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Simple Summary: The objective of the present study was to determine hypoxic brain damage in calves
with perinatal asphyxia using brain-specific damage biomarkers. Ten healthy calves and 25 calves with
perinatal asphyxia were enrolled in the study. Consciousness evaluation and laboratory analyses were
performed at admission, 24, 48, and 72 h. Serum concentrations of brain-related biomarkers were measured
to assess brain injury. Moreover, histopathological and immunohistochemical examinations of the brain
tissue were performed in 13 nonsurvivor calves. The consciousness level of the calves with asphyxia
was significantly lower than the healthy calves. Mix metabolic-respiratory acidosis and hypoxemia were
detected in calves with asphyxia. Serum UCHL1 and S100B concentrations were significantly increased,
and NSE, ACTA, ADM, and CK-B were decreased in calves with asphyxia. Histopathological and
immunohistochemical examination in nonsurvivor calves confirmed the development of mild to severe
hypoxic-ischemic encephalopathy. In conclusion, asphyxia causes hypoxic ischemic encephalopathy in
perinatal calves. UCHL1 and S100B were found to be useful markers of hypoxic-ischemic encephalopathy
in calves with perinatal asphyxia. Neurological status scores and some blood gas parameters were helpful
in mortality prediction.

Abstract: The purpose of the present study was to determine hypoxic brain damage in calves
with perinatal asphyxia using brain-specific damage biomarkers. Ten healthy and 25 calves with
perinatal asphyxia were enrolled in the study. Clinical examination, neurological status score, and
laboratory analysis were performed at admission, 24, 48, and 72 h. Serum concentrations of ubiquitin
carboxy-terminal hydrolysis 1 (UCHL1), calcium-binding protein B (S100B), adrenomodullin (ADM),
activitin A (ACTA), neuron-specific enolase (NSE), glial fibrillary acidic protein (GFAP) and creatine
kinase-brain (CK-B) were measured. Histopathological and immunohistochemical examinations
of the brain tissue were performed in 13 nonsurvivor calves. The neurological status score of the
calves with asphyxia was significantly (p < 0.05) lower. Mix metabolic-respiratory acidosis and
hypoxemia were detected in calves with asphyxia. Serum UCHL1 and S100B were significantly
(p < 0.05) increased, and NSE, ACTA, ADM, and CK-B were decreased (p < 0.05) in calves with
asphyxia. Histopathological and immunohistochemical examinations confirmed the development of
mild to severe hypoxic-ischemic encephalopathy. In conclusion, asphyxia and hypoxemia caused
hypoxic-ischemic encephalopathy in perinatal calves. UCHL1 and S100B concentrations were found
to be useful markers for the determination of hypoxic-ischemic encephalopathy in calves with
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perinatal asphyxia. Neurological status scores and some blood gas parameters were helpful in
mortality prediction.

Keywords: perinatal asphyxia; calf; brain damage; serum biomarkers; mortality

1. Introduction

Perinatal asphyxia, which is one of the important causes of non-infectious mortality in
newborn calves, is characterized by hypoxia, hypercapnia, and acidosis [1–3]. Brain injury
due to decreased blood flow to the brain tissue (ischemia) and oxygen deficiency (hypox-
emia) is called hypoxic-ischemic encephalopathy (HIE) [4,5]. The morbidity range of HIE is
between 4–57%, and it is responsible for 20–50% of perinatal mortality in human infants [6].

In recent years, it has been demonstrated that significant changes occur in ubiquitin
C-terminal hydrolase 1 (UCHL1), calcium-binding protein B (S100B), adrenomodullin
(ADM), activin A (ACTA), neuron-specific enolase (NSE), glial fibrillary acidic protein
(GFAP) and creatine kinase-brain (CK-B) in hypoxia-induced brain damage in infants with
neonatal asphyxia, and these markers have a significant contribution to the early detection
of brain damage [7–10]. UCHL1, which is found in neurons and neuroendocrine cells,
increases in blood and cerebrospinal fluid during brain barrier permeability damage and
neuronal injury [11]. It has been reported that UCHL1 concentrations are higher in foals
with hypoxic-ischemic encephalopathy compared to healthy foals, and it can be used as a
diagnostic marker to determine HIE-related brain damage in foals [12]. S100B, an acidic
calcium-binding peptide, was found to have increased concentrations in neurons and
glial damage [13]. It has been found to be a reliable marker for assessing brain damage
development in infants with perinatal asphyxia [14]. ADM, a hypotensive vasodilator
peptide, is synthesized in the organism as ADM preproadrenomodulin. Previous studies
stated that it could be used in the detection of neonatal neurological disorders since it
provides cerebral vascular regulation in perinatal hypoxia [15]. Activin A is a protein
that plays important biological effects in mesoderm induction, neuron cell differentiation,
hematopoiesis, and reproductive physiology. It is suggested that activin A has a neu-
roprotective role in preterm infants with cerebellar hypoxia [16]. NSE is an isoenzyme
that is found in neurons and neuroendocrine tissues. It has been reported that the NSE
concentrations increased significantly in infants with neonatal asphyxia [17], and an in-
crease in NSE concentration could be useful in the evaluation of neuronal damage severity
and prognosis [18,19]. GFAP is a monomeric filament protein synthesized in astroglial
cells [20]. GFAP has been shown to be a useful biomarker in the diagnosis and prognosis of
neonatal hypoxic-ischemic encephalopathy [20]. CK-B is an isoenzyme found in neurons
and astrocytes. It has been reported that CK-B enzyme activity increases significantly in
infants with perinatal asphyxia [21].

Studies on perinatal asphyxia stated that HIE develops in humans, rats, horses, and
pigs, and the usefulness of brain damage biomarkers in the diagnosis of HIE. However,
no study has been found on calves. Therefore, the main hypothesis of the present study
was to determine HIE development in calves with perinatal asphyxia and the utility of
brain-specific biomarkers in detecting brain damage. This study, it was aimed to explore
brain damage by histopathological methods to evaluate the neurological status and the
utility of brain-specific damage biomarkers in the detection of possible brain tissue damage
in calves with perinatal asphyxia.

