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Abstract

The idea that most morphological adaptations can be attributed to changes in the cis-regulation of gene expression levels
has been gaining increasing acceptance, despite the fact that only a handful of such cases have so far been demonstrated.
Moreover, because each of these cases involves only one gene, we lack any understanding of how natural selection may act
on cis-regulation across entire pathways or networks. Here we apply a genome-wide test for selection on cis-regulation to
two subspecies of the mouse Mus musculus. We find evidence for lineage-specific selection at over 100 genes involved in
diverse processes such as growth, locomotion, and memory. These gene sets implicate candidate genes that are supported
by both quantitative trait loci and a validated causality-testing framework, and they predict a number of phenotypic
differences, which we confirm in all four cases tested. Our results suggest that gene expression adaptation is widespread
and that these adaptations can be highly polygenic, involving cis-regulatory changes at numerous functionally related
genes. These coordinated adaptations may contribute to divergence in a wide range of morphological, physiological, and
behavioral phenotypes.
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Introduction

To what extent the evolution of gene expression cis-regulation

drives the evolutionary innovations of life is an important

unresolved question. While some contend that changes in cis-

regulation are responsible for the majority of morphological

adaptations [1], others point out that only a few such cases have

been demonstrated [2,3] (we distinguish here between cis-

regulatory changes that have been shown to affect phenotypes,

of which there are a moderate number [4,5], and those that have

further been shown to be adaptive, of which there have been far

fewer [2,3]; adaptive changes are those that are subject to positive

selection as a result of increasing fitness).

This long-standing paucity of examples of adaptive cis-

regulatory divergence was due in large part to the fact that

historically it has not been possible to formally demonstrate the

presence of cis-regulatory adaptation from genome-wide data [3].

Sequence-based approaches have often been used to scan the

genome for accelerated divergence in non-coding regions [6–9],

but what fraction of these represent positive selection on cis-

regulation remains unknown; other possible explanations include

changes in local mutation rate or biased gene conversion rate [10],

or selection on non-coding RNAs, recombination control

elements, DNA replication origins, or any other non-coding

feature of genomes (e.g. [6]). Moreover, even when accelerated

evolution does reflect cis-regulatory adaptation, the target genes

often cannot be identified, since transcriptional enhancers can act

on distant genes in many species.

Alternatively, many studies have attempted to detect genes

under positive selection from genome-wide gene expression data,

but have been unable to demonstrate the presence of positive

selection due to the lack of a null model of neutrality [3,11]. For

example, the finding that gene expression divergence among three

populations of Fundulus fish species correlates better with the

species’ environment than with their phylogeny [12] is consistent

either with widespread adaptation to the environment, or with a

neutral mutation affecting many gene expression levels being

shared between two populations by chance; these cannot be

distinguished without a null model of neutral change. Similarly,

studies that rank genes by their ratio of gene expression divergence

between species to diversity within species [13–14] can identify

promising candidates for follow-up studies, but cannot distinguish

between neutral and adaptive evolution without knowing how the

expression of a ‘‘neutral gene’’ would evolve [3].

Several studies have succeeded in developing accurate neutral

models of gene expression change by quantifying expression
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divergence when selection is artificially weakened in the lab [15–

17]. In these studies positive selection on a gene’s expression would

be indicated by a greater divergence between species than

expected from the neutral model; less divergence than expected

would reflect negative selection. Although these studies have had

the potential to discover positive selection, they have only un-

covered negative selection—i.e. all genes have shown less di-

vergence between species than expected under neutrality.

However since these studies can only measure ‘‘average’’ selection

pressures (much like the dN/dS metric for coding regions), genes

even with fairly frequent episodes of positive selection on

expression would go undetected if they are most often subject to

negative selection [3]. Therefore the lack of any positive selection

on gene expression identified in these studies is not evidence

against the existence of such positive selection.

