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Abstract

Background: Human papillomavirus (HPV)-positive oropharyngeal squa-

mous cell carcinoma (OPSCC) have better prognosis and treatment response

compared to HPV-negative OPSCC. This study aims to noninvasively predict

HPV status of OPSCC using clinical and/or radiological variables.

Methods: Seventy-seven magnetic resonance radiomic features were extracted

from T1-weighted postcontrast images of the primary tumor of 153 patients.

Logistic regression models were created to predict HPV status, determined

with immunohistochemistry, based on clinical variables, radiomic features,

and its combination. Model performance was evaluated using area under the

curve (AUC).

Results: Model performance showed AUCs of 0.794, 0.764, and 0.871 for the

clinical, radiomic, and combined models, respectively. Smoking, higher

T-classification (T3 and T4), larger, less round, and heterogeneous tumors

were associated with HPV-negative tumors.

Conclusion: Models based on clinical variables and/or radiomic tumor fea-

tures can predict HPV status in OPSCC patients with good performance and

can be considered when HPV testing is not available.
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1 | INTRODUCTION

Human papillomavirus (HPV) infection is an important
factor in the development and disease course of oropha-
ryngeal squamous cell carcinoma (OPSCC).1,2 HPV-related
OPSCC has a better progression-free survival and overall
survival after (chemo)radiation treatment than HPV-
negative OPSCC.3-5 Despite these differences in prognosis
and treatment response, HPV-positive and HPV-negative
OPSCC are currently not treated differently. Only recently,
it was shown that cetuximab cannot replace cisplatin in
HPV-positive OPSCC.6 Ongoing de-escalation trials will
further elucidate whether HPV-positive tumors can be
treated with less aggressive treatment regimens in the
future to reduce treatment-related toxicity (trial number
NCT03952585). This is especially relevant as HPV-positive
OPSCC patients tend to be younger with an associated
higher life expectancy than HPV-negative OPSCC
patients.5,7,8 Adding to the importance of HPV status of
OPSCC is the increasing relative incidence of HPV-positive
OPSCC compared to HPV-negative OPSCC over the past
years despite declining overall age adjusted incidence of
head and neck cancer in developed countries. These
changes are probably due to a decline in alcohol and espe-
cially nicotine abuse combined with an increase in sexual
promiscuity with a high risk of HPV transmission.9 For
these reasons, HPV tumor status is increasingly important
and has therefore been included in the most recent eighth
edition of the TMN classification.10

HPV infection is detected using p16/p53 immunohis-
tochemistry and/or HPV DNA polymerase chain reaction
(PCR) on biopsy material.11,12 Determination of tumor
HPV status from just clinical and/or tumor features
extracted from imaging would be ideal, and could possi-
bly reduce the need for time consuming and expensive
immunochemistry and PCR techniques. Recent literature
showed that tumor biology can be assessed noninvasively
in other tumor types using advanced imaging analysis or
radiomics.13,14 The same approach may be used to deter-
mine predictive features for the HPV status in OPSCC.
Multiple studies reported that the CT-based radiomic fea-
tures, such as shape and homogeneity, are associated
with HPV positivity in OPSCC tumors.15-17 To our knowl-
edge, MRI-based radiomics to predict HPV status has not
been performed previously. Clinical variables associated
with HPV-positive tumors are well known and include
male gender, younger age, and less exposure to tobacco
and alcohol.9 These variables have been used to predict
HPV status of head and neck cancer, including
OPSCC.18-21

This study aims to assess and compare the ability of
clinical variables, MR-based radiomic features, or a combi-
nation of these variables to predict HPV status of OPSCC.

2 | MATERIALS AND METHODS

This study is approved by the local institutional review
board (IRBd18047). Due to the retrospective design,
informed consent was waived.

2.1 | Clinical data

A total of 240 consecutive patients with histologically
proven primary OPSCC, treated with CRT (70 Gy radia-
tion with three planned cycles cisplatin-based chemo-
therapy [100 g/m2]) at our Institute between January
2010 and December 2015, were considered for this study.
Patients were excluded when pretreatment MRI of the
primary tumor was not available (n = 38), image quality
was poor (n = 7), tumors were undetectable on MRI
(n = 17), a second head and neck tumor was present
(n = 1), or when HPV status of the tumor was missing
(n = 24). This resulted in a total of 153 patients eligible
for this study.