2. Materials and Methods

The study protocol was approved by the Institutional Ethics Committee of the Faculty
of Veterinary Medicine, Selcuk University (No. 2019/56) and conducted from Novem-
ber 2020 to September 2022.
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2.1. Healthy Calves

A convenience sample of 10 healthy calves (7 Holstein, 3 Brown Swiss) with gestation
age > 280 days, weighing 41 kg (39–44), and within the first 6–24 h after parturition were
enrolled in the study. Calves were determined to be healthy based on clinical examinations
and laboratory findings [3,22–24]. The calves were naturally born in faculty farm and
were able to stand within 1 h and were fed 2 L of colostrum within the first 2 h of life.
Calves from dystocia, prematurity, congenital abnormalities, and infection suspicion were
excluded from the study.

2.2. Calves with Asphyxia

A convenience sample of 25 calves (19 Holstein, 4 Simmental, and 2 Brown Swiss)
with gestation age >280 days and weighing 46 kg (43–54) admitted to the Large Animal
Hospital of the Faculty of Veterinary Medicine, Selcuk University were enrolled in the
study. All the calves included in the study were born from dystocia and within the first
6–24 h after parturition. They did not receive colostrum or any veterinary intervention.
Calves with congenital abnormalities, prematurity, infection suspicion, and diarrhea were
excluded from the study. All calves with asphyxia received standard supportive treatment,
which included oxygen therapy and a feeding protocol following admission to the neonatal
intensive care unit [3,25,26].

2.3. Clinical Examination and Neurological Status

Clinical examinations (evaluation of hydration status, palpable lymph nodes, mucous
membranes, measurements of heart and respiratory rate, heart and lung auscultation) of
all calves were performed at admission, 24, 48, and 72 h. Moreover, to evaluate the level
of consciousness in calves, a simplified modified Glasgow coma scale (mGCS) based on
motor activity, brain stem reflexes, and level of consciousness was performed. In this
rating system, each category is scored between 1–3, with 1 being indicative of more severe
dysfunction. The scores from each category are added together to establish a neurological
status and categorized as grave, 8–13; guarded, 14–19; good, 20–24 (Table 1).

Table 1. Scoring variables and ranges of the neurological status evaluation in perinatal calves.

Score 3 2 1

Position Normal gait Sternal position Lateral recumbency

Mental status
Alertness and
responsive to
environment

Depression Comatose

Pupillary light reflex (PLR) Normal PLR Slow PLR Unresponsive
mydriasis

Corneal reflex (CR) Normal CR Slow CR Unresponsive

Responsive to
auditory stimuli

Responsive to
auditory stimuli

Decrease responsive
to auditory stimuli Unresponsive

Level of consciousness Responsive Delirium Unresponsive

Sucking reflex Strong Weak Absence

Tonus of muscles Normal Hypotonia Atonia

2.4. Criteria for Definition of Respiratory Distress Syndrome (RDS)

The criteria for RDS were respiratory acidosis, hypoxia (PaO2 < 60 mmHg), hypercap-
nia (PaCO2 > 45 mmHg), tachypnea (respiratory rate > 45/min), abdominal respiration,
and hyperlactatemia (>6 mmol/L) [3,25,26]. Among these parameters, the presence of at
least two criteria along with PaO2 < 60 mmHg was taken into consideration [1,25,27].
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2.5. Collection of Blood Samples

Blood samples were collected from the calves at the time of admission, 24, 48, and 72 h.
Blood samples for complete blood count (CBC) and serum were taken from the jugular
vein and for blood gas measurement from auricular arteries. Tubes with K3EDTA and
non-anticoagulant tubes were used for CBC and serum collection, respectively. Sodium
heparin-containing plastic syringes were used for blood gas measurement. Blood samples
taken for biochemical analyses were kept at room temperature for 15 min, then centrifuged
at 2000× g for 10 min. Sera were removed and stored at −80 ◦C. Blood gas measurements
were performed within 5 to 10 min of collection.

2.5.1. Blood Gas and Chemistry Analysis

Arterial blood pH, partial oxygen pressure (PaO2), partial carbon dioxide pressure
(PaCO2), oxygen saturation (SO2), lactate, glucose, sodium (Na), potassium (K), calcium
(Ca), chlorine (Cl), bicarbonate (HCO3), and base deficit (BE) measurements were per-
formed using an automatic blood gas analyzer (ABL 90 Flex, Radiometer, Brea, CA, USA).

2.5.2. Complete Blood Count Analysis

Total leukocyte (WBC), erythrocyte (RBC), hematocrit (HCT), hemoglobin (Hb), and
thrombocyte (THR) measurements were performed using an automatic cell counter (MS4e,
Melet Schlosing Laboratories, Osny, France).

2.5.3. Evaluation of Brain-Related Biomarkers

Serum UCHL1, S100B (Bioassay Technology Laboratory, Shanghai, China), ADM,
ACTA, NSE, GFAP (MyBioSource, San Diego, CA, USA), and CK-B (ELK Biotechnology Co.,
Ltd., Wuhan, China) concentrations were measured with commercial bovine-specific ELISA
test kits in accordance with the manufacturer’s instructions. Bovine UCHL1 commercial
ELISA kit (Bioassay Technology Laboratory, Shanghai, China, Lot: 202110012), bovine S100B
commercial ELISA kit (Bioassay Technology Laboratory, Shanghai, China, Lot: 202110012),
bovine ADM commercial ELISA kit (MyBioSource®, San Diego, CA, USA, Lot: 38400921),
bovine ACTA commercial ELISA kit (MyBioSource®, San Diego, CA, USA, Lot: 20211022C),
bovine NSE commercial ELISA kit (MyBioSource®, San Diego, CA, USA, Lot: 36379821),
bovine GFAP commercial sandwich ELISA kit (MyBio-Source®, San Diego, CA, USA,
Lot: 34358721), and bovine CK-B commercial ELISA kit (ELK Biotechnology, Wuhan, China,
Lot: 20330054610) were used for ELISA analyzes of biomarkers. The intra-assay coefficient
of variation (CV), inter-assay CV, and minimum detectable concentrations (MDC) for
biomarkers were ≤8%, ≤10%, and 35.7 ng/L for UCHL1, ≤8%, ≤10%, and 0.26 ng/mL for
S100B, ≤8%, ≤12% and 5 pg/mL for ADM, <10%, <10% and 1.0 pg/mL for ACTA, ≤8 %,
≤12% and >0.06 ng/mL for NSE, ≤8%, ≤12% and >0.06 ng/mL for GFAP, <8%, <10% and
0.59 ng/mL for CK-B, respectively.

