 

(age: 74.28 ± 7.59, F/M: 35/60). The demographic information of the data is shown in Table.1. 133 

For subsequent binary group classification tasks, we have reprocessed the original categories as 134 

follows: all samples, excluding the AD group, were categorized into a "patient" (PT) group to 135 

facilitate ‘PT-AD’ binary classification. Furthermore, the EMCI and LMCI groups were combined 136 

into a single MCI group, enabling the execution of other binary classification tasks related to MCI. 137 

Table. 1 The demographic information of the Selected Participants. Data are mean ± standard 138 

deviation (std). CN: Normal Controls; EMCI: Early Mild Cognitive Impairments; LMCI: Late 139 

Mild Cognitive Impairments; MCI: Mild Cognitive Impairments; AD: Alzheimer’s Diseases; F: 140 

Female; M: Male 141 

Diagnosis Samples Age (mean±std) Sex (F/M) 

CN N = 203 74.45 ± 5.78 101/102 

EMCI N = 180 71.44 ± 7.11 81/ 99 

LMCI N = 113 72.74 ± 7.67 45/68 

AD N = 95 74.28 ± 7.59 35/60 

 142 

Overview of WIMOAD Framework 143 
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WIMOAD is a weighted score fusion model based on combining multiple base classifiers 144 

[58]. The pipeline is shown in Fig. 1. After establishing the database, gene expression and 145 

methylation data were extracted and paired according to patient ID to serve as model inputs. The 146 

model processed these omics separately, extracting the most variable genes from both omics within 147 

two categorized groups to use as features. For each data type, five commonly used machine 148 

learning classifiers, Support Vector Machine (SVM) [59] , Random Forest (RF) [60], Naïve Bayes 149 

(NB) [61], Logistic Regression (LR) [62] and K-Nearest Neighbors (KNN) [63], were applied 150 

independently to create new training sets with the prediction scores for meta-models, feedforward 151 

Multi-Layer Perceptron (MLP) [64,65]. Finally, the meta-model prediction results from both gene 152 

expression and methylation were combined using a weighted fusion mechanism [56]. The 153 

ensembled result was used to make the final decision on AD diagnosis. Subsequent optimization 154 

was performed for each classifier and the ensemble weight to enhance the integration model 155 

performance. The model was validated under 10 times 10-fold cross-validation (CV). In each CV 156 

round, the predicted score of each model was linearly combined by assigned weights for the final 157 

decision of the whole model. Once trained, the models were interpreted using SHAP to explain 158 

the results. 159 
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 160 

Fig. 1. The Workflow of WIMOAD. The process begins by identifying the most variable features 161 

from paired gene expression and methylation data for classification. For each omics data, different 162 

classifiers were trained. The outputs of the basic classifiers were considered as the new training 163 

sets for two distinct meta-models, which used the predictions of base classifiers as inputs and 164 

generated the overall prediction scores. For multi-omics integration, each meta-model is assigned 165 

a weight for ensemble learning, which also controls the contributions of each meta-model to the 166 

final decision. SVMexp: Support Vector Machine for gene expression data. SVMmethl: Support 167 

Gene Expression Methylation

Most Variable Genes Most Variable Genes

SVMexp RFexp NBexp KNNexp

New Training Set1

Meta Modelexp

SVMmethl RFmethl NBmethl KNNmethl
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Vector Machine for gene methylation data. RF: Random Forest classifier. NB: Naïve Bayes 168 

classifier. KNN: K-Nearest Neighbor classifier. LR: Logistic Regression. 169 

 170 

Preprocessing of multi-omics data 171 

The gene expression profiling was provided with Affymetrix Human Genome U219 Array 172 

from peripheral blood samples. The raw expression values generated by this platform were first 173 

normalized using the Robust Multi-chip Average (RMA) method, resulting in 530,467 probes 174 

corresponding to 49,293 transcripts from 744 samples. These probes were subsequently mapped 175 

and annotated according to the human genome reference (hg19). Given that a single gene may be 176 

associated with multiple probes, we selected the probe data corresponding to the first occurrence 177 

of each gene in the processed matrix to represent the expression level of that gene for each 178 

individual. Genes with missing information in the annotated data were excluded from further 179 

analysis. Finally, the filtered data contains 20,270 annotated genes, and the expression matrix 180 

underwent a log transformation for scaling, which aimed to improve the accuracy of classification 181 

results. 182 

Whole-genome DNA methylation profiling was conducted using the Illumina Infinium 183 