This landscape has changed with the recent publication of two

studies of selection on genome-scale gene expression data in

Saccharomyces yeast [3,18,19]. In one of these [18], we used the

directionality of gene expression quantitative trait loci (eQTL;

reviewed in [20]) to demonstrate that at least 242 gene expression

levels (and likely many more) have been subject to lineage-specific

selection (i.e. different selective regimes between two lineages)

since the divergence of two strains of S. cerevisiae, and then

employed population-genetic analyses to show that most of these

represent positive selection, as opposed to relaxed negative

selection. Although this work expanded the number of known

cases of gene expression adaptation (across all species) by over 10-

fold, it revealed little insight into the higher-level traits being

selected. In another important recent study, Bullard et al. [19]

examined the allele-specific expression (ASE) levels of gene sets

(e.g. pathways, co-expressed gene clusters, etc.) in a hybrid

between S. cerevisiae and another yeast, S. bayanus. ASE implies the

presence of a cis-acting polymorphism affecting expression, and

consistent directionality of ASE within a gene set implies lineage-

specific selection (see below for further explanation). This method

has great promise for identifying the biological processes affected

by gene expression adaptation, though it remains unknown if the

gene sets implicated in this work have been subject to positive (as

opposed to relaxed negative) selection [19]. Interestingly, parallel

analysis of the genomic sequences of these same gene sets revealed

no cases of either promoters or protein-coding regions under

positive selection [19].

Here we apply a gene set-based test of selection on gene

expression to M. musculus. Although mouse is a heavily studied

model organism, both in the lab and in the wild, no cases of gene

expression adaptation have been demonstrated in this species (one

example, the Agouti gene, has been found in Peromyscus deer mice

[21]). Our results show that both ‘‘traditional’’ eQTL mapping in

an F2 population as well ASE analysis in an F1 hybrid can be used

to detect lineage-specific selection on gene sets, and that data from

additional strains can be used to polarize the changes and infer the

probable action of positive selection. Moreover, we expand the

known extent of gene expression adaptation in M. musculus from

zero genes to over 100, and find that a great deal of such

adaptation may occur in parallel on many genes of small effect, in

contrast to all previously known cases of gene expression

adaptation [1,2] aside from our work in yeast [18]. Finally, our

results suggest that gene expression adaptations can affect

behavioral and physiological phenotypes, in addition to their

more well-established role in morphological evolution [1].

Results

A test of selection on cis-regulation
The test of lineage-specific selection we use is based upon an

idea first formalized by Orr [22] in an elegant test of selection on

quantitative traits: under neutrality, QTLs for any given trait are

expected to be unbiased with respect to their directionality. In

other words, given two parents (A and B) of a genetic cross, A

alleles at any QTL would be expected to be equally likely as B

alleles to increase the trait value. If a significant bias is seen—e.g.,

among 20 QTLs for a trait, the A allele increases the trait value at

all of them—neutrality may be rejected in favor of lineage-specific

selection (in the absence of ascertainment bias [see Text S1]). At

present, no gene expression levels have been mapped to a

sufficient number of eQTLs to reject neutrality for any single gene.

However, if the expression levels of an entire group of genes is

treated as a single trait, and each eQTL used in the test is

independent (i.e. caused by a distinct polymorphism), then lineage-

specific selection can be detected as a bias in the directionality of

eQTLs for the gene set being tested [3,19] (This approach will

have the greatest power for gene sets containing genes that

predominantly have the same direction of effect on a trait under

selection; for gene sets with a significant fraction of genes that act

in opposition, selection in one direction could result in upregula-

tion of some, and downregulation of others.).

The independence of eQTLs for different genes is critical for

this test, since a single eQTL that affected many genes could lead

to a strong bias in the directionality of effect even in the absence of

lineage-specific selection (Figure 1, strain A versus B). To ensure

that each eQTL is independent, we considered only local

eQTLs—that is, eQTLs located at genetic markers that are close

in the genome to the gene whose expression they control. These

local eQTLs have been shown to be primarily cis-acting [23] (so

we refer to these as cis-eQTL for brevity), though we note that our

test of selection is equally valid for local trans-acting eQTLs. Since

a single cis-eQTL could conceivably control multiple nearby

genes, and thus violate the requirement for independence, we also

discard genes that are located close to others in the same gene set

(see Methods).