Age, gender, smoking status, tumor subsite, and TNM
classification (TNM seventh edition), were collected for
each patient. T-classification and N-classification was
determined in multidisciplinary consensus based on clin-
ical and radiological information, including MRI, ultra-
sound staging with fine needle aspiration cytology, and,
when available, PET images. Smoking status was classi-
fied into the categories nonsmoker, current smoker, and
former smoker (quit more than 2 years prior to diagnosis)
at the initial visit to the outpatient clinic. T-classification
was dichotomized in low (T1 + T2) or high T-classifica-
tion (T3 + T4). N-classification was dichotomized in
node-positive (N > 0) or node-negative disease (N = 0).
Differences in clinical variables between HPV-positive
and HPV-negative tumors were assessed by applying the
Fisher exact test and independent t-test for age. P values
of <.05 were considered statistically significant.

2.2 | Determination of HPV tumor status

A combination of p16 and p53 immunohistochemistry on
tumor biopsy material was performed to determine HPV
positivity or negativity of the tumor for each patient. p53
positivity was concluded when at least 80% of the tissue
sample showed strong nuclear staining or completely
negative. No p53 staining of tumor tissue with positive
staining of surrounding normal tissue was regarded as
tumor mutation for which p53 positivity was concluded.
p16 positivity was concluded when at least 70% of tumor
tissue stained positive for p16. A known HPV-positive
tonsil sample, surrounding tissue of the tested biopsy
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sample and appendix, was used as positive internal and
external control. HPV positivity was concluded when
tumor biopsy material tested positive for p16 and nega-
tive for p53 staining. HPV negativity was concluded when
tumor biopsy material tested negative for p16, regardless
of p53; see Henneman et al22 for further details on the
HPV testing scheme.

2.3 | MRI data

All patients underwent an MRI examination of the pri-
mary tumor for pretreatment staging purposes as part of
the routine clinical workup. Imaging was performed at
1.5 T or 3.0 T (Achieva, Philips Medical System, Best,
The Netherlands) using a standard head and neck
coil (SENSE-NV-16). The imaging protocol included
T1-weighted (T1W), T2-weighted (T2W), postcontrast 3D
T1W, perfusion, and diffusion-weighted sequences. Imag-
ing details are summarized in Table 1 and Supplementary
Table S1.1. The axial slices of 3D T1W high-resolution iso-
tropic volume excitation (THRIVE) after gadolinium injec-
tion (postcontrast 3DT1W) were used to manually
delineate primary tumor volumes. One nonexpert observer
(PB, 1 year experience in head and neck diagnosis)
manually delineated the tumor volumes (ie, nonexpert
delineations), which were verified and corrected by an
experienced head and neck radiologist (BJ, 7 years of expe-
rience in head and neck diagnosis) (ie, expert-corrected
delineations). The observers were allowed to review other
available pretreatment MR imaging sequences and avail-
able PET scans as reference to improve delineations.

2.4 | Radiomic feature extraction

Signal intensities for each individual MRI scan were nor-
malized (with zero mean and unit SD) prior to further

analysis to reduce intensity variations between MRI scans
obtained from different patients. Image resampling to iso-
tropic voxels of 1.0 mm was performed using B-spline
interpolation. Image discretization was applied to allow
quantification of texture images in fixed bin width of five.
In total, 1184 radiomic features per patient were calcu-
lated from the postcontrast 3DT1W MRI within the pri-
mary tumor volumes using the open-source package
PyRadiomics 2.2.0,23 which were categorized into the five
groups: shape, intensity, texture, wavelet transform, and
Laplacian of Gaussian filter. Wavelet features were calcu-
lated in seven decompositions and texture coarseness is
determined by four levels modifying the Gaussian radius
parameter from 0.5 to 2.0 mm, in steps of 0.5 mm.
Detailed definitions of the radiomic features can be found
elsewhere.28

After quality control, features with zero variance were
excluded. Stable features were selected using the inter-
class correlation coefficient with regard to the nonexpert
and expert-corrected tumor delineations and the Mann-
Whitney U test in features with regard to the different
MRI field strengths. Features with an interclass correla-
tion coefficient greater than 0.75 and a significance level
equal to or above .05 in the Mann-Whitney U test were
considered stable. From the selected stable features, col-
linear features (Pearson correlation coefficient > 0.9)
were removed, where for each pair the feature that has
the largest mean absolute correlation is deleted. The
remaining 77 features (see consort diagram in Supple-
mentary Figure S1.1) eligible for radiomic analysis were
normalized with zero mean and unit variance for
analysis.

