
RESEARCH ARTICLE

Robust nonparametric quantification of

clustering density of molecules in single-

molecule localization microscopy

Shenghang Jiang1, Seongjin Park2, Sai Divya Challapalli3, Jingyi Fei2,4, Yong Wang1,3,5*

1 Department of Physics, University of Arkansas, Fayetteville, Arkansas, 72701, United States of America,

2 Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois, 60637,

United States of America, 3 Microelectronics and Photonics Graduate Program, University of Arkansas,

Fayetteville, Arkansas, 72701, United States of America, 4 Institute of Biophysical Dynamics, The University

of Chicago, Chicago, Illinois, 60637, United States of America, 5 Cell and Molecular Biology Program,

University of Arkansas, Fayetteville, Arkansas, 72701, United States of America

* yongwang@uark.edu

Abstract

We report a robust nonparametric descriptor, J 0(r), for quantifying the density of clustering

molecules in single-molecule localization microscopy. J 0(r), based on nearest neighbor dis-

tribution functions, does not require any parameter as an input for analyzing point patterns.

We show that J 0(r) displays a valley shape in the presence of clusters of molecules, and the

characteristics of the valley reliably report the clustering features in the data. Most impor-

tantly, the position of the J 0(r) valley (rJ0m) depends exclusively on the density of clustering

molecules (ρc). Therefore, it is ideal for direct estimation of the clustering density of mole-

cules in single-molecule localization microscopy. As an example, this descriptor was applied

to estimate the clustering density of ptsG mRNA in E. coli bacteria.

Introduction

Single-molecule localization microscopy (SMLM) has been utilized broadly in imaging biolog-

ical molecules—proteins, DNA, and RNA—in various biological systems [1–5]. More impor-

tantly, by localizing individual molecules, SMLM has allowed quantitative analyses on the

spatial organizations and patterns of these molecules, and produced new, quantitative and cru-

cial information that was not accessible previously. New mechanisms of various cellular and

molecular organizations and activities at the single-cell level have been unraveled using SMLM

[6–15].

Many algorithms have been adopted, utilized, or developed, in the field of SMLM for ana-

lyzing localization data of molecules and quantifying inter-molecular organizations [13, 14,

16–23]. These methods provide means to identify statistically the forming of clustering mole-

cules from random populations, to examine complex patterns of molecular organization, to

segment molecules into clusters, and to quantify clustering features. For example, pair-correla-

tion analysis has been applied to SMLM data on membrane proteins to identify the presence

of clusters, as well as to estimate various cluster features, such as the density of molecules in a

PLOS ONE | https://doi.org/10.1371/journal.pone.0179975 June 21, 2017 1 / 15

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Jiang S, Park S, Challapalli SD, Fei J,

Wang Y (2017) Robust nonparametric

quantification of clustering density of molecules in

single-molecule localization microscopy. PLoS

ONE 12(6): e0179975. https://doi.org/10.1371/

journal.pone.0179975

Editor: Marek Cebecauer, J. Heyrovsky Institute of

Physical Chemistry, CZECH REPUBLIC

Received: November 29, 2016

Accepted: June 7, 2017

Published: June 21, 2017

Copyright: © 2017 Jiang et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: This work was supported partially by the

Human Frontier Science Program (http://www.

hfsp.org/; LT000752/2014-C to Y.W.) and the

Arkansas Biosciences Institute (http://

arbiosciences.org/; ABI-0189 to Y.W.). S.P. was

supported by the Yen Postdoctoral fellowship from

the Institute for Biophysical Dynamics at The

University of Chicago. The funders had no role in

https://doi.org/10.1371/journal.pone.0179975
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0179975&domain=pdf&date_stamp=2017-06-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0179975&domain=pdf&date_stamp=2017-06-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0179975&domain=pdf&date_stamp=2017-06-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0179975&domain=pdf&date_stamp=2017-06-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0179975&domain=pdf&date_stamp=2017-06-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0179975&domain=pdf&date_stamp=2017-06-21
https://doi.org/10.1371/journal.pone.0179975
https://doi.org/10.1371/journal.pone.0179975
http://creativecommons.org/licenses/by/4.0/
http://www.hfsp.org/
http://www.hfsp.org/
http://arbiosciences.org/
http://arbiosciences.org/


cluster and overall size of a cluster [16, 24, 25]. In addition, density-based algorithms such as