HumanMethylationEPIC BeadChip Array. The original data samples were normalized with the 184 

dasen method for downstream quality control (QC) including p-value criteria filtering, sex and 185 

sample ID verification, with 649 samples remained. The database provided raw data for these 649 186 

participants who had undergone the QC process for further analysis. We obtained beta values for 187 

a total of 865,860 CpG sites by analyzing the channel signals. These CpG sites were subsequently 188 

mapped to the human genome reference (hg19), resulting in methylation data for 20,594 genes. 189 

The workflow of the multi-omics data preparation is summarized in Fig. 2. 190 
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 191 

Fig. 2. The Preprocessing Steps for Multi-Omics Data. 192 

Feature Selection 193 

For a supervised learning model, in the case of a high-dimensionality curse and to enhance 194 

prediction efficiency while simultaneously reducing the consumption of computational resources, 195 

feature selection is a key process for model prediction. We selected 1000 genes that show 196 

statistically significant within-group variance separately for different omics inputs based on the 197 

ANOVA F-value [66] calculated by the ‘SelectKBest’ package in scikit-learn with ‘f_classif’ 198 

function. For comparison, we also employed median absolute deviation (MAD)  and Fano factor 199 

for gene selection [67]. 200 

 201 

Weighted Score Fusion   202 

In omics integration research, a common approach is to concatenate different types of data 203 

directly before classification. However, in this study, Exp and Methl data exhibit substantial 204 

differences in their representations and feature characteristics, which will result in suboptimal 205 

classification outcomes when directly concatenated or combined pairwise. Consequently, we 206 

employed a score fusion method to construct an integration model for multi-omics data. Initially, 207 

we assigned trained meta-model to each dataset separately for binary classification. Subsequently, 208 
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we performed a weighted linear aggregation of the obtained prediction scores to derive the final 209 

prediction score of the model, which calculated as:  210 

𝑠Int	 = α ∗ 𝑠%&' + β ∗ 𝑠()*+, (1) 
s.t.	𝛼 + 𝛽 = 1, 𝛼 ≥ 0, 𝛽 ≥ 0  

 211 

Where 𝑠Int	is the integrated prediction score of two meta-models, which represents the 212 

probability of a given sample belonging to a specific class. 𝑠%&' as the score generated by the 213 

gene expression meta-model and 𝑠()*+, as the score generated by the gene methylation meta-214 

model. The a and b are the weight coefficients to balance the scores. These coefficients are 215 

determined by the validation data in the 10 times 10-fold CV through screening from a = 0 to a 216 

=1 in the linear combination. This approach ensures a more accurate and interpretable integration 217 

of the diverse omics data types, accommodating the unique features of each dataset and enhancing 218 

the overall classification performance. 219 

 220 

Evaluation of the Model Performance  221 

10 times 10-fold CV [68] was used to evaluate our WIMOAD. Specifically, we measured 222 

accuracy (Acc), precision (Prec), Recall (Rec), F1-Score (F1), Matthews correlation coefficient 223 

(MCC), Specificity (Sp), G-measure (G), Jaccard Index (Jacc) and Area Under Curve (AUC):  224 

𝐴𝑐𝑐 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁 (1) 

𝑃𝑟𝑒𝑐 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 (2) 

𝑅𝑒𝑐 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 (3) 

𝐹1 =
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 (4) 



𝑀𝐶𝐶 =
𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁

;(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
 (5) 

𝑆𝑝 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃 (6) 

𝐺 = AB
𝑇𝑃

𝑇𝑃 + 𝐹𝑃C × B
𝑇𝑃

𝑇𝑃 + 𝐹𝑁C 
(7) 

𝐽𝑎𝑐𝑐 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 (8) 