2.6. Histopathology

After necropsies and macroscopic examinations of the dead calves, tissue samples
taken from different parts of the central nervous system were fixed in 10% buffered formalin
for pathological examinations. Then, 5-micron thick sections were taken from the paraffin
blocks prepared by routine laboratory methods on a microtome (Reichert-Jung 2030), and
all of them were stained with Hematoxylin & Eosin (H&E) [28] and examined under
a binocular light microscope (Olympus BX51, Tokyo, Japan). To the description of the
severity of lesions, microscopic findings were divided into 4 categories: 0, no lesion; 1, mild;
2, moderate; 3, severe; and 4, very severe.

2.7. Immunohistochemistry (IHC)

For immunohistochemical (IHC) staining, 5-micron thick brain sections were stained in
Leica Bondmax stainer according to the Bond™ Polymer Refine Detection (Leica Biosystems,
Deer Park, IL, USA) kit protocol (Peroxidase Block, Protein Block, Post Primer, Polymer,
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DAB, Hematoxylin). First, all tissues were dewaxed with heat and dewax solution (Bond™,
Leica Biosystems, Deer Park, IL, USA) and rehydrated in serially increasing alcohols
(100–70%) (Sigma). After each chemical or marker was used according to the protocol, a
special washing solution (Bond™, Leica Biosystems, Deer Park, IL, USA) and/or distilled
water was washed 3 times. In order to prevent non-specific staining, peroxidase and protein
block application was carried out, and after 30 min of incubation with primary antibody
(anti-HIF-1α antibody, Invitrogen, Carlsbad, CA, USA) at room temperature, post primer,
and polymer application were performed. All sections were left to react with DAB for 3 min
and washed with distilled water. It was then dehydrated by counterstaining with Mayer’s
Hematoxylin and sealed with entellan (Merck, Rahway, NJ, USA). The stained tissues were
examined under a light microscope (Olympus BX51, Tokyo, Japan), and photographs were
taken when deemed necessary (Olympus EP50, Tokyo, Japan). The extent of these reactions
was scored as follows: 0: >5% (negative); 1: 6–25% (light); 2: 26–50% (medium); 3: 51–75%
(severe); 4: 76–100% (very severe).

2.8. Statistical Analysis

SPSS 25 (IBM Corp®, 2017, Armonk, NY, USA) statistical program was used to evaluate
the data. The Kolmogorov-Smirnov test was used to determine the normality of variables
and the homogeneity of variances. Since the variables do not have a normal distribution,
the study data are presented as median (min/max). In order to compare calves with
perinatal asphyxia and healthy calves, the Wilcoxon test and the Kruskal-Wallis test were
performed. The Mann-Whitney U test was used to compare calves with perinatal asphyxia
and healthy calves between groups within the same time of the study. Categorical data were
analyzed with Chi-Square and Fisher’s Exact tests. The Spearman correlation test was used
to determine the correlation between variables. Receiver operating characteristic (ROC)
analysis was performed to determine the prognostic cut-off value, sensitivity, and specificity
of variables in nonsurvivor and survivor calves with perinatal asphyxia. In addition,
the same test was used to evaluate whether brain-related biomarkers have diagnostic
significance according to the pathologic results in nonsurvivor calves. Statistical significance
was considered as p < 0.05, p < 0.01, and p < 0.001, respectively.

3. Results
3.1. Clinical Findings

Clinical examination of all calves with perinatal asphyxia showed respiratory distress
and tachypnea, weakness, lethargy, cyanotic mucous membranes, tachycardia, hypother-
mia, and absence of sucking reflex. In addition, severe epistaxis was detected in three calves.

Neurological Status

The neurological status score of asphyxiated and healthy calves are presented in
Table 2. The neurological status scores of the calves with asphyxia were significantly
(p < 0.05) lower than the healthy calves at the time of admission and 24th h. In addition, the
neurological status scores of calves with asphyxia at the time of admission were significantly
(p < 0.05) lower compared to the 24, 48, and 72 h.
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Table 2. Neurological status score in healthy and calves with perinatal asphyxia.

Variable Time of Evaluation (Hours)

Admission
(nH: 10, nA: 25)

24
(nH: 10, nA: 12)

48
(nH: 10, nA: 12)

72
(nH: 10, nA: 12)

Score

Healthy 24 24 24 24

Asphyxia 12.00 a

(8–20)
22.00 b

(15–24)
24.00 b

(16–24)
24.00 b

(22–24)

p-Value 0.000 0.001

nH: number of calves included in the healthy group, nA: number of calves included in the asphyxia group.
Different letters (a,b) in the same line are statistically significant (p < 0.05).

3.2. Blood Gas and CBC Analysis

Arterial blood gas parameters of asphyxiated and healthy calves are presented in
Table 3. While the pH, PaO2, SO2, and BE levels of the calves with asphyxia were signifi-
cantly (p < 0.05) lower at the time of admission compared to the healthy calves, the PaCO2,
and lactate levels were higher (p < 0.05). It was determined that the PaCO2 levels of the
calves with asphyxia decreased significantly (p < 0.05) at the 24th and 48th h compared to
the time of admission, while the SO2 levels increased significantly (p < 0.05) to the 24th h.
In addition, it was determined that the pH, BE, and HCO3 levels increased significantly
(p < 0.05), while the lactate concentrations decreased from the 48th h after the treatment
in asphyxiated calves. The lactate concentrations of the healthy calves were found to be
significantly (p < 0.05) higher at the time of admission compared to the 48 and 72 h (Table 3).
No statistically significant difference was determined in K, Na, Ca, Cl, Glu, and CBC
variables (Supplementary Table S1) between study groups.

