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A mathematical model relates intracellular 
TLR4 oscillations to sepsis progression
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Abstract 

Objective:  Oscillations of physiological parameters describe many biological processes and their modulation is 
determinant for various pathologies. In sepsis, toll-like receptor 4 (TLR4) is a key sensor for signaling the presence of 
Gram-negative bacteria. Its intracellular trafficking rates shift the equilibrium between the pro- and anti-inflammatory 
downstream signaling cascades, leading to either the physiological resolution of the bacterial stimulation or to sepsis. 
This study aimed to evaluate the effects of TLR4 increased expression and intracellular trafficking on the course and 
outcome of sepsis.

Results:  Using a set of three differential equations, we defined the TLR4 fluxes between relevant cell organelles. We 
obtained three different regions in the phase space: (1) a limit-cycle describing unstimulated physiological oscilla-
tions, (2) a fixed-point attractor resulting from moderate LPS stimulation that is resolved and (3) a double-attractor 
resulting from sustained LPS stimulation that leads to sepsis. We used this model to describe available hospital data of 
sepsis patients and we correctly characterize the clinical outcome of these patients.
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Introduction
The immune system is replete with oscillations of vari-
ous parameters needed for mounting an appropriate 
response upon stimulation. TLR4 is an important bacte-
rial recognition that serves as a link between innate and 
adaptive immunity [1]. In particular, TLR4 experiences a 
significant upregulation in mRNA production and pres-
entation to the cell surface at the initial stages of sepsis in 
both humans and experimental models [2]. An emerging 
theme in TLR4 signaling posits that its cellular localiza-
tion is determinant for its functions [3]. Throughout the 
continuum of sepsis, complete TLR4 signaling includes 
not only the initial surface-bound pro-inflammatory 
signaling, but also its subsequent endocytosis and intra-
cellular trafficking. This results in competing endosomal 
anti-inflammatory cytokine production and further into 
either receptor recycling to cell membrane or signal ter-
mination within endolysosomes. Initial responsiveness 

to LPS is therefore regulated by the concentration of 
cell surface TLR4 that depends in turn on TLR4 expres-
sion, on TLR4 trafficking from the Golgi apparatus to the 
plasma membrane and on the amount of TLR4 already 
internalized in endosomes [4].

Main text
Mechanistic model of TLR4 trafficking
An overview of the known TLR4 intracellular trafficking 
routes that influence its signaling is presented in Fig. 1.

Upon endotoxin stimulation, initial TLR4 immobiliza-
tion (step 1) may lead to monomeric LPS being internal-
ized and trafficked to the Golgi apparatus within seconds 
of stimulation, without activating TLR4 (step 2). This is 
followed by TLR4 clustering (step 3) with monomeric 
LPS [5]. Internalization by either clathrin- and dynamin-
mediated processes [6] results in a switch in TLR4 sign-
aling pathways by means of different adaptors (step 4). 
Provided that TLR4 endocytosis has occurred, signaling 
continues induction of type-I interferons [7] from early 
endosomes (step 5). For the signal to be terminated (step 
6), the TLR4 complex is ubiquitinated and marked for lys-
osomal degradation. Alternatively, TLR4 can be recycled 
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for new signaling cycles back to the cell surface via the 
endosomal recycling compartment (step 7). Under limit-
cycle unstimulated physiological oscillations, cell surface 
TLR4 are present in low concentrations in macrophages 
or are undetectable in dendritic cells, with most resident 
TLR4 being distributed in the Golgi apparatus [8]. Rapid 
TLR4 mobilization to cell membrane follows LPS activa-
tion [9], canceling the downregulation present in physi-
ological conditions that serves to desensitize cells to low 
endotoxin levels. While the overall sequence of TLR4 
activation has been elucidated, the rates of TLR4 traffick-
ing are not quantified, nor are available absolute numbers 
for TLR4 expression on cell surfaces.