DBSCAN (density-based spatial clustering of applications with noise) [26, 27] and OPTICS

(ordering points to identify the clustering structure) [28, 29] have been exploited to identify

clusters of proteins and nucleic acids, as well as to probe the clustering structures, in both bac-

teria and animal cells [13, 14, 17–19]. Other methods that have been used for analyzing SMLM

data include Ripley’s K/L/H functions and their derivatives [20, 21]. More recently, Bayesian

analysis and Voronoï diagrams have been utilized to segment molecules into clusters and to

analyze the clustering properties [22, 23].

Segmentation and tessellation methods typically require human inputs as algorithm-

parameters. For example, DBSCAN requires two parameters (a radius, eps, and the minimum

number of points in the neighborhood for a point to be considered as a core point, minPts)

[26–29], and they are known to be sensitive to the chosen parameters [18, 30]. The identifica-

tion of clusters in the Voronoï diagram based method also requires a density threshold to

determine whether points form clusters [23]. Although various techniques have been proposed

to determine “appropriate” parameters for use [23, 27, 29, 31], bias is inevitably introduced by

the choice of parameters in these algorithms.

It has been found that nonparametric algorithms could directly report some of the cluster-

ing features of molecules. For example, pair correlation analysis allowed to fit the computed

correlation from experimental data to collect two fitting parameters that are coupled to the

density of clustering points (ρc), the number of clusters Nc and the density of random points ρr
[16, 24, 25]. In addition, it has been reported that the derivative of Ripley’s H function, H0(r)
gave the size of clusters (Rc) reliably from the r-value corresponding to the minimum of

H0(r): rH0m ¼ 2� Rc [32, 33]. More importantly, it was found that rH0m only depends on the clus-

ter size but insensitive to other clustering features such as the densities of clustering and ran-

dom points [32].

Here we present another descriptor based on nearest neighbor distribution functions for

directly reporting the density of clustering molecules (ρc) in SMLM data. We examined the

nearest neighbor function G(r) [34], the spherical contact distribution function F(r) [34], and

the J-function J(r) = (1 − G(r)) / (1 − F(r)) [35, 36], and found that the associated derivative

functions, G0(r) and J0(r), reliably report the clustering features of points. In the presence of

clusters, G0(r) and J0(r) are peak/valley shaped. Most importantly, we observed that the posi-

tion of the J0(r) valley, rJ0m , depends exclusively on the density of clustering points (ρc). There-

fore, unlike rH0m from Ripley’s H function that reports the cluster size, our descriptor, rJ0m , is

ideal for direct measurements of the clustering density of molecules. As an example, we

applied J0(r) and rJ0m to estimate the clustering of ptsGmRNA in E. coli. We expect that this

nonparametric descriptor, J0(r), together withH0(r) [32, 33], will be useful in a broad range of

applications in SMLM.

Results

G(r), F(r) and J(r), and their derivatives

When quantifying the spatial organization of biological molecules in SMLM data, of particular

interest in certain situations is the clustering or aggregation of molecules [37–40], which is fea-

tured by an enhancement in the local density of molecules. This enhancement in density has

been used to identify clusters methods such as DBSCAN, OPTICS, and Voronoï tessellation

[13, 14, 17–23]. On the other hand, the enhancement in the molecular density is also accompa-

nied by the decrease of intermolecular distances, which could be described by functions based

on nearest neighbor distances, such as pair-wise correlation function [16], nearest neighbor
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function G(r), and spherical contact distribution function F(r) [34]. The nearest neighbor

function G(r) is the distribution function of the distance r of a point (existing in the data) to

the nearest other point, while the spherical contact distribution F(r) is the distribution function

of the distance r of an arbitrary point in the space (not necessarily existing in the data) to the

nearest point in the data [34]. In addition, another function, J(r), has been suggested by van

Lieshout and Baddeley in 1996 [35], JðrÞ ¼ 1� GðrÞ
1� FðrÞ, as a better nonparametric test to determine

whether data were from a Poisson process.