2.5 | Machine learning analysis

From the total of 153 patients, 60% (n = 91) were ran-
domly allocated to a training/validation subset and 40%
(n = 62) to a test subset, stratifying for HPV status and
MRI magnet strength (1.5 or 3.0 T).

Then, separate logistic regression models24 were build
based on solely clinical variables (ie, age, gender,
smoking status, T-classification, N-classification, and sub-
site of cancer) (clinical model), only radiomic features
(radiomic model) and a model where both clinical and
radiomic features were combined (combined model). As
data from other cancer registries may be missing smoking
status and/or TN-classification, we constructed a
combined model without smoking status and/or
TN-classification (see Supplementary Material II).

Feature dimensionality is reduced by applying a
sequential backward wrapper feature selection approach
(recursive feature elimination). This method obtains the

TABLE 1 Postcontrast 3DT1W MRI image acquisition

parameters stratified by MRI magnet strength, 1.5 T and 3.0 T

MRI field strength 1.5 T, n = 74 3.0 T, n = 79

HPV+ 41 35

Slice thickness (mm) 0.8 to 1.0 0.8

Pixel spacing (mm) 0.4 to 1.0 0.2 to 0.8

Repetition time (ms) 9.4 to 10 4.3 to 5.3

Echo time (ms) 4.6 1.7 to 2.4

Echo train length 60 90

Flip angle (�) 10 10

Note: HPV, human papillomavirus; 3DT1W, 3D T1-weighted.
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optimal feature set for the given classifier (in this case
logistic regression) by iteratively removing the weakest
feature assessed by its feature importance score. The opti-
mal set of features is used to train the model.25,26

In the training phase, Bayesian optimization was used
to obtain optimal hyperparameters employing 1000 itera-
tions of 4-fold cross-validation on a 75% (n = 68) training
and 25% (n = 23) validation set. During this process, the
regularization parameter (λ, 0.005-200), a parameter for
the complexity of the model, and the number of features
(k, 1-77 [radiomic model] or 1-86 [combined model])
were tuned based on the four training performances
obtained during cross-validation. Area under the curve
(AUC) was calculated as measure of model performance,
where the loss function is minimized. The loss function
was defined as 1 − mean(AUC) + SD(AUC), where

mean(AUC) aims to maximize model performance and
SD(AUC) aims to minimize model generalization.27-29

The optimized hyperparameters obtained in the train-
ing phase were then used to verify the predictive model
in the test phase, applying bootstrapping on the test sub-
set. Bootstrapping calculated model performance (AUC)
of 500 randomly selected samples (with replacement) of
the test subset. Median AUC and the 95% confidence
interval (95% CI) of these 500 iterations were then calcu-
lated to reflect the model performance that can be
attained of HPV prediction. All analyses were
implemented in python 3.5 and SPSS version 25.0 (SPSS
Inc. Chicago). The complete machine learning pipeline is
shown in Figure 1.

A clinically applicable nomogram was constructed
from the clinical logistic regression model using

FIGURE 1 Analysis pipeline. Three models were created to predict human papillomavirus (HPV) status of oropharyngeal squamous

cell carcinoma (OPSCC). A clinical model (based on the clinical variables, age, gender, smoking status, T-classification, N-classification, and

tumor subsite), a radiomic model based on radiomic features, and a combined model based on both clinical variables and radiomic features.

Morphological, texture, intensity, and filter-based radiomic features were computed from within the tumor delineations on the postcontrast

3DT1 MRI images. Feature reduction was performed using the wrapper feature selection approach by recursive feature elimination,

resulting in an optimal subset of features as input for the logistic regression models. The three separate models were created using logistic

regression analysis on the training subset. Resulting models were tested using bootstrapping with 500 iterations. Model performance on the

test set was evaluated using median area under the curve, sensitivity, specificity, accuracy, and its 95% confidence intervals [Color figure can

be viewed at wileyonlinelibrary.com]
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R software package RMS (version 3.6.3).30 Points were
assigned to each prognostic variable from the clinical
model based on the distribution of the regression coeffi-
cients, maximizing sensitivity and specificity for discrimi-
nation between HPV-positive and HPV-negative tumors.
The probability of HPV positivity can be deducted from
the sum of these points.