Simulation of TLR4 trafficking routes
In order to simulate in silico the initial TLR4 trafficking 
events between the endosomal recycling compartment 
(ERC) and the trans-Golgi network (TGN) to and from 
cell surface and within the early endosomes–endolyso-
some (EE) system, we have constructed a dynamic model 
(Additional file 1), based on the three ordinary differen-
tial equations presented below:

where: x = concentration of TLR4 in TGN and ERC, 
y = concentration of TLR4 in endosomes/endolysosomes 
(EE), z = concentration of TLR4 on cell surface, φ = rate 
of TLR4 mRNA production, β = rate of TLR4 traf-
ficked to lysosomes from endosomes, α = rate of TLR4 

(1)x′[t] = ϕx[t] − y[t]z[t]

(2)y′[t] = x[t]− βy[t]− αy[t]

(3)z′[t] = x[t]y[t] − z[t](γ − σ)

retroactively trafficked to ERC from endosomes, γ = rate 
of TLR4 on cell surface trafficked to TGN, σ = rate of 
TLR4 on cell surface trafficked to endosomal system.

The TLR4 flux in the system as indicated by Eq. (1) is 
influenced by the TRAM distribution within ERC that 
shifts onto the enlarged CD14/LPS-positive endosomes 
upon TLR4 activation [10]. The adaptor TRAM is 
also constitutively present at the plasma membrane 
anchored at a N-terminal myristoylation site and traf-
fics concomitantly the TLR4 signaling complex unidi-
rectionaly to the endosomal system [11]. This synergy 
allows for the anti-inflammatory signaling phase to take 
preponderance, possibly due to unique TLR4 confor-
mation brought on by the endosomal acidic environ-
ment, as previously proposed [12]. These events are 
dominant after about 30  min upon LPS stimulation 
[6], allowing for TLR4 to traffic, in a first stage mostly 
bidirectionally from the ERC to EE (Eq.  2). The small 
GTPase Rab7b is upregulated upon LPS exposure in the 
early endosomes and is a key regulator of intracellular 
trafficking of the TLR4 signaling complex to either late 
endosomes/lysosomes for signal termination (param-
eter β), or to ERC (parameter α) [13]. In Rab7b-silenced 
macrophages, after LPS stimulation, continued TLR4 
presence only in the EE system has adverse effects as to 
its prolonged anti-inflammatory signaling [14]. Equa-
tion  (3) describes the TLR4 cell surface concentration 
changes as the difference between the pool of available 
TLR4 in TGN + ERC and in EE, and the TLR4 that is 
actively being prevented from clustering on the cell 
surface (so as to increase downstream signaling), be it 
directly from the surface towards TGN (parameter γ) 
or towards EE (parameter σ).

Fig. 1  TLR4 distribution and activation between different cell compartments. Star symbols represent single LPS ligands; yellow thunder symbols 
depict single TLR4, white thunders describe signaling-competent TLR4 dimers. Numbers indicate the steps of LPS binding, followed by TLR4 
trafficking and signaling events
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Results and discussion
In the absence of available data from the literature, the 
parameter values for φ, β, γ, σ and φ were varied until a 
stable limit cycle was obtained, a characteristic of pro-
tein expression, as previously shown [15]. The first four 
parameters were kept constant to reflect the steady-state, 
non-stimulated oscillations in the TLR4 intracellular 
trafficking, while the φ-parameter that was determined 
experimentally elsewhere [16] was allowed to vary. Using 
Eqs.  1–3, we sought to model the cellular regimes that 
are impacted by the overall TLR4 sensitivity to LPS, as 
reflected by the initial rate of tlr4 mRNA synthesis, upon 
sepsis diagnosis and prior to clinical intervention. The 
φ-parameter augments markedly in experimental models 
of sepsis and directly correlates with mortality, with peak 
increases between 1 and 3 h post sepsis induction [2]. As 
such, its oscillations will determine TLR4 changes within 
various relevant cell compartments and dictate the tim-
ing and preponderance of the pro- and anti-inflamma-
tory responses. We defined three regions in the phase 
space for the plasma membrane and intracellular TLR4 
distribution, based on the variations of φ-parameter 
(Additional file  2): (i) a steady-state with TLR4 expres-
sion and concentration oscillating within a narrow mar-
gin throughout the relevant cell compartments, (ii) a 
low to medium tlr4 mRNA production following LPS 
stimulation that results in an initial increase of TLR4 
concentration on the cell surface and subsequently in the 
endosomal system, followed by a regulated decrease, (iii) 
a third, high tlr4 mRNA output matching increasing LPS 
stimulation where TLR4 concentrations oscillate stably 
and irreversibly on the cell surface and within the EE. 
The variations in tlr4 mRNA measured in the patients 

served as the first parameter (φ) to be changed, respon-
sible for initial TLR4 distribution within the relevant cell 
compartments. TLR4 is unique among other pathogen-
recognition receptors in that its intracellular trafficking 
is determinant for the inflammatory signaling it initiates 
[3]. Depending on initial conditions and rate changes, 
the ensuing orbits either approach stable fixed points or 
undergo variations, each having a different physiological 
interpretation, as presented in Fig. 2.