At any eQTL, either the allele from parent A up-regulates

expression (and thus parent B’s down-regulates), or the allele from

parent A down-regulates expression (and thus parent B’s up-

regulates). In our test we include an equal number of each type

(arbitrarily termed ‘‘+’’ and ‘‘–’’), so that any gene set that is not

under lineage-specific selection should have close to the same

Author Summary

Evolution can involve changes that are advantageous—
known as adaptations—as well as changes that are neutral
or slightly deleterious, which are established through a
process of random drift. Discerning what specific differenc-
es between any two lineages are adaptive is a major goal of
evolutionary biology. For gene expression differences, this
has traditionally proven to be a challenging question, and
previous studies of gene expression adaptation in metazo-
ans have been restricted to the single-gene level. Here we
present a genome-wide analysis of gene expression
evolution in two subspecies of the mouse Mus musculus.
We find several groups of genes that have likely been
subject to selection for up-regulation in a specific lineage.
These groups include genes related to mitochondria,
growth, locomotion, and memory. Analysis of the pheno-
types of these mice indicates that these adaptations
may have had a significant impact on a wide range of
phenotypes.

Polygenic cis-Regulatory Evolution

PLoS Genetics | www.plosgenetics.org 2 March 2011 | Volume 7 | Issue 3 | e1002023



number of genes in each eQTL direction (Figure 1, strain A versus

C). This null expectation requires no assumptions about gene sets

or eQTLs or the complex biological networks involved, but follows

simply from the fact that we constrain the total number of + and –

eQTLs to be equal (relaxing this constraint to allow different

numbers of + and – eQTLs is straightforward, and requires only

adjusting the null expectation; e.g. if we adjust our cutoffs so that

60% of all eQTLs are +, then any random or non-lineage-specific-

selected gene set is expected to have ,60% + eQTLs). A

hypergeometric p-value, testing whether the observed data deviate

from this expectation by having an excess of either + or – eQTLs

(Figure 1, strain A versus D), constitutes the test. Although this

method will have greater power for gene sets with many cis-

eQTLs, any variation in the total number of cis-eQTLs per gene

set (whether due to real biological differences, or experimental

design, e.g. gene sets not well-represented on the expression array)

will not lead to false-positive results, since these will affect + and –

eQTLs equally. Further, the test is sensitive to both positive

selection and relaxed negative selection acting on a gene set, as

long as that selection is present in only one of the two lineages;

thus it is a test of lineage-specific selection, although positive

selection can be inferred with additional data (see below). In this

sense, it is similar to the McDonald-Kreitman test [24], which also

cannot distinguish between positive and relaxed negative selection

[25]. However unlike the McDonald-Kreitman test, as well as

nearly all other previous tests of selection (on both gene expression

levels and DNA/protein sequences), this is not dependent on any

assumptions about either demographic histories or a subset of

neutral sites (see Text S1).

Inferring selection in mouse
We applied our test of selection to eQTL data from a cross

between two diverged inbred mouse strains, C57BL/6J (B6) and

CAST/EiJ (CAST). B6, like most commonly used lab strains, is

a mosaic of several lineages [26], but primarily Mus musculus

domesticus. CAST represents Mus musculus castaneus, a subspecies

thought to have diverged from the primary B6 progenitor strains

,500,000 years ago [27]. This divergence, as well as recent

selection during inbreeding in the lab, provides ample opportunity

for adaptive changes to have accumulated in each lineage.

To map cis-eQTLs, we produced 442 F2 animals, either with

B6 as the F0 paternal strain (referred to here as CxB F2 animals)

or maternal strain (referred to as BxC F2 animals). Each mouse

was genotyped at 1,438 informative genetic markers, and genome-

wide gene expression was measured in adult brain, liver, and

skeletal muscle (see Methods). Cis-eQTLs were found by linear

regression of gene expression levels on genotypes separately in

each of four cohorts: CxB females, CxB males, BxC females, and

BxC males. A total of 5,000 cis-eQTLs in each cohort—the

strongest 2,500 in each direction (corresponding to a false

discovery rate [FDR] ,10% in each cohort)—were retained for

analysis. Using the same number of + and – eQTLs allows us to

apply our simple yet robust null expectation of neutrality to any

gene set: regardless of what complex biological networks and

Figure 1. Illustration of our test for lineage-specific selection. Four unlinked genes are shown for each of four strains (or subspecies, species,
etc). The number of curved blue lines (mRNA molecules) next to each gene represents its transcript level. Red ‘‘X’’s represent polymorphisms that
underlie eQTLs. Comparing strains A versus B, a single trans-eQTL (shown on a fifth chromosome) up-regulates all the genes. Although all four genes
show the same direction of expression change, this is not evidence for selection, since the single trans-eQTL could be neutral. Comparing strains A
versus C, all four genes have independent cis-eQTLs, but the directions are split between up- and down-regulation; thus there is no evidence for
selection here as well. Comparing strains A versus D, again all four genes have independent cis-eQTLs, but now they are all up-regulating. This is
consistent with lineage-specific selection for altered expression of this entire gene set (although in practice, more than four genes are needed to
achieve statistical significance).
doi:10.1371/journal.pgen.1002023.g001
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population histories underlie the eQTLs, any gene set not subject