We first explored how G(r), F(r) and J(r) functions depend on the clustering features of

points using numerical simulations. Briefly, we generated points forming various clusters in

the presence of noises (i.e., Poisson random points) in a region of interest, and computed

these three functions. In a two-dimensional Poisson random process where points were

not forming clusters (Fig 1A), the nearest neighbor functions gave the expected curves,

Gp(r) = Fp(r) = 1 − exp(−λπr2) (where λ is the density of points) and Jp(r) = 1 (Fig 1C). How-

ever, when points aggregated into clusters (Fig 1B), both G(r) and J(r) deviated significantly

from those for random points, while F(r) became only slightly different (Fig 1D). We observed

that J(r) droped from 1 to * 0.4 when r increased from 0 to 5 nm, while G(r) raised in the

same r-range (0–5 nm). This observation indicates that G(r) and J(r) can be used for detection

of clusters.

Furthermore, to remove accumulative effects, and inspired by Kiskowski et.al. [32], we

calculated the derivatives of these functions: G0(r), F0(r) and J0(r). Striking peaks or valleys

appeared in G0(r) and J0(r) if points formed clusters (Fig 1F). In contrast, these derivative func-

tions remained essentially flat for random points (Fig 1E). On the other hand, F0(r)’s were very

similar in the two cases (Fig 1E and 1F).

Dependence of G0(r) and J0(r) functions on clustering features

To explore quantitative applications of G0(r) and J0(r), we examined how they change with

varying clustering features in the point patterns. Here we focused on the following features:

the radius of clusters, Rc, the density of clustering points (i.e., clustering density), ρc, the num-

ber of clusters, nc, the density of random noise points (i.e., background points), ρr, and the

width (W) and height (H) of the region of interest (ROI). The first three features, Rc, ρc and nc,
are directly related to the properties of clusters in the data, while ρr is an indicator of the noise

level. By varying one feature at a time, we observed that changes in ρc, ρr, or Rc resulted in hori-

zontal shifting or vertical scaling of both G0(r) and J0(r) (Fig 2A–2C). For example, both G0(r)
and J0(r) shifted to the left and scaled up when the clusters became denser (ρc increased). If the

clusters became bigger (Rc increased) while keeping the clustering density constant, little hori-

zontal translation was observed (Fig 2C), although both G0(r) and J0(r) scaled up too. In con-

trast, G0(r) and J0(r) were not as sensitive to the number of clusters (Nc) or the size of the ROI,

W andH (Fig 2D–2F).

We further quantified the dependence of G0(r) and J0(r) on the clustering features. By fitting

G0(r) and J0(r) with polynomials, both the amplitude (i.e., height of G0ðrÞ: G0m, or depth of

J 0ðrÞ: J 0m) and the positions of the peaks and valleys (rG0m and rJ0m , respectively) were determined.

The dependence of these values on the clustering features are shown in Fig 3, and S1–S3 Figs.

We observed that both G0m and J 0m depend on all the clustering features (S1 and S3 Figs), but

rG0m and rJ0m are most sensitive to the density of clustering points ρc (Fig 3 and S2 Fig). Most

interestingly, rJ0m is essentially independent on all the other clustering features except the den-

sity of clustering points ρc (Fig 3), providing a way to correlate rJ0m with directly measuring the

clustering densities of molecules, as shown below.
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Robust direct measurement of clustering density by rJ 0m
Our quantifier rJ0m can be used for direct measurements of clustering densities of molecules.

