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Negative thermal expansion (NTE) and magnetic properties were investigated for

antiperovskite Ga1−xCrxN0.83Mn3 compounds. As x increases, the temperature span

(1T ) of NTE related with Ŵ5g antiferromagnetic (AFM) order is expanded and shifted to

lower temperatures. At x = 0.1, NTE happens between 256 and 318K (1T = 62K)

with an average linear coefficient of thermal expansion, αL = −46 ppm/K. The 1T

is expanded to 81K (151–232K) in x = 0.2 with αL = −22.6 ppm/K. Finally, NTE

is no longer visible for x ≥ 0.3. Ferromagnetic order is introduced by Cr doping and

continuously strengthened with increasing x, which may impede the AFM ordering and

thus account for the broadening of NTE temperature window. Moreover, our specific heat

measurement suggests the electronic density of states at the Fermi level is enhanced

upon Cr doping, which favors the FM order rather than the AFM one.

Keywords: negative thermal expansion, antiferromagnetic order, specific heat, antiperovskite compounds,

Cr substitution

INTRODUCTION

Negative thermal expansion (NTE) materials, which contract upon heating, have received great
attentions recently (Mary et al., 1996; Takenaka and Takagi, 2005; Goodwin et al., 2008; Long
et al., 2009; Greve et al., 2010; Azuma et al., 2011; Yamada et al., 2011; Huang et al., 2013;
Panda et al., 2014; Zhao et al., 2015). From the view point of applications, NTE materials
can be used as fillers for compensating and controlling the positive thermal expansion (PTE)
of normal materials by forming composites (Romao et al., 2003; Chen et al., 2015). NTE has
been observed in many materials due to different mechanisms, including flexible framework
in crystal structure (Mary et al., 1996; Goodwin et al., 2008; Greve et al., 2010; Ge et al.,
2016; Hu et al., 2016; Jiang et al., 2016), ferroelectricity (Xing et al., 2003; Chen et al.,
2013), charge transformation (Long et al., 2009; Azuma et al., 2011; Yamada et al., 2011),
magnetovolume effect (MVE) (Takenaka and Takagi, 2005; Huang et al., 2013; Li et al., 2015,
2016), and martensitic transformation (Zhao et al., 2015; Lin et al., 2016). Among them, the
NTE related with MVE in antiperovskite manganese nitrides ANMn3 (A: transition metal
or semiconducting elements) has been extensively studied because of the large and isotropic
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NTE with tunable linear coefficient of thermal expansion
(αL), good mechanical properties (large Young’s modulus and
hardness) and thermal/electrical conductivities (Takenaka and
Takagi, 2005; Sun et al., 2007; Huang et al., 2008; Song et al., 2011;
Tong et al., 2013a,b; Tan et al., 2014).

Large lattice volume contraction of a few percent at the
antiferromagnetic (AFM) to paramagnetic (PM) phase transition
due to MVE has been reported in antiperovskite manganese
nitrides decades ago (Fruchart and Bertaut, 1978). However, due
to the limited temperature window (a few K) of MVE, these
materials cannot be practically used as PTE compensators. In
2005, Takenaka firstly reported the broadening of MVE window
in Cu1−xGexNMn3 (Takenaka and Takagi, 2005). From then on,
many studies reported the NTE properties in ANMn3 (A = Zn,
Ga, Ag, and Cu) by substituting A with non-magnetic elements,
such as Ge, Sn, Si (Sun et al., 2007, 2010a,b; Huang et al., 2008;
Takenaka et al., 2008; Dai et al., 2014). Neutron diffraction studies
indicated that the pronounced MVE occurs due to the ordering
of the non-collinear triangular Ŵ5g AFM spin configuration,
and the non-magnetic element doping slows down the ordering
of Ŵ5g AFM phase (Iikubo et al., 2008a; Song et al., 2011;
Deng et al., 2015a,b). Local structure measured via the neutron
pair distribution function (PDF) (Iikubo et al., 2008b; Tong
et al., 2013a) and x-ray absorption fine structure measurements
(Matsuno et al., 2009) suggested a strong relation between the
broadening of AFM transition and the local lattice distortions,
though a detailed mechanism is still under debate (Tong et al.,
2013a). Very recently, we found that by partially replacing A in
ANMn3 (i.e., GaN0.8Mn3, AgNMn3) with Mn, the MVE window
was expanded as well (Guo et al., 2015; Lin et al., 2015), while
local structural distortion was not observed (Guo et al., 2015).
For example, in Ga1−xMnxN0.8Mn3 the 1T of NTE reaches
54K (between 255 and 309K, αL = −42 ppm/K) and 73K
(between 206 and 279K, αL = −25 ppm/K) for x = 0.25 and
0.3, respectively (Guo et al., 2015). Large NTE with αL ∼ −20
ppm/K at cryogenic temperatures (below 120K) was achieved
in (Ga0.7Cu0.3)1−xMnxNMn3 with x = 0.25 and 0.3 (Guo et al.,
2017). In those Mn-doped compounds, in addition to the AFM
order that gives rise to the large volume change, the coexisting
FM order was demonstrated to impede the growth of the AFM
order and thus cause the broadened 1T of lattice contraction
(Guo et al., 2015, 2017; Lin et al., 2015). It is interesting to check
whether other 3d elements can tune the NTE of ANMn3 as the
Mn does.