 225 

Model Interpretation with SHAP 226 

To develop an explainable model, we utilized the Kernel SHAP Explainer [57,69] for 227 

multi-kernel classifiers for different omics input. Given that different omics data modalities convey 228 

distinct types of information, interpreting each modality separately allows us to identify key genes 229 

contributing to the prediction results, providing a comprehensive understanding of the biological 230 

processes involved and highlighting critical genes that may be overlooked when considering a 231 

single data source. In addition, since we introduced the stacking strategy, multiple explainers were 232 

applied to different classifiers in each omics to see whether there are overlaps among the base 233 

models in contributing gene selection. We filtered the top 10 genes in this process for each kernel 234 

explainer based on the selected features and the running time. 235 

 236 

Results 237 

Machine Learning and Deep Learning Classifiers Comparison for Selected Samples 238 

WIMOAD In this paper, we initially selected SVM, Random Forest (RF), Logistic 239 

Regression (LR), K-Nearest Neighbors (KNN), Naïve Bayes (NB) and Multilayer Perceptron 240 

(MLP) as the classifiers. The Accuracy and AUC evaluation metrics of these classfiers’s 241 

performance on gene expression (Exp) and methylation (Methl) data with group CN vs. EMCI are 242 



shown in Fig. 3. With 10 times 10-fold CV, no classifier shew a performance higher than 60% in 243 

both accuracy and AUC. In addition, as a commonly used deep learning method, convolutional 244 

Multilayer Perceptron (MLP) did not exhibit higher AUC scores than conventional machine 245 

learning classifiers in the majority of groups for both omics. We finally applied some of the 246 

commonly used classifiers as the base models for further stacking study to achieve higher overall 247 

performance. 248 

 249 

Figure. 3. Comparing the Performance using one Classifier Directly on the Collected data for 250 

Binary Classification. All classifiers are trained with the same feature dimensions and 10 times 251 

10-fold CV on CN vs. EMCI group. The performance was measured using the metric introduced 252 

previously. (A-B) Accuracy and AUC score comparison on gene expression data. (C-D) Accuracy 253 

A B

C D 



and AUC score comparison on gene methylation data.  SVM: Support Vector Machine LR: Logistic 254 

Regression; MLP: Multilayer Perceptron; RF: Random Forest; NB: Naïve Bayes; KNN: K-255 

Nearest Neighbor. 256 

 257 

The Stacking Ensemble Learning has Dramatically Improved the Overall Outcome  258 

Classifiers ensemble is due to the premise that ensembles can often achieve better 259 

performance than individual classifiers. Except for general voting, stacking is also commonly used, 260 

which combines the predictions of base-level classifiers together with the class label to establish 261 

the meta-level dataset for decision-making, and is found to outperform voting [1][70]. We applied 262 

the stacking technique using a three-layer (one hidden layer) MLP as the meta-model to enhance 263 

the five base classifier outputs on single omics classification [71]. Fig. 4 shows the CN vs. EMCI 264 

group results in comparison before (SVM as the only classifier) and after introducing stacking, 265 

including gene expression and methylation. Overall, there is about 20% improvement in the 266 

performance matrix (Accuracy, Precision, Specificity, AUC) after applying stacking. Among the 267 

three feature selection methods, ANOVA F-test selection achieved the highest performance after 268 

stacking. We then select the ANOVA F-test for the feature selection block during the integration 269 

model establishment. 270 



 271 

Figure. 4. Model Improvement After Stacking. The results are based on CN vs. EMCI Group. (A) 272 

Classification performance improvement using gene expression data only before and after 273 

stacking. (B) Classification performance improvement using gene methylation data only before 274 

and after stacking. “_e”: gene expression; “_m”: gene methylation; ANOVA: ANOVA F-test for 275 

Stacking Ori.