Table 3. Arterial blood gas and chemistry variables of healthy and calves with perinatal asphyxia.

Variable Time of Evaluation (Hours)

Admission
(nH: 10, nA: 25)

24
(nH: 10, nA: 12)

48
(nH: 10, nA: 12)

72
(nH: 10, nA: 12)

pH

Healthy 7.43 (7.40–7.57) 7.43 (7.35–7.50) 7.46 (7.39–7.70)

Asphyxia 7.21 (6.75–7.41) a 7.44 (7.41–7.45) ab 7.46 (7.35–7.50) b 7.39 (7.30–7.45) ab

p-Value 0.000

PaCO2
(mmHg)

Healthy 41.10 (25.10–48.50) 37.45 (27.40–46.30) 37.40 (34.30–46.80) 33.40 (17.20–46.40)

Asphyxia 55.50 (35.80–89.10) a 36.80 (27.90–40.00) b 40.40 (30.10–55.40) b 40.30 (38.30–51.20) ab

p-Value 0.000

PaO2
(mmHg)

Healthy 49.20 (23.40–97.10) 52.05 (23.10–68.50) 49.05 (25.20–80.40) 61.20 (28.70–150)

Asphyxia 32.80 (18.60–69.60) 60.30 (57.70–62.90) 39.80 (23.70–65.60) 34.50 (20.70–57.10)

p-Value 0.008

SO2
(%)

Healthy 96.45 (58.90–101.30) 96.20 (56.20–98.80) 94.70 (56.80–99.90) 95.85 (65.60–101.50)

Asphyxia 77.10 (4.10–97.40) a 98.40 (98.30–99.20) b 91.70 (34.30–100.00) ab 85.20 (44.80–96.40) ab

p-Value 0.000

K
(mmol/L)

Healthy 4.35 (3.90–4.80) 4.50 (3.90–4.5) 4.30 (3.90–5.00) 4.30 (2.90–5.50)

Asphyxia 4.05 (2.60–6.13) 4.00 (3.40–4.00) 4.00 (2.60–4.50) 4.00 (3.90–4.10)

p-Value

Na
(mmol/L)

Healthy 146.50 (140–153) 144.50 (141–157) 146.00 (141–152) 149.50 (141–167)

Asphyxia 147.00 (136–159) 149.00 (145–161) 147.00 (139–164) 149 (149–151)

p-Value
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Table 3. Cont.

Variable Time of Evaluation (Hours)

Admission
(nH: 10, nA: 25)

24
(nH: 10, nA: 12)

48
(nH: 10, nA: 12)

72
(nH: 10, nA: 12)

Ca
(mmol/L)

Healthy 1.03 (0.68–1.28) 0.90 (0.46–1.17) 0.90 (0.63–1.30) 0.75 (0.55–1.17)

Asphyxia 1.00 (0.59–1.44) 1.10 (1.03–1.17) 0.94 (0.51–1.15) 0.85 (0.74–1.17)

p-Value

Cl
(mmol/L)

Healthy 103.00 (100–115) 104.00 (99–107) 102.50 (98–106) 106.50 (99–114)

Asphyxia 103.00 (87–110) 104.00 (100–112) 102.00 (91–111) 108.00 (100–111)

p-Value

Glu
(mg/dL)

Healthy 103.00 (54–137) 111.00 (91–138) 108.00 (76–123) 107.00 (78–139)

Asphyxia 75.00 (0–264) 76.00 (65–121) 105.00 (72–138) 66.00 (56–115)

p-Value

Lac
(mmol/L)

Healthy 4.00 (2.60–5.20) a 3.30 (1.80–4.00) ab 2.05 (1.10–4.60) b 1.85 (0.90–2.90) b

Asphyxia 7.90 (1.60–29.00) a 9.10 (7.50–10.70) ab 2.10 (1.20–5.00) b 3.00 (0.70–7.00) ab

p-Value 0.001

BE
(mmol/L)

Healthy 0.25 (−7.20–5.40) 1.25 (−1.40–6.20) 1.10 (−1.20–6.20) 1.15 (−6.40–6.80)

Asphyxia −5.60 (−18.00–1.80) a −1.70 (−4.90–3.50) ab 4.70 (−3.70–14.80) b −1.50 (−3.90–1.40) ab

p-Value 0.002

HCO3
(mmol/L)

Healthy 25.25 (17–30) 25.20 (22.60–30.50) 25.60 (23.20–30.40) 24.55 (17.60–31.00)

Asphyxia 23.40 (14.00–27.90) a 23.00 (19.10–27.60) ab 28.00 (20.90–38.00) b 25.00 (23.40–27.90) ab

p-Value

nH: number of calves included in the healthy group, nA: number of calves included in the asphyxia group,
PaCO2 (partial arterial carbon dioxide pressure), PaO2 (partial arterial oxygen pressure), SO2 (oxygen satura-
tion), K (potassium), Na (sodium), Ca (calcium), Cl (chlorine), Glu (glucose), Lac (lactate), BE (base deficit),
HCO3 (bicarbonate); Different letters (a,b) in the same line are statistically significant (p < 0.05).

3.3. Brain-Related Biomarkers Analysis

Biomarker concentrations of asphyxiated and healthy calves are presented in
Table 4. S100B and UCHL1 concentrations of calves with asphyxia were significantly higher
(p < 0.05) than the control group at all time intervals. The ADM concentrations at 24 h,
ACTA concentrations at admission, 48 and 72 h, and NSE concentrations at 24, 48, and 72 h,
CK-B enzyme activity at admission and 72 h, were significantly (p < 0.05) lower in calves
with asphyxia compared to healthy calves. There was no statistically significant (p > 0.05)
difference between the groups in GFAP concentrations.

Table 4. Biomarker concentrations result in healthy and calves with perinatal asphyxia.