to lineage-specific selection (including random gene sets) will show

an approximately equal number of + and – eQTLs, following the

binomial distribution. Throughout this work we report gene sets

significant at either a high-confidence (,2% FDR) or medium-

confidence (,15% FDR) cutoff, with FDRs estimated by testing

randomly generated gene sets matched in size to the real ones (see

Methods).

We began by testing gene sets from the Gene Ontology (GO)

Consortium [28], since these have been shown to be useful in a

wide range of applications (while any particular gene’s GO

classification and expression data may be imperfect, the sheer

number of genes and expression measurements being used make

this a potentially powerful test; any inaccuracies in the gene set

assignments may lead to false negatives, but are unlikely to result

in false positives). Applying the hypergeometric test to 531 GO

gene sets (each with at least 50 members) separately in each tissue,

we found one high-confidence set (FDR = 1.5%, meaning that

there is approximately a 1.5% probability that this enrichment is

due to chance, given the number of gene sets tested, and the

overlap in content between gene sets): genes in the ‘‘mitochondria’’

set were biased towards increased expression from B6 cis-eQTL

alleles (‘‘B6-upregulation’’) in liver (Table 1; see Table S1 for gene

lists). These results were consistent across all four cohorts

(Figure 2a), not only at the gene-set level, but also for specific

genes within those sets (see Text S1), underscoring their

robustness. SNPs that could disrupt microarray probe hybridiza-

tion are unlikely to explain the results, since these did not show any

enrichment in the B6-upregulated mitochondria-related genes (see

Text S1). The number of genes affected by selection can be

estimated as the difference between the numbers of cis-eQTLs in

each direction (see Text S1); in mitochondria, this is estimated

separately in each cohort as 32-35 genes in females and 47-48

genes in males (Figure 2a, green numbers). We note this will be

conservative if any of the CAST-upregulated cis-eQTLs were fixed

by positive selection as well. No additional gene sets were observed

with medium confidence.

To increase our statistical power, we combined results across

tissues, since many cis-eQTLs in our data were not tissue-specific.

Seven additional gene sets were found: one at high-confidence and

six at medium-confidence (Table 1; see Table S2 for results from

all 531 gene sets). Two of the seven sets were related to

mitochondria at different levels of the GO hierarchy (‘‘mitochon-

drial inner membrane’’ and ‘‘intracellular organelle’’), while the

other five represented a diverse collection of functions. As an

example, locomotory genes—which are biased towards CAST-

upregulation in all three tissues—are shown in Figure 2b. Similar

to the mitochondria gene set, the specific genes implicated in each

cohort overlapped extensively (see Text S1). In sum, these results

suggest that lineage-specific selection involving these subspecies

can be inferred for several functional categories.

We also applied our method to other types of gene sets. Testing

41 modules of genes co-expressed in each F2 population (see

Methods), we did not find any significant enrichments for biased

directionality of cis-eQTLs. However testing 75 pathways from the

KEGG database [29], we found one at medium confidence (FDR

= 4.5%): the JAK/STAT pathway was biased towards cis-

upregulation in CAST brain (Table 1).

Inferring selection via mRNA sequencing
To complement the microarray-based approach described

above, we turned to sequencing RNA isolated from F1 mice to

directly identify allele-specific expression (ASE). While this

approach does not offer the richness in terms of understanding

genetically regulated networks and their interactions that can be

achieved in a large F2 cross, it does address two drawbacks of the

microarray approach described above: 1) our microarrays cannot

provide direct evidence of cis-regulation (since local eQTLs can

occasionally be trans-acting [23]), so we cannot be confident that

our results truly reflect selection solely on cis-acting elements; and

2) there is considerable time and expense associated with rearing,

genotyping, and expression profiling of hundreds of F2 mice.