We first confirmed that the rJ0m � rc relation is independent on other clustering features

when simultaneously varing both ρc and Rc, or Nc, or ρr � � �. We found that the rJ0m � rc rela-

tion from all the simulations collapsed onto a single curve, as shown in Fig 4A. This curve was

fitted very well (R2 = 0.9946) by a power-law function rJ0m ¼ A � r� a
c þ b with α = 0.76 ± 0.03.

This curve provides a “calibration” that can be used to directly estimate the clustering density

of molecules.

“Noises” are almost always present in SMLM data, due to individual molecules not forming

clusters, non-specific labeling, and/or false-positive localizations. A crucial question to examine

Fig 1. G(r), F(r) and J(r) functions, and their derivatives. (A) Simulated noise points. (B) Simulated points forming clusters with a radius of R = 30 nm, in

the presence of noise points. (C, D) G(r), F(r) and J(r) functions calculated from the points in (A) and (B), respectively. (E, F) Derivatives, G 0(r), F 0(r) and

J 0(r), calculated from the points in (A) and (B), respectively.

https://doi.org/10.1371/journal.pone.0179975.g001
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is how this quantifier rJ0m is affected by noises. As shown in Figs 3B and 4, rJ0m is independent on

the density of random noise points (or background points) in the data, strongly suggesting that

it is likely to be robust to use rJ0m to measure the clustering density of molecules (ρc). To rigor-

ously assess the robustness of the rJ0m � rc relation, we systematically investigated how rJ0m devi-

ates in the presence of various amount of noises for a given clustering density. First we looked

at how rJ0m changes with increasing ratios between the number of clustering points ncp to the

number of random (background) points nrp, β = nrp/ncp. We found that rJ0m remained constant

when there were up to *10 times more noise points than clustering points. The relative errors

Fig 2. Changes in G 0(r) and J 0(r) by varying a cluster feature at a time. (A) ρc, (B) ρr, (C) Rc, (D) Nc, (E) W, and (F) H.

https://doi.org/10.1371/journal.pone.0179975.g002
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drJ0m
¼ jrJ0m � r

�
J0m
j=r�J0m � 100% (where r�J0m is without background points) were below 5% for

β≲ 10 (Fig 5A), indicating that the rJ0m � rc relation is very robust. In addition, as a more rigor-

ous test, we also examined how the relative error drJ0m
behaves with increasing relative density

between clusters and background, i.e., ρc/ρr. We found that rJ0m was robust ρc/ρr� 2 with the rel-

ative error drJ0m
below 10% (Fig 5B). As ρc/ρr decreased below 2, drJ0m

started to increase quickly,

Fig 3. Dependence of rJ 0m on the clustering features. (A) ρc, (B) ρr, (C) Rc, (D) Nc, (E) W, and (F) H.

https://doi.org/10.1371/journal.pone.0179975.g003

Fig 4. The rJ 0m � rc relation is independent on all the other cluster features, Rc, ρr, Nc, W, and H. All data points collapse onto a single power-law

curve, rJ0m ¼ A � rc
� a þ b. Least-square fitting gives α = 0.76 ± 0.03.

https://doi.org/10.1371/journal.pone.0179975.g004
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reaching * 30 − 40% for ρc/ρr = 1.5. Although not completely degraded, the accuracy of rJ0m
started to compromise for ρc/ρr< 2. Therefore, it is suggested that rJ0m be used for SMLM data

with ρc/ρr� 2 to ensure the accuracy.