3 | RESULTS

Table 2 summarizes patient characteristics for the total
patient cohort and subgroups stratified by HPV status.
The clinical characteristics of the whole patient group
have an equal distribution of HPV (n = 77 HPV negative
and n = 76 HPV-positive tumors) and T status (51%
patients have T1 + T2 tumors, 49% T3 + T4 tumors).
Tumors were mostly located in the tonsils. Patients were

categorized as either smoking or nonsmoking, no
patients were categorized as former smokers.

OPSCC patients with HPV-positive tumors were
younger (median age: 63 vs 59 year, P = .007), less likely
to smoke (P < .001), and had a lower T-classification
(T1-T2 vs T3-T4; P < .001) compared to patients with
HPV-negative tumors. For node-positive disease
(P = .051) and male gender (P = .067), these differences
were borderline significant at the 5% level. Tumors of the
soft palate (P = .017) were significantly more frequent in
HPV-negative tumors.

3.1 | Performance of logistic regression
models

Performance of the three logistic regression models is
summarized in Table 3. All models showed good

TABLE 2 Patient characteristics for all patients and subgroups stratified by human papillomavirus (HPV) status of the tumor

Patients Total n = 153 HPV negative, n = 77 HPV positive, n = 76 P value

Age, median y [IQR] 61 [56-66] 63 [57-67] 59 [55-65] .007a*

Male, n (%) 96 (63) 54 (70) 42 (55) .067b

Smoking, n (%) 114 (75) 72 (94) 42 (55) <.001b*

T-classification, n (%) <.001b*

T1 + T2 78 (51) 25 (32) 53 (70)

T3 + T4 75 (49) 52 (68) 23 (30)

N-classification (N > 0), n (%) 127 (83) 59 (77) 68 (89) .051b

Subsite of cancer, n (%)

Tonsil 88 (58) 42 (55) 46 (60) .514b

Soft palate 13 (8) 11 (14) 2 (3) .017b*

Base of tongue 48 (31) 20 (26) 28 (37) .166b

Posterior wall 4 (3) 4 (5) 0 (0) .120b

Note: The number of patients and its percentage in parentheses is given. Significant values are summarized with an asterisk. Patients were
categorized as either smoking or nonsmoking, no patients were categorized as former smokers.
Abbreviation: HPV, human papillomavirus.
aDifferences between HPV-negative and HPV-positive patient groups calculated with independent t-test.
bDifferences between HPV-negative and HPV-positive patient groups calculated with Fisher exact test.

TABLE 3 Model performance of the logistic regression prognostic models for human papillomavirus (HPV) status

Model Training AUC
Test AUC
[CI bootstrap]

Sensitivity
[CI bootstrap]

Specificity
[CI bootstrap]

PPV
[CI bootstrap]

NPV
[CI bootstrap]

Accuracy
[CI bootstrap]

Clinical 0.872 [0.819-0.938] 0.794 [0.788-0.800] 0.71 [0.70-0.72] 0.81 [0.80-0.82] 0.79 [0.78-0.79] 0.74 [0.73-0.75] 0.76 [0.75-0.76]

Radiomic 0.885 [0.826-0.934] 0.764 [0.758-0.770] 0.76 [0.75-0.77] 0.71 [0.70-0.72] 0.72 [0.71-0.73] 0.75 [0.74-0.76] 0.73 [0.73-0.74]

Combined 0.923 [0.868-0.983] 0.871 [0.866-0.876] 0.88 [0.87-0.89] 0.68 [0.67-0.69] 0.73 [0.72-0.74] 0.85 [0.84-0.86] 0.78 [0.77-0.78]