We and others have shown that high-throughput mRNA

sequencing (RNA-seq) in F1 hybrid mice is an effective approach

to studying ASE [30–32]. mRNA levels can be accurately

estimated by simply counting the density of reads from each

transcript. Since heterozygous SNPs are present at a 1:1 ratio in

the genome, any significant deviation from this ratio in the

number of sequence reads that can be mapped to each individual

allele (as a result of containing a heterozygous SNP) indicates ASE.

When the allele-specificity associates in reciprocal crosses with

SNP genotype—as opposed to parent-of-origin, as seen for

Table 1. Gene sets with significant bias in cis-eQTL directions.

Gene set Most significant tissue Upregulating alleles FDR (%)

Single-tissue analysis (GO) Mitochondria Liver B6 1.5

Single-tissue analysis (KEGG) JAK/STAT pathway Brain CAST 4.5

Multi-tissue analysis (GO) Mitochondrial inner membrane Liver B6 1.0

Mitochondria Liver B6 5.8

Regulation of growth Brain B6 12.3

Receptor activity Muscle CAST 12.3

Enzyme inhibitor activity Muscle CAST 12.3

Intracellular organelle Liver B6 12.3

Adult locomotory behavior Liver CAST 12.3

G-protein coupled receptor activity Brain CAST 12.3

RNA-seq Calmodulin binding Embryo B6 1.6

Memory Embryo B6 1.6

‘‘Upregulating alleles’’ indicates which parental strain’s alleles were more likely to upregulate expression at cis-eQTL for that gene set. The FDR indicates the chance that
any given gene set’s bias in cis-eQTL directionality could be explained by chance, given the number of statistical tests performed (see Methods).
doi:10.1371/journal.pgen.1002023.t001
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imprinted loci [30–31]—this implies the presence of a cis-acting

eQTL. These cis-eQTL target genes can then be used as input for

our selection test, in exactly the same fashion as those found using

microarrays in an F2 population.

We searched for ASE in a set of ,78 million sequence reads

from F1 hybrid BxC and CxB embryos we generated previously

[30]. Because this is not only a different technology, but also a

different developmental stage (embryonic day 9.5) and tissue

Figure 2. Results of the selection test for two gene sets. (a) Effect directions for cis-eQTLs of mitochondria-related genes in liver. A consistent
bias is seen for the B6 alleles to upregulate expression. A lower-bound estimate for the number of genes with cis-regulation under lineage-specific
selection is the difference in height between the two bars (numbers in green). (b) Effect directions for cis-eQTLs of adult locomotory behavior-related
genes in liver. A consistent bias is seen for the CAST alleles to upregulate expression. This does not imply that the expression changes in liver are
relevant for this trait, as the effect is seen in all three tissues, and thus is not tissue-specific.
doi:10.1371/journal.pgen.1002023.g002
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(whole embryos), we were encouraged to see several of our strongest

hits replicate. For example, mitochondrial genes show a bias towards

higher expression of B6 alleles, whereas locomotory-related genes

show the opposite (Figure 3a). Gene sets that were biased in adults

but not in F1 embryos might be tissue and/or stage-specific, or may

be missing due to lower power of our RNA-seq data for weakly

Figure 3. Results of the selection test in RNA-seq data. (a) Directions of allelic expression bias for mitochondria and locomotory-related genes
in day 9.5 embryos. The significance indicated by asterisks is the same as in Figure 2. (b) Directions of allelic expression bias for calmodulin-binding
and memory-related genes in day 9.5 embryos.
doi:10.1371/journal.pgen.1002023.g003
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expressed genes (this is not an inherent limitation of RNA-seq, since

power is limited only by the number of reads). In addition, genes

lacking any B6/CAST sequence polymorphisms are not assayable by

allele-specific RNA-seq.

In addition to replicating some hits from adult mice, the F1

embryo data revealed new significant gene sets as well. Two gene

sets reached high-confidence: ‘‘calmodulin binding’’ and ‘‘mem-

ory’’ (Table 1 and Figure 3b), both showing a bias towards B6-

upregulation. Although unannotated SNPs overlapping RNA-seq

reads can cause a marginal alignment bias resulting in an apparent

up-regulation of the B6 reference genome alleles, our analysis

indicates this is unlikely to underlie the significance of these gene

sets (see Text S1). Consistent with previous work in yeast [19], we

conclude that RNA-seq is a cost-effective alternative for measuring

selection on cis-regulation, particularly between lineages with a

high density of exonic sequence differences.