ANOVA

MAD

Fano

A B

Stacking Ori.



feature selection; MAD: Median Absolute Deviation; Stacking: Results for stacking models; Ori.: 276 

Results using one classifier (SVM) only. 277 

 278 

Integration Model Achieved Higher Performance Than One Modality Only 279 

WIMOAD is a weighted score fusion model for binary group classification, with distinctly 280 

assigned weight coefficients to balance the contribution of each data modality when reducing the 281 

negative effect that results from the data collection to the minimum. Fig. 5 show how the 282 

coefficient of the Exp meta-model impacts the prediction accuracy of the final output. With 283 

optimized weights, the value of feature integration and the potential for original sampling exceed 284 

the performance of both Exp and Methl meta-model outputs. According to the AUC comparison, 285 

the integration model can outperform both omics when assigning weight from 0.2 to 0.8, when 286 

achieving the peaks around 0.5. Only the CN vs. EMCI group archives the peak when the weight 287 

for the Exp meta-model is 0.4. For convenience of the test, we assigned the weight coefficient as 288 

0.5 for each meta-model for further study. 289 

Our constructed WIMOAD integration model demonstrated an improvement in 290 

performance relative to single modality models, effectively mitigating the impact of poorly 291 

performing data on the final classification results with pre-optimized weight coefficients for both 292 

omics. As illustrated in Fig. 6, the integration model significantly enhanced the overall 293 

performance compared to using one omics only. 294 



 295 

Figure. 5 Variation in AUC of the Integration Model with Changes in the Integration 296 

Coefficient. the x-axis represents the increase of the integration coefficient a, which is the weight 297 

assigned to the prediction results of Exp classifier. The y-axis represents the accuracy of the model. 298 

The vertical dashed black line represents the highest AUC with respect to the weight coefficient a. 299 

In most tasks (8 out of 9), the integration has the best performance when a = 0.5. (A) AD vs. EMCI 300 

group. (B) AD vs. LMCI group. (C) AD vs. MCI  group. (D) CN vs. AD group. (E) CN vs. EMCI 301 

group. (F) CN vs. LMCI group. (G) CN vs. MCI  group. (H) CN vs. PT group. (I) EMCI vs. LMCI 302 

group.  303 
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 304 

 305 

Figure. 6 Integration Performances of WIMOAD. The x-axis represents the evaluation matrix, 306 

and the y-axis represents the values. The results were generated under the best coefficient selected 307 

(a = 0.5)and cross-validated 10 times. (A) AD vs. LMCI group. (B) CN vs. AD group. (C) CN vs. 308 

CN vs. EMCI 

CN vs.ADA B

C D 

AD vs. LMCI 

EMCI vs. LMCI 



LMCI group. (D) EMCI vs. LMCI group. ‘*’:p<0.05; ‘**’: p<0.01; ‘***’: p<0.001; ‘****’: 309 

p<0.0001. 310 

 311 

Comparison with State-of-the-art Predictors 312 

Table. 2 compares the performance of WIMOAD against the state-of-the-art predictors for 313 

AD diagnosis using the paired ADNI data in our case. Across all the nine groups, the WIMOAD 314 

demonstrates consistently higher accuracies (77.6% on average compared to 70.4% using 315 

IntegrationLearner [72] and 45.6% using MOGLAM [73]) and AUCs (86.9% on average 316 

compared to 69.4% with IntegrationLearner and 53.7% with MOGLAM) compared to the existing 317 

integration methods.  318 

Table. 2 Comparing state-of-the-art methods. All model apply ADNI data as input source. 319 

Groups 
WIMOAD IntegrationLearner [72] MOGLAM [73] 

Acc AUC Acc AUC Acc AUC 

AD vs. EMCI 0.776 0.882 0.712 0.686 0.333 0.531 

AD vs. LMCI 0.862 0.946 0.698 0.743 0.450 0.495 

AD vs. MCI 0.776 0.830 0.767 0.660 0.237 0.487 

CN vs. AD 0.798 0.896 0.730 0.706 0.310 0.494 

CN vs. EMCI 0.803 0.888 0.662 0.706 0.474 0.536 

CN vs. LMCI 0.773 0.873 0.715 0.709 0.355 0.673 

CN vs. MCI 0.743 0.845 0.671 0.678 0.592 0.574 

CN vs. PT 0.709 0.810 0.685 0.671 0.733 0.489 

EMCI vs. LMCI 0.740 0.847 0.695 0.685 0.621 0.556 

Avg 0.776 0.869 0.704 0.694 0.456 0.537 



 320 

Contributing Genes Identification According to Shapley Values 321 

We leveraged SHAP explainer to enhance the interpretability of our approach by analyzing 322 

the importance of each most variable genes selected for model output. As demonstrated in Fig. 7 323 