Variable Time of Evaluation (Hours)

0.saat
(nH: 10, nA: 25)

24.saat
(nH: 10, nA: 12)

48.saat
(nH: 10, nA: 12)

72.saat
(nH: 10, nA: 12)

UCHL1
(ng/L)

Healthy 815.25
(504.94–1066.98) a

784.71
(414.73–1103.11) ab 703.77 (454.14–918.44) ab 558.81 (33.13–922.01) b

Asphyxia 1918.42
(1267.64–3092.14)

1679.87
(1296.22–6336.06) 1428.56 (1261.93–4400.46) 1751.06

(1199.29–5237.30)

p-Value 0.000 0.000 0.000 0.000
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Table 4. Cont.

Variable Time of Evaluation (Hours)

0.saat
(nH: 10, nA: 25)

24.saat
(nH: 10, nA: 12)

48.saat
(nH: 10, nA: 12)

72.saat
(nH: 10, nA: 12)

S100B
(ng/mL)

Healthy 12.99 (8.33–20.97) a 9.16 (6.47–13.71) b 9.85 (6.37–11.29) ab 8.76 (5.79–13.80) b

Asphyxia 30.34 (19.76–46.25) 30.24 (24.79–106.76) 26.56 (21.59–88.16) 63.99 (23.82–89.13)

p-Value 0.000 0.000 0.000 0.000

ADM
(pg/mL)

Healthy 156.89 (92.21–305.80) 200.51 (53.59–320.89) 204.85 (69.32–378.92) 202.27 (124.67–317.82)

Asphyxia 144.96 (19.51–287.69) 128.01
(100.49–183.49) 152.45 (28.91–534.59) 147.80 (107.97–247.20)

p-Value 0.010

ACTA
(pg/mL)

Healthy 6713.74
(4177.42–7207.84) a

5531.27
(3479.30–7493.42) ab 4640.49 (2393.00–6395.36) ab 4314.41

(2599.97–5721.20) b

Asphyxia 4256.21
(2087.61–8596.39) a

5068.65
(3946.66–7062.84) a 2269.94 (331.93–5536.58) b 2565.06

(1211.90–3577.87) b

p-Value 0.031 0.008 0.001

NSE
(ng/mL)

Healthy 4.10 (2.14–8.77) 5.69 (2.06–9.88) 5.05 (2.30–10.05) 5.01 (3.38–8.95)

Asphyxia 3.48 (0.90–5.49) 2.94 (2.07–4.14) 3.50 (0.83–6.30) 3.67 (2.42–4.54)

p-Value 0.020 0.024 0.002

GFAP
(ng/mL)

Healthy 3.57 (0.39–7.23) 3.62 (0.38–7.37) 3.96 (0.91–6.60) 2.98 (2.36–5.84)

Asphyxia 3.54 (0.34–6.22) 2.74 (1.84–4.04) 3.68 (0.52–9.08) 4.16 (2.10–5.38)

p-Value

CK-B
(ng/mL)

Healthy 7.14 (4.21–9.68) 8.05 (4.00–11.85) 7.09 (1.81–11.46) 8.08 (3.70–12.18)

Asphyxia 3.39 (0.40–17.69) 5.44 (2.93–17.10) 4.90 (2.41–13.49) 2.77 (0.51–13.49)

p-Value 0.021 0.024

nH: number of calves included in the healthy group, nA: number of calves included in the asphyxia group, S100B
(calcium-binding protein B), ADM (adrenomodullin), GFAP (glial fibrillary acidic protein), NSE (neuron-specific
enolase), UCHL1 (ubiquitin carboxy-terminal hydrolysis 1), CK-B (creatine kinase-brain), ACTA (activitin A);
Different letters (a,b) in the same line are statistically significant (p < 0.05).

3.4. Correlation Analysis

There was a positive correlation between neurological status score, PaO2 (p < 0.05),
and SO2 (p < 0.01), and a negative correlation between PaCO2, lactate, and ACTA (p < 0.01).
A positive correlation was found between arterial blood SO2 and S100B (p < 0.05) (Table 5).

Table 5. Correlations between arterial blood gas variables, brain-related biomarkers, and neurological
status score in healthy and calves with perinatal asphyxia.

Variable UCHL1 S100B ADM ACTA NSE GFAP CK-B Neurological
Status Score

PaCO2 0.117 0.031 0.178 0.220 0.096 0.113 0.147 −0.657 **

PaO2 0.028 0.278 −0.201 0.042 −0.013 −0.238 −0.188 0.328 *

SO2 0.001 0.323 * −0.230 0.020 −0.138 −0.271 −0.115 0.507 **

Lactate 0.235 0.155 0.159 0.143 0.196 0.165 0.139 −0.626 **

Neurological
status score −0.161 0.068 −0.004 −0.497 ** 0.051 0.007 0.063 1.00

* p < 0.05, ** p < 0.01.
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3.5. Prognostic Indicators Analysis
3.5.1. Survival Probability

A total of 13 (56%) calves with perinatal asphyxia died during the hospitalization
period. Kaplan-Meier analysis showed that the average survival time of asphyxiated calves
was 24 h. The cumulative probability of survival calves was 44% for 24, 48, and 72 h.
Kaplan-Meier analysis with log-rank test showed that calves with a neurological status
score ≤19 had a significantly (p < 0.001) shorter survival time than calves with a score ≥20
(Figure 1A).Animals 2022, 12, x FOR PEER REVIEW 9 of 18 
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Figure 1. Kaplan-Meier analysis with log-rank test showed that the survival period was significantly
shorter in calves with perinatal asphyxia with a neurological status score ≤19 (A). Receiver operating
characteristic curve (ROC) analysis for the differentiation between the survivor and non-survivor
calves with asphyxia based on neurological status score (B).

3.5.2. Neurological Status Score

The ROC analysis findings demonstrated that the neurological status score at the
cut-off point of 15, with 90% sensitivity and 80% specificity, has significant (p < 0.001)
prognosis importance (Figure 1B).