a. Physiological variations in TLR4 concentrations
In all simulations, we assumed that initial expression 
levels on the cell surface, TGN/ERC and EE are low. For 
steady-state conditions, we proposed that TLR4 concen-
tration oscillations are of low amplitude, reflecting the 
experimental data on tlr4 mRNA in human monocytes 
in vitro [17]. A stable limit cycle is achieved with φ = 1.2, 
β = 3.6, α = 1.2, γ = 2.4, σ = 1.3 (Fig. 2a).

b. Sepsis progression and resolution
We propose that following a moderate LPS stimulation, 
TLR4 levels initially increase in order to proportionally 
signal the Gram-negative bacterial presence [8]. A fixed-
point attractor is obtained with φ < 1.2, β = 3.6, α = 1.2, 
γ = 2.4, σ = 1.3 (Fig. 2b).

c. Sepsis progression and mortality
Upon increasing LPS stimulation, we assumed that tlr4 
mRNA rates are amplified proportionally, the result of 
which leads to the system moving to a double-attrac-
tor. TLR4 concentrations oscillate with highest ampli-
tude and indefinitely between cell surface and EE 

Fig. 2  Simulated TLR4 cellular distribution during sepsis. a Attractive limit cycle representing steady-state oscillations. b Fixed-point attractor 
obtained following a low to medium (φ < 1.2) tlr4 mRNA increase that temporarily augments TLR4 concentrations on the cell surface and thereafter 
within the EE system. c Double-attractor obtained upon increasing tlr4 mRNA, that leads to high TLR4 concentrations oscillating indeterminately 
between EE and cell membrane. X axis = TLR4 concentration in TGN/ERC. Y axis = concentration of TLR4 in EE. Z axis = concentration of TLR4 on cell 
surface. Units represent fold changes
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compartments, with no signal resolution, using φ > 1.2, 
β = 3.6, α = 1.2, γ = 2.4, σ = 1.3 (Fig. 2c).

We note that this model, when using the initial, pre-
treatment rates of tlr4 mRNA from the patient cohort 
yielded appropriate descriptions of both the clinical 
outcome in 8 out of 10 patients [16], and the category 
of attractor each patient belongs to (Additional file 2). 
Patients whose TLR4 concentrations changes evolved 
towards one attractor survived sepsis (patients #1, 4, 
5, and 8). In contrast, those patients that presented a 
double-attractor state for TLR4 died within 3 days after 
ICU admission (patients #3, 6, 7, and 10). As a test to 
the sensitivity and specificity of our model, patient #2 
died 9 days after ICU admittance due to Candida albi-
cans infection, a pathogen known to stimulate both 
TLR2 and TLR4 and is commonly associated with 
severe immunosuppression [18]. Patient #9 survived 
with negative microbiological cultures, a result of false-
negative cultures or sepsis without infection, a situation 
not accounted for in our model. We have used initial 
tlr4 mRNA expression levels from sepsis patients in a 
dynamic model in order to describe the distribution of 
TLR4 within the cell surface compartment (pro-inflam-
matory role), or intracellularly (anti-inflammatory and 
signal termination functions). We discriminated Gram-
negative infections from the overall cohort and cor-
rectly described the clinical outcome of 8/10 patients. 
Confirming this model with in  vivo measurements of 
TLR4 intracellular trafficking rates would provide fur-
ther insight into their contribution to sepsis onset and 
progression.

Limitation
The study was unable to account for phagosome signaling 
of whole Gram negative bacteria, nor for the additional 
TLR4 subpopulation that trafficks from ERC to phago-
some after LPS stimulation.

Abbreviations
TLR: toll-like receptor; ERC: endosomal recycling compartment; TGN: trans-
Golgi network; EE: endosomes–endolysosome.
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