(A-E), the gene contributions represented by their respective SHAP values' magnitudes were 324 

ranked for gene expression data of group CN vs. EMCI, elucidating the top 10 genes exerting the 325 

most substantial influence on model predictions. Remarkably, discernible variations emerged 326 

across different binary groups and omics data types. It becomes evident that the regulatory 327 

dynamics, manifested through gene upregulation or downregulation, yield bidirectional effects on 328 

the model's decision boundaries, influencing the classification outcome for individual samples. 329 

After the ntersection of top5 contributing genes among five classifiers, ABRA (Actin-binding Rho-330 

activating protein)  is the gene present in the overlap. In the SHAP summary plot, if the ABRA 331 

gene expression level is high, the model is more likely to predict the sample as EMCI. 332 



 333 

Fig. 7. SHAP Plots for Model Explanation and Contributing Genes Detection. Top 10 most 334 

contributing genes and their influence on the model classification (sample being classified as 335 

EMCI) were exhibited. (A-E) SHAP summary plots for gene expression classifier of CN vs. EMCI 336 

group. the colors show the gene expression/methylation level of certain genes, and the SHAP 337 
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values of the certain gene for each sample are denoted in the x-axis. Higher SHAP values for a 338 

certain gene represent the higher possibility that with the expression/methylation value, the model 339 

will classify the sample as AD. (F) The heatmap showing the overlapping genes of five gene sets 340 

generated  from the top5 contributing genes in each classifier. 341 

 342 

Discussion 343 

In this study, we introduce WIMOAD (Weighted Integration for Superior Alzheimer's 344 

Diagnosis), a supervised binary classification model that integrates the stacked classification 345 

results from gene expression and methylation data through a weighted score fusion approach for 346 

early diagnosis of AD. Additionally, the model applied SHAP to interpret the contributions of 347 

different omics data and revealed distinct contributing genes across various data sources. 348 

According to the 10 times 10-fold CV results, WIMOAD improves the overall performance by 349 

integrating two omics in the binary classification task, especially in the classification case between 350 

health control and early mild cognitive impairment.  351 

WIMOAD is an integration model based on meta-learning. As the convolutional and MLP-352 

based classifiers and algorithms that applied deep learning did not provide better performances 353 

with the datasets according to the classifiers comparison, we established meta-models that take the 354 

predictions from different classifiers and the test label as a training dataset for model improvement 355 

for each omics. By assigning weights for the score generated by each classifier to different omics 356 

data profiles, there is a general increase in the model output, which results in one or more peaks 357 

that the performance matrix of the model can surpass using single omics in the classification task. 358 

After the establishment of the model, we tested other multimodal fusion models, such as 359 

IntegrationLearner from Mallick et al. [72], a novel Bayesian ensemble method that combines 360 



information across several longitudinal and cross-sectional omics data layers, and MoGLAM from 361 

Ouyang et al. [73], which integrates a dynamic graph convolutional network, attention mechanism, 362 

and omic integrated representation learning modules for fusing DNA methylation, miRNA, and 363 

mRNA expression profiles for disease classification. Comparative analysis revealed that 364 

WIMOAD consistently outperformed these methods across all classification groups. A likely 365 

reason for WIMOAD's superior results is its use of weighted score fusion to aggregate predictions 366 

from different classifiers, followed by decision-making, rather than directly concatenating data 367 

from various sources as input for predictions. 368 

For the interpretability of the model, WIMOAD applied SHAP for each data modality. 369 