3.5.3. Brain-Related Biomarker

None of UCHL1, S100B, ADM, ACTA, NSE, GFAP, and CK-B were found to be
significant (p > 0.05) in predicting mortality in calves with asphyxia (Figure 2A).
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3.5.4. Blood Gases and Chemistry

The results of the ROC analysis showed that PaCO2 (p < 0.05) and lactate (p < 0.01)
were significantly higher in nonsurvivors than survivor’s calves. The pH (p < 0.001), HCO3
(p < 0.01), BE (p < 0.01), and SO2 (p < 0.01) were significantly lower in nonsurvivors than in
survivor calves (Table 6, Figure 2B–D)

Table 6. The area under the curve (AUC), standard error, confidence interval (95%), optimum cut-off
values, respective sensitivity, and specificity of mortality prediction in nonsurvivor calves.

Variable AUC Standard Error p-Value
Asymptotic 95%

Confidence Interval Sensitivity Specificity Cut-Off
Value

Lower Band Upper Bound

PaO2 0.617 0.098 0.220 0.426 0.809 60 65 35.60

SO2 0.755 0.079 0.008 0.601 0.909 67 72 78.75

PaCO2 0.720 0.093 0.023 0.537 0.902 71 66 50

Lactate 0.820 0.067 0.001 0.690 0.951 85 66 6.4

pH 0.853 0.060 0.000 0.735 0.971 91 78 7.29

HCO3 0.801 0.073 0.003 0.659 0.943 83 67 24.15

BE 0.843 0.067 0.001 0.711 0.974 91 75 −2.45

3.6. Pathological Findings
3.6.1. Macroscopic Findings

Macroscopically, non-specific findings such as hyperemia, edema, and dulling in the
brain were detected. No cystic structure or macroscopic necrosis foci were found.

3.6.2. Microscopic Findings

The microscopic examination findings are presented in Figures 3 and 4. Ischemic neu-
ronal changes (IND, increased eosinophilia/degeneration, and necrosis); neuronophagia
(NF); gliosis, mononuclear cell infiltration (MND); Scoring for hyperemia, endothelial cell
swelling (ECS), edema and bleeding were the most frequently observed conditions. These
findings confirmed developed hypoxic ischemic encephalopathy in calves with perinatal
asphyxia (Supplementary Table S2).
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Figure 3. Microscopic photographs (A) Edema and hemorrhage in the meninges (arrows), HE, 10×,
(B) Hyperemia (black arrow) in the meningeal veins and edema in the submeningeal region (blue
arrows), HE, 10×, (C) Hemorrhage spreading to the neuropil tissue (arrows), HE, 20×, (D) Severe
hyperemia and vasodilation, HE, 10×.
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Figure 4. Microscopic photographs (A) Ischemic neuronal changes and neuronophagia, HE, 20×,
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tration (arrows), HE, 40×, (D) Cavitation area and local Mononuclear cell infiltration with gliosis
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3.6.3. Immunohistochemical

The immunohistochemical examination findings are presented in Figure 5. In the
immunohistochemical staining performed with the primary antibody of hypoxia-inducible
factor 1 alpha (HIF-1α), immunopositivity was determined in endothelial cells (nuclear),
glia cells (cytoplasmic) and neurons (nuclear and cytoplasmic). No positive staining was
observed in the negative control slides (Supplementary Table S3).
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Figure 5. Immunohistochemical findings. (A) Immune positive reaction in neurons (arrows), HIF-1α,
20×, (B) Immune positive reaction in glia cells (arrows), HIF-1α, 20×, (C) Immune positive reaction
in Purkinje cells (arrows), HIF-1α, 40×, (D) Vascular Immunopositivity in endothelial cells and their
walls, (arrows), HIF-1α, 20×.
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4. Discussion

In the present study, the concentrations of serum brain damage biomarkers were
evaluated in both healthy and asphyxiated perinatal calves for the first time. By using
histological and immunohistochemical methods, we determined that hypoxic-ischemic
encephalopathy developed in non-survived calves with perinatal asphyxia.

Asphyxia is a life-threatening condition characterized by hypoxemia due to respi-
ratory dysfunction because of prolonged parturition or aspiration of the amniotic fluid
aspiration [29]. In the absence of oxygen, primary and secondary energy disorders occur in
the neurons so that the brain cells cannot be nourished and die [5]. As a consequence of the
decrease in blood flow to the brain due to primary energy disorder, the level of oxygen and
glucose entering the brain tissue decreases [4]. In this situation, a lack of energy and an
increase in lactate production in the brain tissue led to the development of hypoxic-ischemic
encephalopathy [30].

Clinically, in newborn foals with hypoxic-ischemic encephalopathy, tremor, excitability,
fatigue, insomnia, lethargy, clonic seizures, random wandering, abnormal vocalization,
loss of suckling, dysphagia, blindness, unconsciousness, nystagmus, eye deviation, head
tilting, irregular breathing, respiratory distress, spastic dysmetric gait, coma, and death
have been reported [31]. Asphyxiated calves showed symptoms of weakness, lethargy,
cyanotic mucous membranes, tachycardia, hypothermia, a weak or absent suckling reflex,
blindness, convulsions, loss of consciousness, and death [3,25,32]. In the present study,
calves with perinatal asphyxia showed severe respiratory distress, reduced body tempera-
ture, increased respiratory and heart rate, decrease in muscular tone, lateral recumbency,
decrease or absence of sucking reflex, decrease or absence of pupillary and corneal reflex,
loss of consciousness, convulsions, or clinical symptoms of mental depression and coma.
Moreover, three calves developed severe epistaxis. The clinical findings we observed in
calves with perinatal asphyxia were compatible with the previous studies [3,25,31,32].

In human medicine, hypoxic-ischemic encephalopathy due to asphyxia is responsible
for 10–60% of perinatal mortality [6,33]. Additionally, it has been reported that in newborn
calves, respiratory and metabolic acidosis due to asphyxia is the main cause of perinatal
mortality [3,34,35]. In the present study, 12 (44%) of 25 calves with perinatal asphyxia
survived, whereas 13 of them (56%) nonsurvived. One of the most important causes
of death in calves with perinatal asphyxia is hypoxic-ischemic encephalopathy due to
severe hypoxia and respiratory dysfunction [1,36,37]. It was observed that there was no
improvement in the clinical picture of 13 non survived calves with perinatal asphyxia.
When the neurological status score and mortality rate of calves with perinatal asphyxia
were evaluated together, at the time of admission and 24th h calculated scores of the calves
in the asphyxia group were significantly lower than the calves in the control group. There
were 13 calves with poor neurological status scores that did not survive during the first 24 h
of hospitalization. In our opinion, the high sensitivity and specificity of the neurological
status score (90% and 80%, respectively) in predicting mortality in calves with asphyxia
make it an effective tool in the clinical setting. It might be concluded that calves with a
score of less than 15 have a significantly high mortality rate.