It is expected that the error in measuring the density of clustering points is more relevant in

real applications. Therefore, we also investigated the capability of using the rJ0m � rc “calibra-

tion” curve to estimate the clustering density of molecules in the presence of various amount of

background noise points. Briefly, for each tested ground-truth clustering density (ρc), we varied

the density of background points (ρr) such that ρc/ρr ranged from 2 to 10. For each pair of

(ρc, ρr), we generated 50 simulated data and computed J0(r) and rJ0m for each simulation. The

“measured” clustering density rm
c (averaged over the 50 simulations) was then obtained from

the rJ0m � rc “calibration” curve, rm
c ¼ ððrJ0m � bÞ=AÞ

� 1=a
(Fig 4A). The relative error in the

measured clustering density was quantified by drc
¼ jrm

c � rcj=rc � 100%. We observed

that the error in “measured” clustering densities rm
c were close to the ground-truth density

ρc (≲ 10% for ρc/ρr� 3 as shown in Fig 6) although the relative error increased as ρc/ρr
decreased (* 20 − 25% for ρc/ρr = 2, shown in Fig 6), suggesting that it is robust to use rJ0m to

estimate clustering density (ρc) in point patterns.

J 0(r) for heterogeneous clusters

It is known that, in certain applications, molecules of interest might form heterogeneous clus-

ters [16, 23]. We examined heterogeneity arising from either clustering radius (Rc) or cluster-

ing density (ρc). Briefly, simulations were run for clusters with two different clustering radii

(Rc1 and Rc2), or two different clustering densities (ρc1 and ρc2), in the presence of random

noises. We noticed that J 0
ðrc1;rc2Þ

ðrÞ from heterogeneous clusters with different clustering densi-

ties shifted both horizontally and vertically, and fell between the two curves from homoge-

neous clusters, J 0
rc1
ðrÞ and J 0

rc2
ðrÞ (Fig 7). In addition, we observed that J 0

ðrc1;rc2Þ
ðrÞ overlapped

very well with J 0�rcðrÞ from a homogeneous sample with a clustering density equal to the alge-

braic mean, �rc ¼ ðrc1 þ rc2Þ=2 (Fig 7). It is noted that G0(r) shows a similar behavior.

Fig 5. Robustness of the rJ 0m � rc relation. (A) The dependence of the relative error drJ0m
on the ratio of the number of

clustering points (ncp) to the number of random points (nrp), β = ncp/nrp. The blue dashed line indicates a relative error of

5%. (B)The dependence of the relative error drJ0m
on the ratio of the density of clustering points (ρc) to the density of random

points (ρr), ρc /ρr. The red dashed line indicates ρc /ρr = 1.5; the green dot-dashed line indicates ρc /ρr = 2; and the blue

dotted line indicate an error of 10%.

https://doi.org/10.1371/journal.pone.0179975.g005
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Therefore, G0(r) and J0(r) report only the average clustering density throughout the region of

interest; they cannot distinguish different clustering densities in heterogeneous clusters. In

contrast, for heterogeneous clusters with different radii, J 0
ðRc1;Rc2Þ

ðrÞ shifted only in the vertical

direction. The position of the valley, rJ0m , did not change for heterogeneous clusters with differ-

ent radii (S4 Fig), which is expected because the rJ0m � rc relation does not depend on Rc. In

addition, we found that J 0
ðRc1;Rc2Þ

ðrÞ is equivalent to J 0�RcðrÞ from homogeneous clusters with a

radius of �Rc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR2

c1 þ R2
c2Þ=2

p
(S4 Fig). Therefore, rJ0m can be robustly used for heterogeneous

clusters with different cluster sizes but the same clustering density.