Here, we report influences of Cr substitution for Ga on
thermal expansion and magnetic properties of MVE-compound
GaN0.83Mn3. GaN0.83Mn3 is AFM below TN ∼ 360K (Kasugai
et al., 2012). Upon substituting Cr for Ga, the AFM ground
is quickly suppressed. Meanwhile, FM order is introduced
and increasingly enhanced with increasing Cr doping level.
Accompanying with the suppression of AFM state, the sharp
MVE of the parent compound is quickly moved to lower
temperatures and the related temperature range is widened. A
quite large NTE temperature window of 81K (151–232K) with
a considerably large average αL ∼ −22.6 ppm/K was observed
in x = 0.2. The emergence of FM order can be attributed to the
increasing electronic density of states (DOS) at the Fermi energy

(EF) as indicated by the increased electronic contribution to the
specific heat at low temperatures.

EXPERIMENTAL

Polycrystalline samples Ga1−xCrxN0.83Mn3 (x = 0, 0.1, 0.2,
0.3, 0.4) were prepared by direct solid state reaction with Ga
ingot (4N), Cr (3N), Mn (4N), and self-made Mn2N powders.
The starting materials were mixed in the desired proportions,
sealed in evacuated quartz tubes (10−3 Pa) and then annealed
at 873–973K for 5 days. After quenching the tubes to room
temperature, the products were pulverized, mixed, pressed
into pellets, and annealed again at 1,073–1,173K for extra
8 days. The final samples were checked by X-ray diffraction
(XRD) on a Bruker X-ray diffractometer (D8 Advance) with
Cu Kα radiations at room temperature. The magnetization
measurements were performed on a Superconducting Quantum
Interference Device Magnetometer (SQUID, Quantum Design).
By using a strain gauge, linear thermal expansion 1L/L was
measured on a Physical Property Measurement System (PPMS,
Quantum Design; Lin et al., 2015). On the same PPMS system,
specific heat was measured for x = 0 and 0.2 compounds.

RESULTS AND DISCUSSION

Figure 1 shows the room-temperature XRD patterns for
Ga1−xCrxN0.83Mn3 (x = 0, 0.1, 0.2, 0.3, 0.4) samples. All the
samples are single-phase with a typical cubic antiperovskite
structure (space group: Pm-3m), except for a very small amount
of CrN detected in x = 0.4. The (111) peak shifts toward
higher angles as x increases, which indicates the decrease of
lattice constant with the increase of Cr content. Figure 2A

presents the temperature dependent magnetization M(T) of
Ga1−xCrxN0.83Mn3 (0 ≤ x ≤ 0.3) measured at H = 100
Oe under both zero-field-cooling (ZFC) and field-cooling (FC)
modes. As shown in Figure 2B, there is a kink at 358K for
x = 0, indicating an AFM to PM transition as often observed
in antiperovskite manganese nitrides. This value agrees well with
the Neel temperature (TN) of GaN0.83Mn3 reported previously
(Kasugai et al., 2012). When x = 0.1, TN is decreased to
318K. In slightly Mn-doped Ga1−xMnxN0.8Mn3 (Guo et al.,
2015), (Ga0.7Cu0.3)1−xMnxN0.8Mn3 (Guo et al., 2017), and
Ag1−xMnxNMn3 (Lin et al., 2015), the M(T)s are featured by
a clear peak in the ZFC curves, while the related FC M(T)s
show a FM-like transition. This behavior was verified as a glassy
transition (Guo et al., 2015, 2017; Lin et al., 2015). In contrast,
for x = 0.1 Cr doped sample, FM-like transition was observed at
around 120K in both ZFC and FCM(T) curves with an obvious
divergence between them at lower temperatures. The absence of
peak in ZFC M(T) curve is indicative of the emergence of long
range FM order below 120K. For x = 0.2, the FM-like transition
is increased to 230K. The kink on ZFC M(T) referring to TN is
no longer visible. Instead, a drop of magnetization happens at
210K in both ZFC and FCM(T) curves, similar to that observed
in Ga1−xMnxN0.8Mn3 with x = 0.3 (Guo et al., 2015). TheM(T)
curves for x= 0.3 display a FM transition at 322K, though the FC
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FIGURE 1 | X-ray diffractions at room temperature for Ga1−xCrxN0.83Mn3
(x = 0, 0.1, 0.2, 0.3, 0.4). The asterisk marks the diffractions from CrN.