The α and β subunits of hypoxia-inducible factor 1 (HIF-1) form an active heterodimer
under hypoxic circumstances. Histopathological examinations and immunohistochemical
detection of HIF-1α were reported to be useful in demonstrating hypoxic tissue dam-
age in the brain [38–40]. Immunohistochemical findings were found to be interesting
and promising in the post-mortem diagnosis of acute cerebral hypoxia and ischemia [41].
Histopathologically, it was determined that more than 20% of infants with perinatal as-
phyxia developed lethal hypoxic-ischemic encephalopathy, and more than 25% developed
permanent nervous system disorder [10]. Some previous research in perinatal calves [34,36]
detected asphyxic pathological changes in the brain tissue in 73–75% of cases. In parallel,
Schuijt [42] found histopathological changes in 58.3% of calves that died during the peri-
natal period. In the present study, histopathological examination of the brain of 13 calves
with perinatal asphyxia showed signs of mild to severe hypoxic-ischemic encephalopathy
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such as ischemic neuronal changes (increased eosinophilia/degeneration and necrosis),
neuronophagia, gliosis, mononuclear cell infiltration, hyperemia, endothelial cell swelling,
edema, and hemorrhage. Also, immunohistochemical staining was performed directly
on brain tissue with HIF-1α primary antibody, and immuno-positivity was observed in
endothelial cells (nuclear), glia cells (cytoplasmic), and neurons (nuclear and cytoplas-
mic). Against low oxygen levels, the expression of HIF-1α at various levels in neurons is
indicative of exposure to hypoxia. Histopathological and immunohistochemical examina-
tion results show that hypoxic-ischemic encephalopathy develops in calves with perinatal
asphyxia. From this point of view, we think that these two examination methods are
reliable diagnostic methods that complement and support each other in the determination
of hypoxic damage in the brain.

Mixed acidosis (respiratory-metabolic acidosis) with hypoxia and hypercapnia is a
common finding in calves with perinatal asphyxia [1–3,25,27,43]. In the present study, at
the time of admission, pH, PaO2, SO2, and BE levels of calves with perinatal asphyxia
were significantly lower than the control group, and the PaCO2 and lactate were found to
be higher. In addition, the pH, SO2, HCO3, and BE levels were found to be significantly
lower, and PaCO2 and lactate were found to be higher in the nonsurvivors compared
to the survivors. On the other hand, a positive correlation was established between the
neurological status score, PaO2 and SO2, and a negative correlation between PaCO2 and
lactate. When taking these findings into account, it can be stated that respiratory-metabolic
acidosis develops in calves with perinatal asphyxia and hypoxemia affects the neurological
status and consciousness level of calves. In addition, postnatal acidosis and hypoxia in
calves with asphyxia can be considered important indicators of survival [2,25,27,35]. A
recent study in calves with asphyxia performed by İder et al. [3] can confirm our results.

In recent years, some brain damage-related biomarkers have been used to detect
hypoxic-ischemic brain damage in asphyxiated infants [8,10,44,45]. In this regard, in
veterinary medicine, some biomarkers (UCHL1, S100B, NSE) have been evaluated only in
newborn foals [12] and pigs [46] for the diagnosis of brain damage [9]. Since no studies
were found in calves, the discussion of our results was made by human literature.

Ubiquitin carboxy-terminal hydrolase 1 (UCHL1) is a soluble brain protein with
ligase and hydrolase multiple activities expressed in the central nervous system and
neuroendocrine cells [47]. It has been reported that UCHL1 is a useful marker that can be
helpful in diagnosing acute brain injury and determining the severity of the damage in
infants with hypoxic-ischemic encephalopathy [48]. UCHL1 and GFAP have been found to
have neuroprognostic importance in infants with neonatal encephalopathy [49]. On the
other hand, it was stated that serum UCHL1 concentration increased significantly in foals
with neonatal hypoxic-ischemic encephalopathy compared to healthy foals, and UCHL1
could be an important diagnostic indicator in detecting brain damage [12]. Douglas-Escobar
et al. [9] reported that the UCHL1 is a reliable biomarker for detecting brain damage, and
its specificity for the diagnosis of neonatal hypoxic-ischemic encephalopathy is 100%.
In the present study, a statistically significant increase was determined in the UCHL1
concentrations of calves with perinatal asphyxia compared to healthy calves at the time
of admission, 24, 48, and 72 h. After treatment conduction, serum UCHL1 concentrations
of calves with perinatal asphyxia gradually decreased at 24, 48, and 72 h compared to the
time of admission. A significant increase in UCHL1 concentrations in asphyxiated calves
may be an indicator of hypoxic-ischemic damage [9,12,48,49], and we believe that it can
be a useful diagnostic marker in the detection of hypoxic-ischemic encephalopathy due to
asphyxia in perinatal calves.

S100B measurement in blood and cerebrospinal fluid is considered reliable in the
evaluation of developing brain damage in perinatal infants with asphyxia [14]. In term
and preterm infants with hypoxic-ischemic encephalopathy, S100B concentration was
found to be elevated within the first 72 h [50]. In contrast, Nagdyman et al. [51] re-
ported that S100B is rapidly released in hypoxic brain injury and returns to normal ranges
within 48 h. Previous studies showed that in the umbilical cord blood of infants born with
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neonatal asphyxia S100B and lactate concentrations were increased, and these markers
could be helpful as an early predictive marker for diagnosis of neonatal hypoxic-ischemic
encephalopathy [52,53]. In the present study, a statistically significant increase was found
in the S100B concentration of calves with perinatal asphyxia compared to healthy calves at
the time of admission, 24, 48, and 72 h. Higher S100B concentrations in calves with peri-
natal asphyxia compared to healthy calves have been associated with the development of
hypoxic-ischemic encephalopathy [50,51]. In our study, the concomitant elevation of S100B,
lactate [52,53], and UCHL1 concentrations in calves with perinatal asphyxia supports the
development of hypoxic-ischemic encephalopathy.