Note: Performance is defined as median AUC with its 95% CI in parenthesis calculated from AUC values of the cross-validation and boo-
tstrapping for the training and test set, respectively.
Abbreviations: AUC indicates area under the curve; CI, confidence interval; HPV, human papillomavirus; PPV, positive predicted value;
NPV, negative predicted value.
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performance in the prediction of tumor HPV status for
the training set (AUC: 0.872-0.923) and test set
(AUC 0.764-0.871). Figure 2 shows the receiver-operating
characteristic (ROC) curves of the three models. The clin-
ical model (test AUC, 0.794; Sens, 0.71; Spec, 0.81, PPV,
0.79; NPV, 0.74; Acc, 0.76) performed slightly better than
the radiomic model (test AUC, 0.764; Sens, 0.76; Spec,
0.71; PPV, 0.72; NPV, 0.75; Acc, 0.73). The combined
model had the most favorable performance, out-
performing the other models (test AUC, 0.871; Sens, 0.88;
Spec, 0.68; PPV, 0.73; NPV, 0.85; Acc, 0.78). Model per-
formance was similar when only smoking status (test
AUC, 0.837) or TNM classification (test AUC, 0.873) was
omitted from model construction, but drops when both
clinical variables were omitted (test AUC, 0.756); see
Supplementary Material II for detailed results of the
subanalysis.

3.2 | Selected features of logistic
regression models

Table 4 summarizes all prognostic variables selected
for the three models with their regression coefficients,
SE and odds ratios (OR) (95% CI). Selected features
were obtained in the training phase, during the last

cross-validation fold, and then used to train the predic-
tive model with the full training dataset. In the clinical
model, smoking (OR: 0.47 [0.24-0.91]), node-negative dis-
ease (OR: 0.69 [0.33-1.42]), male gender (OR: 0.76
[0.44-1.34]), tumor located on the soft palate (OR: 0.69
[0.04-13.15]), and tumor located on the posterior wall of
the oropharynx (OR: 0.80 [0.02-29.97]) were associated
with HPV-negative tumors. A low T-classification
(OR: 1.70 [0.96-3.03]) and tumor located in the tonsil
(OR: 1.24 [0.07-20.73]) was associated with HPV-positive
tumors. The clinical model is presented in a nomogram
in Figure 3, where a cutoff value of 134 points has the
maximum sensitivity (76%) and specificity (73%). A sum
of points below 134 is indicative of HPV negativity.

Out of the 77 initial radiomic features, three prognos-
tic features were selected in the radiomic model after
model construction. Fourteen radiomic features were
selected in the combined model, along with six clinical
variables that were included in the clinical model. Radio-
mic features indicated smaller, rounder, more homoge-
neous, and more regular texture in HPV-positive tumors.
Figure 4 illustrates textural differences between a patient
with HPV-negative and HPV-positive tumor. The inter-
pretation of all selected radiomic features is summarized
in Supplementary Table S1.2.

4 | DISCUSSION

This retrospective study shows that logistic prediction
models based on clinical and/or MR-based radiomic fea-
tures are able to predict HPV status in OPSCC with good
performance. The model combining radiomic features
and clinical variables performed better than separate
models based on clinical and radiological features.

The variables included in the clinical model were var-
iables that can be expected to differentiate HPV-negative
and HPV-positive tumors (ie, smoking status, age, gen-
der, T-classification, N-classification, and tumor loca-
tion). This underscores that the clinical model, besides
the good overall performance, is biologically plausible.

The discriminatory MRI features in the radiomic-
based models probably reflect differences in tumor biol-
ogy between HPV-positive and HPV-negative tumors.
HPV-positive tumors are characterized by less-invasive
exophytic growth, nonkeratinizing histopathology,
genetic stability, and well-defined surroundings.31 These
histopathological differences are likely to be reflected in
the selected radiomic features indicating rounder tumors,
lower maximum intensity values, and texture homogene-
ity. Conversely, HPV-negative tumors are genetically
more unstable,32 which can lead to focal hypoxia or vary-
ing grades of dedifferentiation within a tumor, likely to

FIGURE 2 Receiver-operating characteristic (ROC) curves for

prediction of human papillomavirus (HPV) status of the tumor. The

combined model had a higher area under the curve (AUC) than the

clinical and radiomic model [Color figure can be viewed at

wileyonlinelibrary.com]
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TABLE 4 Selected features in the radiomic and combined models with regression coefficients ranked from high to low, SEs, and OR

(with 95% CI)

Selected feature Regression coefficient SE OR [95% CI]

Clinical model (n = 7)