FIGURE 2 | (A) The magnetization M(T ) measured at both zero-field-cooling

(ZFC) and field-cooling (FC) modes for Ga1−xCrxN0.83Mn3 (x = 0, 0.1, 0.2,

0.3). (B) shows an enlargement of the high-temperature ZFC data for x = 0

and 0.1, where the antiferromagnetic to paramagnetic transition at TN is

marked in each curve.

curve deviates from the ZFC one at low temperatures. Figure 3
shows the isothermal hysteresis loop M(H)s at 5 K for x = 0–0.3
samples. The magnetization at 45 kOe (M45kOe) increases quickly
and linearly with increasing x (inset of Figure 3). At the same
time the slopes of M(H) curves at high magnetic fields become
smaller as x increases, indicating the FM component is enhanced
at the expense of AFM component. For x = 0.3, a FM ground
state is established.

Figure 4 shows the linear thermal expansion1L/L (380K) for
Ga1−xCrxN0.83Mn3 (0.1 ≤ x ≤ 0.4). Because of the large volume
change at TN which is above room temperature, the as-prepared
GaN0.83Mn3 sample was brittle and thus not subjected to the
strain gauge measurement. As shown in Figure 4, at x = 0.1, the

FIGURE 3 | The isothermal magnetization M(H) loops at 5K for

Ga1−xCrxN0.83Mn3 (x = 0, 0.1, 0.2, 0.3) measured between −45 and 45

kOe. Inset shows the magnetization at 45 kOe, M45kOe, as a function of Cr

content (x).

FIGURE 4 | Linear thermal expansion 1L/L (380K) for Ga1−xCrxN0.83Mn3
(x = 0.1, 0.2, 0.3 and 0.4). The temperature range of negative thermal

expansion and the related average linear coefficient of thermal expansion are

marked for x = 0.1 and 0.2.

lattice undergoes a continuous shrinkage upon heating between
256 and 318K (1T = 62K) with an average αL = −46 ppm/K.
The onset temperature of NTE region is consistent with the
broad AFM transition shown in Figure 2B. For x = 0.2, The
NTE temperature window shifts to 151–232K (1T = 81K), and
the corresponding average αL is about ∼ −22.6 ppm/K. The
lattice contraction coincides well with the drop of magnetization
displayed in both ZFC and FC M(T)s as shown in Figure 2A.
When x is further increased (≥0.3), no NTE was observed down
to 5K.

Among the many ordered spin configurations, the Ŵ5g-type
AFM one is special because it adopts a larger lattice volume
relative to the PM or FM state, which is considered as the
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prerequisite for the showing up of NTE (Takenaka et al., 2014).
The Ŵ5g-type AFM order is the ground state below TN for
the x < 0.2 compounds (Kasugai et al., 2012). Most likely,
this particular AFM order is involved below 210K in x = 0.2
sample, as manifested by the drop of the magnetization shown in
Figure 2A. Upon doping with Cr, the FM order emergences and
becomes increasingly strong with x, as revealed by enhanced TC

and the low-temperature magnetization. The strengthened FM
phase would impede the growth and propagation of AFM order
upon cooling probably via the magnetically coupled AFM/FM
interfaces (Guo et al., 2015). When x is increased to 0.3, the
FM phase is overwhelmingly strong so that the MVE associated
with the AFM ordering is no longer able to influence the overall
thermal expansion. As a result, the x = 0.3 compound displays a
normal PTE.

The parent compound of Ga1−xMnxN0.8Mn3 is very close
to that of the current solid solutions in terms of the chemical
composition and the value of TN. However, Cr doping is more
effective in disturbing the AFM order and consequently in
expanding the temperature range of lattice contraction relative
to Mn doping. For example, with 20% Cr doping the 1T of
NTE is about 80K, which is even larger than that of 30%
Mn doped sample (1T = 73K; Guo et al., 2015). As shown
in the inset of Figure 3, M45kOe at 5 K increases linearly with
Cr doping level and reaches 31.8 emu/g for x = 0.3. But, for
Ga1−xMnxN0.8Mn3 the value of M45kOe at 5 K shows a tendency
toward saturation with increasing x, and the related value for
x = 0.3 is only 22.3 emu/g (Guo et al., 2015). Such a difference
indicates the more rapid strengthening of FM order in Cr-doped
compounds than in Mn-doped ones. So the AFM phase in Cr-
doped sample experienced a stronger impendence from the more
rapidly developing FM order, leading to a wider NTE window
relative to Mn-doped compounds at the same doping level.