ADM plays a role as a regulator to promote neural regeneration in neural damage [54].
It has been reported that plasma ADM concentrations increase in patients with acute
ischemic stroke, and this increase continues for a long time [55,56]. It has been stated
that the increase in ADM concentrations may vary according to the severity of the neural
damage and the extent of the cerebrovascular infarction [57]. On the other hand, Mitome-
Mishima et al. [58] reported that ischemic white matter damage, which develops as a
result of prolonged cerebral hypoperfusion in mice, causes excessive oxidative stress
and increased free radicals, resulting in the insufficient release of ADM. In the present
study, contrary to previous studies [55–57], a statistically significant decrease was observed
in the ADM concentration in calves with perinatal asphyxia at the 24th h compared to
healthy calves. We believe that the decrease in serum ADM concentrations of asphyxiated
perinatal calves may be associated with hypoxia and the release of intense oxidative stress
products [59]. Especially in newborns, oxidative stress products reduce high oxygen
consumption and low antioxidant levels during the transition from the fetal to neonatal
period, the insufficient ability of the brain to remove free radicals and increased sensitivity
to them cause damage to the central nervous system tissue [2,60,61]. In our opinion, the
excessive production of free radicals in calves with perinatal asphyxia not only causes
neuronal damage but also leads to the slowdown of neuron development and reduces the
release of these markers (ADM, ACTA, CK-B) into the bloodstream.

ACTA concentrations were found to be increased in the blood, urine, and cerebrospinal
fluid of infants that developed hypoxic ischemic encephalopathy due to neonatal as-
phyxia [62]. In addition, increased ACTA concentrations in umbilical cord blood have been
found in infants with mild or moderate neonatal hypoxic-ischemic encephalopathy and
poor nervous system development [63]. In the present study, serum ACTA concentrations
were significantly lower at the time of admission, 48, and 72 h in calves with perinatal
asphyxia. Contrary to previous studies [62,63], the detected low ACTA concentrations in
our study may be originated from the studied species (calf), the destruction of this protein
by the over-released oxidative stress products as stated in ADM [58], the overuse of ACTA
during nervous tissue recovery [16,64], and immature brain structure in newborns [46].

NSE concentrations were found to be significantly increased in infants with neonatal
asphyxia [17]. It has been reported that serum and cerebrospinal fluid concentrations
of NSE can be used to predict the prognosis and to determine the extent of neuronal
damage in infants with hypoxic-ischemic encephalopathy [18,19]. In the present study,
serum NSE concentrations were significantly lower (p < 0.05) at 24, 48, and 72 h in calves
with perinatal asphyxia. Contrary to studies in newborn infants with hypoxic-ischemic
encephalopathy [17–19], similar to our observation, serum NSE was found to be low in
newborn pigs with asphyxia [46]. The authors concluded that because the pigs were
immature, the neonatal brain contained less glial, axonal mass, and myelinization. The
previous findings in newborn pigs with asphyxia and the description of the immature brain
structure may contribute to explaining the lower serum NSE concentrations in calves with
perinatal asphyxia.

Glial fibrillary acidic protein (GFAP) is a monomeric filament protein found in as-
troglial cells. High serum GFAP concentrations have been reported in infants with hypoxic-
ischemic encephalopathy [49,65]. In contrast, no difference was found between umbilical
cord blood GFAP concentrations of moderate HIE (stage II), severe HIE (stage III), and



Animals 2022, 12, 3223 15 of 18

healthy infants, and also no correlation was found between GFAP concentrations and
HIE severity [66]. In the present study, there was no statistically significant difference in
GFAP concentrations of calves with perinatal asphyxia compared to healthy calves at set
intervals. In previous studies, it has been stated that even if structural brain lesions develop
in newborns, GFAP concentrations may not increase [20,66]. Despite the development of
hypoxic-ischemic encephalopathy in calves with perinatal asphyxia, the lack of expected in-
crease in serum GFAP concentrations may be related to the fact that GFAP is usually found
in astrocytes and their structure is not broken down unless severe damage occurs [67], and
therefore, GFAP is not released sufficiently into the bloodstream.

Creatine kinase-B is an isoenzyme found in neurons and astrocytes and used together
with S100B in the diagnosis of brain damage in the neonatal period [51]. It was determined
that CK-B enzyme activity increased significantly in infants with perinatal asphyxia that
developed neurological disorders [21,68]. In another study, it was determined that CK-B
enzyme activity increased for 1 to 3 days and decreased rapidly in infants that died because
of severe brain damage [69]. In the present study, CK-B enzyme activity in calves with
perinatal asphyxia was significantly lower at the time of admission and 72 h compared to
healthy calves. Lower CK-B enzyme activity in calves with perinatal asphyxia may be due
to oxidative stress products that intensely produce during hypoxemic episodes, destroy
this enzyme, and decrease its activity [58]. This situation may explain why CK-B enzyme
activity increases in a short time and then decreases rapidly [69].

5. Conclusions

Histopathologically, it was confirmed that hypoxic-ischemic encephalopathy devel-
oped in calves with perinatal asphyxia. The mortality risk in calves with perinatal asphyxia
with a neurologic status score < 15 was found to be high. Some arterial blood gas and
chemistry variables were useful indicators of mortality prediction in calves with perinatal
asphyxia. Most important, UCHL1 and S100B concentrations were found to be useful
markers for the determination of hypoxic-ischemic encephalopathy in calves with perinatal
asphyxia. In contrast to our expectation, serum ADMA, ACTA, NSE, GFAP, and CK-B con-
centrations were found to be low. It may be related to excessive oxidative stress and severe
damage to the brain of newborns due to high oxygen consumption and low antioxidant
levels during the transition from the fetal to the neonatal period.

Supplementary Materials: The following supporting information can be downloaded at: https:
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tal asphyxia.
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