Fig 6. The dependence of the relative error δρc
on the ratio of the density of clustering points (ρc) to

the density of random points (ρr), ρc /ρr, at various clustering densities.

https://doi.org/10.1371/journal.pone.0179975.g006

Fig 7. G 0(r) and J 0(r) for data with heterogeneous clusters with two different clustering densities.

https://doi.org/10.1371/journal.pone.0179975.g007
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Application of J 0(r) to ptsG mRNA in E. coli bacteria

As a simple example, we applied our method based on J0(r) and rJ0m to measure the clustering

density of ptsGmRNA, encoding a primary glucose transporter in E. coli bacteria. The ptsG
mRNA were labeled through fluorescence in situ hybridization (FISH) by 7 Alexa 568-conju-

gated oligonucleotide probes, and were imaged by stochastic optical reconstruction micros-

copy (STORM) with a resolution of * 20 nm in x/y and * 50 nm in z. Three example

bacteria were shown in Fig 8A. The average number of localizations per bacterial cell was

1576 ± 357 (mean ± standard error). The J0(r) function from the localizations were computed

(orange curve in Fig 8C), which gave rJ0m � 1:707 nm and an estimated density of ρc � 0.187

nm−2.

As a comparison, the same ptsGmRNA in E. coli bacteria were labeled by 14 probes via

FISH, with three example cells shown in Fig 8B. The clusters of localizations appeared larger

than those with 7 probes. Quantitatively, we measured 3090 ± 377 (mean ± standard error)

localizations per bacterial cell, which was expected as the number of probes was doubled. How-

ever, as the spacing between 14 probes was similar to that between 7 probes, we expected that

the density of localizations remained the same. We computed the J0(r) function for the sample

labeled with 14 probes and found that the curve (blue curve in Fig 8C) overlapped well with

that from the sample with 7 probes, indicating that the clustering density was unchanged. This

Fig 8. Application of J 0(r) to ptsG mRNA in E. coli bacteria. (A, B) Super-resolved images of ptsG mRNA

labeled through FISH by (A) 7 or (B) 14 fluorescent oligonucleotide probes. Scale bar = 1 μm. (C) Computed

J 0(r) functions from (A) and (B). (D) Estimated clustering densities from (C).

https://doi.org/10.1371/journal.pone.0179975.g008
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observation was confirmed by examining rJ0m (1.699 vs. 1.707) and the estimated clustering

density (0.195 nm−2 vs. 0.187 nm−2, or * 4% difference, Fig 8D), showing that the density

estimated from rJ0m was independent on the cluster size.

Discussion

To conclude, we explored the possibility of utilizing nearest neighbor functions to quantify

spatial patterns of molecules in single-molecule localization microscopy. We observed that the

associated derivative functions, G0(r) and J0(r), can reliably report the clustering features of

point patterns. We found that J0(r) is particularly useful because its position, rJ0m , relies exclu-

sively on the density of clustering points (ρc). More importantly, we showed that this rJ0m � rc

relation is very robust in the presence of up to *10 times more noise points than clustering

points, or when the relative density (ρc/ρr) is ≳ 2. As an example, we applied J0(r) and rJ0m to

robustly estimate the clustering of ptsGmRNA in E. coli.
In the current study, we chose not to exploit any border correction when computing the

nearest neighbor functions. A simplest approach for border correction is the “reduced sample”

method [41], which focuses on the points lying more than r away from the boundary of the

region of interest. However, the “reduced sample” method discards much of the data, and

therefore unacceptably wasteful. In addition, it’s particularly inappropriate in certain applica-

tions where points are preferentially located at the boundary, an example of which is the spatial

organization of high-copy number plasmids in bacteria [14]. We note that more sophisticated

methods for border correction are available, including the Kaplan-Meier correction [42] and

the Hanisch correction [43], both are provided in the spatstat R-package [44, 45]. These edge

corrections can be readily used in our method. However, for the sake of simplicity, uncor-

rected estimators for the nearest neighbor functions have been used in the current study.

We would like to emphasize that the current method based on nearest neighbor functions

is nonparametric and robust. Computing the nearest neighbor functions and their derivatives

does not require any parameters as human inputs, eliminating possible subjective biases that

might exist in other algorithms such as DBSCAN and OPTICS. In addition, the performance

of this method is robust in the presence of noise/background points. The nonparametric

nature and robustness of the current method would allow broad applications in the field of sin-

gle-molecule localization microscopy.