Figure 5 shows the specific heat Cp(T) for GaN0.83Mn3 and
Ga0.8Cr0.2N0.83Mn3 between 6 and 245K. A broad peak was

FIGURE 5 | Specific heat Cp(T ) for Ga1−xCrxN0.83Mn3 with x = 0 and 0.2.

Inset shows a linear fit to the Cp(T )/T vs. T2 curves at low temperatures. The

fitted electronic coefficients of specific heat (γ , the Sommerfeld constant) are

shown for both compounds.

observed at 220K for x = 0.2 compound, which is resulted from
the structural transition (i.e., the NTE) observed in Figure 4. As
shown in the inset of Figure 5, the low-temperature specific heat
data for each compound plotted as Cp(T)/T vs. T2 can be well-
fitted linearly by using the expression, Cp(T)/T = γ+βT2, where
γ (i.e., the Sommerfeld constant) represents for the electronic
contribution, the second term is the lattice contribution based
on the Debye approximation (Wang et al., 2010). The fitted
values of γ are equal to 24.3(3) and 30.2(1) mJ/(mol K2) for
GaN0.83Mn3 and Ga0.8Cr0.2N0.83Mn3, respectively. The value of
γ corresponds to the density of the electronic DOS at EF in
the ground state. The enhanced γ in the Cr-doped compound
indicates an enhancement of DOS at EF. According the Stoner
criterion, FM interactions are enhanced in Cr-doped compound
compared with the parent compound (Wang et al., 2010). This
may explain why Cr doping suppresses the AFM ground state
and finally changes the background to FM in x = 0.3 compound.
According to the result reported by Garica, the γ is remarkably
suppressed when the PM state transforms to AFM phase in
GaNMn3 (Garcia et al., 1980), which suggests again that the
increased DOS at EF is not beneficial to the stabilization of AFM
ground state of GaN0.83Mn3.

Although there are no theoretical reports on the electronic
structure of Cr-doped GaNMn3, studies on GaNMn3 and Mn4N
may give some hints of understanding the magnetism of current
compounds. In GaNMn3, all Mn atoms locate at the face centers
of the cubic lattice. The hybridized Mn 3d states with N 2p
orbitals contribute mainly to the DOS at EF (Miao et al., 2005).
But Ga contributes little to the overall DOS at EF (Miao et al.,
2005). However, as to Mn4N, the corner Mn atoms (MnI)
contribute a lot to the DOS at EF, while contribution from the
face-center Mn atoms (MnII) is very similar to that in GaNMn3
(Miao et al., 2005). In Mn4N the magnetic moments at MnI
(3.5 µB) are antiparallel to those at MnII (0.9 µB), leading to a
ferrimagnetic ground state below 756K (Takei et al., 1962). So
MnI atoms play a dominant role in determining the magnetic
properties of Mn4N. Analogously, when Cr elements occupy the
corner sites (i.e., Ga sites) of the GaN0.83Mn3, their 3d orbitals
will contribute to the DOS at EF. So the substitution of Cr for Ga
introduces extra d electrons to the system, and thus increases the
DOS at EF, leading to the enhanced FM interactions. A thorough
theoretical study on the electronic band structures is needed in
order to shed lights on the differences of magnetism and thermal
expansion between Cr and Mn doped compounds.

CONCLUSIONS

In summary, we report large NTE at low temperatures in
antiperovskite compounds Ga1−xCrxN0.83Mn3 (0 ≤ x ≤ 0.3).
With increasing x, the NTE window was expanded and moved
to lower temperatures quickly. For x = 0.1 and x = 0.2, the NTE
occurs at 256–318K (1T = 62K) and 151–232K (1T = 81K)
with an average αL of −46 and −22.6 ppm/K, respectively.
Finally, for x ≥ 0.3, NTE was not observed down to 5K. As
revealed by the specific heat measurement, Cr doping increases
the DOS at EF, which favors the emergence of FM order against
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the AFM background. The competing FM order was suggested
to suppress the original AFM order and hinder its propagation
upon cooling, leading to the NTE with wide 1T.
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