Smoking −0.76 0.17 0.47 [0.24-0.91]

Low T-classification 0.53 0.15 1.70 [0.96-3.03]

Node-negative disease −0.38 0.19 0.69 [0.33–1.42]

Subsite of cancer: soft palate −0.37 0.75 0.69 [0.04–13.15]

Male gender −0.27 0.14 0.76 [0.44–1.34]

Subsite of cancer: posterior wall of
oropharynx

−0.22 0.92 0.80 [0.02–29.97]

Subsite of cancer: tonsil 0.21 0.72 1.24 [0.07–20.73]

Radiomic model (n = 3)

Shape sphericity 0.16 0.90 1.18 [0.03-40.59]

Gray-level co-occurrence matrix inverse
difference moment (Laplacian of Gaussian
[2 mm])

0.13 0.11 1.13 [0.73-1.76]

Kurtosis (wavelet) 0.12 0.22 1.13 [0.48-2.67]

Combined model (n = 20)

Smokinga −0.74 0.44 0.44 [0.09-2.64]

Neighboring gray tone difference matrix
busyness (wavelet) (2×)

−0.39 0.88 0.68 [0.02-21.01]

−0.21 0.38 0.81 [0.18-3.61]

Node-negative diseasea −0.33 0.60 0.72 [0.07-7.53]

Skewness (wavelet) −0.33 0.32 0.72 [0.21-2.51]

Shape sphericitya 0.33 0.46 1.39 [0.23-8.35]

Gray-level co-occurrence matrix inverse
difference moment (Laplacian of Gaussian
[2 mm])a

0.30 0.12 1.35 [0.86-2.12]

Subsite of cancer: soft palatea −0.30 0.44 0.74 [0.13-4.25]

Low T-classificationa 0.29 0.55 1.33 [0.15-11.61]

Kurtosis (wavelet) (3×)a 0.29 0.19 1.33 [0.64-2.77]

−0.19 0.26 0.83 [0.30-2.26]

−0.18 0.38 0.83 [0.19-3.68]

Neighboring gray tone difference matrix
complexity (wavelet)

−0.26 0.00 0.77 [0.77-0.77]

Maximum (wavelet) −0.23 0.01 0.79 [0.77-0.82]

Gray-level co-occurrence matrix cluster
prominence (wavelet)

−0.23 0.00 0.80 [0.80-0.80]

Subsite of cancer: tonsila 0.22 0.34 1.25 [0.33-4.74]

Male gendera −0.22 0.50 0.80 [0.11-5.71]

Neighboring gray tone difference matrix
contrast (2×) (Laplacian of Gaussian
[0.5 mm], wavelet)

−0.21 0.10 0.81 [0.55-1.20]

−0.18 0.10 0.83 [0.56-1.24]

Maximum 2D diameter −0.19 0.04 0.82 [0.71-0.96]

Note: Positive regression coefficients or an OR above 1 indicate a higher likelihood of human papillomavirus (HPV) positive tumor. Negative
coefficients indicate a higher likelihood of HPV-negative tumors.
Abbreviation: CI, confidence interval; OR, odds ratio.
aFeatures in the combined model that are also included in the clinical or radiomic model.
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be reflected in the selected MR features of heterogeneity
in the radiomic models.

Although no direct comparison was made, our
MR-based predictive radiomic model suggests similar
performance (AUC = 0.76) compared to CT.16,17 This
suggests that postcontrast 3DT1W MRI and CT reveal, at
least partly, similar textural properties relevant for the
discrimination of HPV-positive and HPV-negative tumors
in radiomic analysis. Intuitively, features from MRI and
CT should at least be able to characterize tumor size and
morphology in a similar way, explaining similar perfor-
mance. Whether structural MRI or CT is better for deter-
mination of HPV status of OPSCC by radiomic analysis is
not entirely clear at this point. In our opinion, MRI is
preferable over CT for staging and radiomic analysis for

OPSCC due to the better soft tissue contrast of MRI in
this anatomically challenging area. But in the end, the
choice for CT or MRI will largely depend on the prefer-
ence and experience of the radiologists within the
center. The radiomic model presented in this article
seems to have better predictive performance compared
to fluorodeoxyglucose-positron emission tomography
(FDG-PET) (AUC: 0.64).33 This can be expected as
FDG-PET images are less able to provide textural detail
of tumor tissue.