We expect several types of applications of our method in the field of SMLM. First, it can be

used as a direct quantification of the clustering density (ρc) of molecules in biological samples.

Second, although it does not identify clusters by itself, our method, in combination with

Ripley’s H0(r) function [32, 33], provides objective means to determine parameters (i.e., clus-

tering density and cluster size) that can be used in other clustering-identification algorithm

such as DBSCAN and Voronoï tessellation. In addition, in the current work, we focused on

the rJ0m � rc relation for non-parametric measurement of the clustering density of molecules;

however, we expect that it is possible to design ways to figure out other cluster features (such

as Rc and ρr) by taking advantage of the dependence of G0m and J 0m on those features (S1 and S3

Figs), together with the information of ρc.

Methods

Spherical contact distribution function F(r), nearest-neighbor distribution

function G(r), and the J function J(r)

In a set of points, X, in the k-dimensional space, the spherical contact distribution function, or

sometimes referred to as the empty space function, F(r), of X is defined as F(r) = P{d(y, X)� r},
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where d(y, X) = min{|y − x|: x 2 X} is the distance from an arbitrary point, y, to the nearest

point of the point process, X [34]. For a Poisson process with arrival intensity λ (equivalent to

density in the context here) in the k-d space, FpðrÞ ¼ 1 � exp � l pk=2rk
Gð1þk=2Þ

� �
[34]. The nearest-

neighbor distribution function G(r) is very similar to F(r): G(r) = Py{d(y, X)� r} where Py is

the Palm distribution, which is the conditional distribution of the entire process given that y is

one point in X [34]. Therefore, G(r) is the distribution function of the distance from a point of

the process to the nearest other point of the process, i.e., the “nearest-neighbor”. For a Poisson

process in the k-d space, GpðrÞ ¼ 1 � exp � l pk=2rk
Gð1þk=2Þ

� �
¼ FpðrÞ [34]. In 1996, van Lieshout

and Baddeley suggested using the quotient JðrÞ ¼ 1� GðrÞ
1� FðrÞ to characterize a point process [35].

For a Poisson process, Jp(r) = 1.

Simulation and computation of G(r), F(r), J(r) and their derivatives

Sets of points were generated in R programing language [46]. In a region of interest with a

width (W) and a height (H), nc circular clusters with radii of Rc were randomly distributed.

Each cluster contains random points at a density of ρc. Poisson noise points were added ran-

domly to the whole region of interest, with a density ρr. The total number of clustering points

(ncp ¼ nc � rc � pR2
c ) and the total number of noise points (nrp = ρr �WH) define the noise level

β = nrp/ncp.
Simulations were run using various sets of cluster features (W, H, ρr, ρc, nc, Rc). For each

set of features, 50–200 trials were run. The G(r), F(r), J(r) functions and their derivatives were

computed using the spatstat package [44, 45], without applying any edge corrections.

Bacterial sample preparation

Bacterial sample for imaging was prepared as previously published [13]. Briefly, an E.coli
MG1655 derivative strain DJ480 (D. Jin, National Cancer Institute) was grown in MOPS EZ

rich defined medium (TEKnova) supplemented with 0.2% fructose and 0.2% glucose at 37˚C

until OD600 reached 0.15-0.25. Cells were then fixed with 4% formaldehyde in 1X PBS and

permeabilized with 70% ethanol. Chemically synthesized single molecule FISH (smFISH)

probes (20 nucleotides each) were designed using Stellaris Probe Designer and ordered from

Biosearch Technologies (http://www.biosearchtech.com). Seven or 14 probes against ptsG
mRNA were then polled and labeled with Alexa Fluor 568 succinimidyl ester (Life Technolo-

gies). Permeabilized cells were washed once with FISH wash solution (10% formamide in 2X

SSC) and resuspended in hybridization buffer (10% dextran sulfate and 10% formamide in 2X

SSC) containing labeled FISH probes. Hybridization reactions were incubated in the dark at

30˚C overnight. On the second day, the cells were washed three times with FISH wash solu-

tion. After the wash, the cells were pelleted, resuspended into 4X SSC. For imaging, cells were

immobilized to poly-L-lysine treated 1.5 borosilicate chambered coverglass (Thermo Scien-

tific™ Nunc™ Lab-Tek™).