Instead of directly combining data, WIMOAD can extract specific representations from different 370 

data modalities simultaneously and fully use all the information for the prediction. By quantifying 371 

the contributions of the most variable genes  separately, WIMOAD will contribute to the detection 372 

of new biomarkers in multi-omics for early diagnosis, biomarker discovery, and precision therapy 373 

design in AD studies. Given that the SVM model can currently only utilize KernelSHAP—an 374 

algorithm within SHAP with relatively high computational complexity and longer runtime—we 375 

have limited our presentation to the top ten genes (both expression and methylation) that most 376 

significantly influence the model's predictions. Integrating SHAP into the decision-making process 377 

allows for the visualization of how gene expression/methylation levels affect model predictions as 378 

well. For instance, a higher expression level of a particular gene correlates with a higher 379 

corresponding Shapley value, indicating that when the model detects high expression of this gene 380 

in a sample, it is more likely to classify the sample into a specific category. This demonstrates that 381 

the gene's expression level has a direct impact on the model's final prediction. Consequently, 382 

incorporating the SHAP explainer makes it feasible to identify new biomarkers. Additionally, in 383 



binary classification cases, the results obtained from different groups could potentially serve as 384 

markers for identifying the various stages in the progression from healthy (CN) to MCI (EMCI 385 

and LMCI) and AD. 386 

The limitations of the WIMOAD model primarily center on the number of modalities it 387 

deals with. WIMOAD currently integrates only gene expression and methylation data, whereas 388 

most state-of-the-art integration models incorporate three or more data modalities. During the 389 

development of WIMOAD, we attempted to include proteomics profiles [74] into consideration. 390 

However, only 129 samples met the criteria of having gene expression, methylation, and 391 

proteomics data after filtering, and these samples were only sufficient for the CN-LMCI binary 392 

classification task. As a result, the model is limited to two types of omics data. Notably, since 393 

our data all comes from the peripheral blood,  the biomarker detection in the study needs further 394 

investigation about how it links with the change in the brain, and how it will contribute to the 395 

mechanism of the AD process. 396 

 397 

Conclusion 398 

In this paper, we proposed a weighted score fusion model named WIMOAD for multi-399 

omics integration in AD diagnosis. It is a meta-learning-based model that extracts information 400 

from both gene expression and paired methylation profiles of samples for model decision-making. 401 

Compared to the most recent models presented that incorporate statistical analysis and deep 402 

learning algorithms, WIMOAD has surpassed most classification tasks with genetic data. By 403 

adding the SHAP explainer in the workflow, top contributing genes or biomarkers from different 404 

omics and how they affect the model classification results can be visualized. Additionally, 405 

WIMOAD is also flexible in the number of data modalities included and straightforward to 406 



implement. The future direction of our research will include incorporating commonly utilized 407 

imaging data to develop a more comprehensive multi-modality-based diagnostic model that 408 

enhances AD diagnostics' robustness and clinical applicability in disease pathology. 409 
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Table. 1 The demographic information of the Selected Participants. Data are mean ± standard 

deviation (std). CN: Normal Controls; EMCI: Early Mild Cognitive Impairments; LMCI: Late 

Mild Cognitive Impairments; MCI: Mild Cognitive Impairments; AD: Alzheimer’s Diseases; F: 

Female; M: Male 

 

Table. 2 Comparing state-of-the-art methods. All model apply ADNI data as input source. 

Groups 
WIMOAD IntegrationLearner [72] MOGLAM [73] 

Acc AUC Acc AUC Acc AUC 

AD vs. EMCI 0.776 0.882 0.712 0.686 0.333 0.531 

AD vs. LMCI 0.862 0.946 0.698 0.743 0.450 0.495 

AD vs. MCI 0.776 0.830 0.767 0.660 0.237 0.487 

CN vs. AD 0.798 0.896 0.730 0.706 0.310 0.494 

CN vs. EMCI 0.803 0.888 0.662 0.706 0.474 0.536 

CN vs. LMCI 0.773 0.873 0.715 0.709 0.355 0.673 

CN vs. MCI 0.743 0.845 0.671 0.678 0.592 0.574 

CN vs. PT 0.709 0.810 0.685 0.671 0.733 0.489 

EMCI vs. LMCI 0.740 0.847 0.695 0.685 0.621 0.556 

Diagnosis Samples Age (mean±std) Sex (F/M) 

CN N = 203 74.45 ± 5.78 101/102 

EMCI N = 180 71.44 ± 7.11 81/ 99 

LMCI N = 113 72.74 ± 7.67 45/68 

AD N = 95 74.28 ± 7.59 35/60 



Avg 0.776 0.869 0.704 0.694 0.456 0.537 
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