The models in this article are less sensitive (88%) and
specific (71%) compared to pathological methods (p16
immunohistochemistry: sensitivity 56-100%, specificity
79-93%; DNA PCR: sensitivity: 100% specificity 89% or
the combination of latter techniques: Sensitivity and

FIGURE 3 Nomogram for the clinical model to predict human papillomavirus (HPV) positivity. A, Points are given to each clinical by

drawing a line between the clinical variable with the “Points” line (top row) ranging from 0 to 100. The sum of all points for the individual

clinical variables result in a total score (total points). A total score of ≥134 points is indicative of HPV positivity of the tumor. B, worked

example. A nonsmoking female with a T1 tumor of the tonsil region, including node-positive disease had a total score of 284 points,

corresponding to HPV positivity of the tumor [Color figure can be viewed at wileyonlinelibrary.com]
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specificity 100%34) to determine HPV status of the tumor.
However, these pathological methods are expensive and
time consuming and are not always available (for
instance, in retrospective studies when no biopsy is per-
formed or biopsy/tissue samples are not available), mak-
ing predictive models based on clinical and/or radiomic
features a useful alternative.

This study is, to our knowledge, the largest radiomic
study on MRI in head and neck squamous cell carcino-
mas.35 However, our sample size is still quite limited
compared to previous studies evaluating CT-based radio-
mics.15-17 Clearly, larger populations, preferably in a mul-
ticenter setting, are needed to confirm our findings and
create radiomic models that are more generalizable
across scanners and populations.

The present study included patients from a single cen-
ter, without an external cohort to validate our results,
which is obviously a recommendation for further work.
Another, minor, limitation might be the accuracy of the
self-reporting variables, especially smoking status. This is
partly overcome by categorizing smoking status into three

robust categories (current-, former-, and nonsmoker),
where former smokers stopped for at least 2 years prior to
diagnosis. Only postcontrast 3DT1W MRIs were used in
this study to limit the number of features with our avail-
able cases. Other MR sequences might give additional
radiomic features for prediction of HPV status and is a
topic for further study. In a preliminary study, we included
all available MRI sequences, revealing mainly radiomic
features from the postcontrast 3DT1W sequence,
suggesting that other sequences would not contribute to
the eventual predictive models. Finally, time-consuming
manual tumor delineations were used for feature extrac-
tion, which introduces interobserver variability. Stable fea-
tures with regard to delineations were selected to
minimize the effect of interobserver variability in the even-
tual models. Ideally, this interobserver variability should
be eliminated. Automated tumor delineation algorithms
by, for instance, convolutional neural networks may over-
come interobserver delineation variability.36 In addition,
automated tumor delineation would greatly reduce the
workload of manual tumor delineation, making clinical

FIGURE 4 Magnetic resonance image of a patient with human papillomavirus (HPV)-positive (A) and HPV-negative (B) tumor status

(blue marked area) showing difference in textural appearances. The patient with a HPV-positive tumor status has a smaller and rounder

tumor. Intensity values were less variated and less changes of intensities were visible [Color figure can be viewed at wileyonlinelibrary.com]
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implementation of radiomic analysis more feasible.
Another approach would be to use deep-learning models
or other unsupervised machine learning techniques to pre-
dict HPV status of head and neck tumors. However, ade-
quate training of these models is challenging due to the
relatively small tumors in a large and challenging anatom-
ical area. Radiomic analysis therefore seems to be the most
straight forward approach at this point in time.

5 | CONCLUSION

This study shows that logistic regression models based on
clinical variables, MR-based radiomic features, or a com-
bination of clinical and radiomic features can accurately
predict HPV status in OPSCC patients. Although a model
based on clinical and radiomic features performs best,
the clinical model would be the method of choice due to
its ease of implementation. These models have a place in
determination of HPV tumor status in settings where
tumor biopsy material, tumor samples, immunohisto-
chemistry, and/or DNA polymerase chain reaction tech-
niques are not available. HPV testing is becoming more a
routine in hospitals, but not everywhere, especially not in
the past when the importance of HPV status of the tumor
was not known. Medical images, on the other hand, are
widely available due to the advantage of storage capabil-
ity of medical images for a long time, making it a good
alternative to assess HPV tumor status.
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