Super-resolution imaging and reconstruction

SMLM was performed on an inverted optical microscope (Nikon Ti-E with 100X NA 1.49 CFI

HP TIRF oil immersion objective) with a yellow laser (561 nm, 150 mW, Coherent Obis LS)

and a violet laser (405 nm, 25 mW, CrystaLaser) fiber coupled to the microscope body. Laser

lines are reflected by a dichroic mirror (Chroma zt405/488/561/647/752rpc-UF3) having near-

TIRF excitation. The emission signal was collected by the objective, filtered by emission filters

(Chroma ET595/50m), and imaged on a 1024X1024 EMCCD camera (Andor iXon Ultra 888).
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Although a cylindrical lens with 10 m focal length (CVI RCX-25.4-50.8-5000.0-C-415-700)

was inserted in the emission path, allowing 3D imaging [3], detected spots within a z slice

(Δz = ±100 nm) were used as a 2D projection. Violet laser power was modulated to keep the

number of blinking-on spots above 50% of the number of cells in the field of view. When the

number of blinking-on spots reached less than this, even with the maximum violet laser

power, the acquisition was terminated. The power density lasers on the sample was *4300

W � cm−2 for yellow laser and the maximum power density for the violet laser was about 130

W � cm−2. Imaging buffer was composed of 10mM NaCl, 50mM Tris (pH = 8.0), 10% glucose,

30 Unit of glucose oxidase (G2133-10KU, Sigma-Aldrich) and 454.5 Unit of catalase (219001,

EMD Millipore) in 4X SSC.

The data analysis algorithm was adopted from previous published [2, 3], and modified to

handle multi-color and 3D images as previously published [13]. Briefly, all the pixels with

intensity values greater than 3.5-4.5 fold of the standard deviation in each frame were identi-

fied. Within a 5-by-5 pixel area, local maximum intensity pixels whose intensity values were

greater than its 24 surrounding pixels were found to represent the intensity peak of a single

fluorophore. For identified peaks, a square region of 19×19 pixels surrounding local maximum

intensity pixel was fitted with an Elliptical Gaussian function [3].

Gðx; yÞ ¼ h� exp � 2
ðx � x0Þ

2

w2
x

� 2
ðy � y0Þ

2

w2
y

 !

þ b

where b is the background level, h is the amplitude of the peak, wx and wy are elliptical widths,

x0 and y0 are the center coordinates of the peak. The z-positions of the fluorophores were

determined by comparing their wx and wy values to a calibration curve. Z-drift was prevented

in real time Nikon perfect focus system. The horizontal drift was corrected during data analysis

by fast Fourier transformation [13]. Finally, the acquired localization were used to generate

reconstructed super-resolved images [3, 13, 14] and for quantitative analysis using G(r), F(r),
and J(r), as well as their derivatives.

Supporting information

S1 Fig. Dependence of G0m on the clustering features. (A) ρc, (B) ρr, (C) Rc, (D) Nc, (E) W,

and (F) H.

(TIF)

S2 Fig. Dependence of rG0m on the clustering features. (A) ρc, (B) ρr, (C) Rc, (D) Nc, (E) W,

and (F) H.

(TIF)

S3 Fig. Dependence of J 0m on the clustering features. (A) ρc, (B) ρr, (C) Rc, (D) Nc, (E) W, and

(F) H.

(TIF)

S4 Fig. G0(r) and J0(r) from heterogeneous clusters with different radii.

�Rc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR2

c1 þ R2
c2Þ=2

p
.

(TIF)
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