Connecting cis-regulatory selection to phenotypes
An important question is whether the lineage-specific selection

we detected has had any detectable impact on organismal

phenotypes. Examination of the gene sets in Table 1 reveals that

specific predictions can be made for the gene sets belonging to the

GO ‘‘biological process’’ and ‘‘cellular component’’ ontologies

(Table 2). For example, cis-eQTLs leading to higher expression of

growth or locomotory genes may be (at least naively) expected to

increase growth or locomotion, since these gene annotations were

typically identified by observing a reduction of growth or

locomotion in a gene knockout/knockdown model; genes leading

to increased growth or locomotion when inactivated are far less

common (for example, among genes annotated as growth

regulators [28], 40 have a mutant phenotype of decreased body

size, whereas only two are associated with increased body size

[33]). These effects could either be strong, like all previous

examples of adaptive cis-regulatory adaptation in metazoans [1,2];

or subtle, considering that many loci are being selected in parallel

and thus may only exert major phenotypic effects in aggregate. We

were unable to make any phenotypic predictions for the GO

molecular function terms (‘‘calmodulin binding’’, ‘‘G-protein

coupled receptor activity’’, ‘‘receptor activity’’, or ‘‘enzyme

inhibitor activity’’), or the JAK-STAT pathway.

If the loci we identified have major phenotypic effects, they

should be detectable by QTL mapping in our F2 mice. One

phenotype we predicted to be affected was measured for every F2

individual in our cross: naso-anal length, which approximately

reflects the sum of growth over the lifetime of the mice. In females,

we found two significant QTLs for length, on chromosomes 2 and

15, while in males the strongest QTL was on chromosome 5

(Figure 4, red lines). In all three cases, the B6 alleles were associated

with greater length, as expected since B6 alleles tend to increase

expression of growth-related genes (whose knockout/knockdown

phenotype is typically a reduction in growth). Strikingly, the

strongest QTL from each gender overlapped almost perfectly with

two of the strongest (genotype versus expression level r2.0.5) cis-

eQTLs in the growth-related gene set (Figure 4, blue lines), and the

weaker female length QTL coincided with a weaker (r2.0.2) but

still highly significant growth-related gene cis-eQTL (Figure 4a,

green line). This overlap is unlikely to occur by chance, considering

that only ,0.5% of cis-eQTLs are as close to the length QTLs as

each of these are (probability of overlap by chance, p,0.001; see

Methods). The three genes are Dcaf13 (also known as WDSOF1),

an rRNA processing factor; Ept1, a CDP-alcohol phosphatidyl-

transferase (orthologous to human SELI); and Sp3, a transcription

factor. All three are well-conserved, and have been implicated in

positive regulation of growth either by mouse knockout [34], or

RNAi experiments involving their orthologs in Caenorhabditis elegans

[35]. This highly significant overlap suggests that these genes may

be responsible for the length QTLs.

To further test the hypothesis that the cis-eQTLs for these three

genes affect mouse length, we applied a statistical approach for

inferring causality of eQTLs for other traits [36–37] that has been

extensively tested and validated using transgenic mice [38]. For all

three genes, causality for length was strongly (p,0.001) supported

in at least one tissue. This provides further support for a role of

these eQTLs in the length phenotype.

An alternative method to assess the phenotypic importance of

these gene sets is to compare the predictions to phenotypes of B6

and CAST mice. Although QTL mapping cannot be performed

with only two strains (typical mapping populations consist of

hundreds of F2 individuals or recombinant inbred lines)—and thus

causal loci cannot be implicated—concordance of predictions with

observed phenotypes can at least serve as evidence that the

selection on cis-regulation of these gene sets is phenotypically

relevant. To this end, we searched the literature for studies where

phenotypes we predicted to be affected by selection (Table 2) were

measured in B6 and CAST. For three of our four predictions, we

found multiple studies testing the relevant phenotypes. From the

growth regulator gene set, we predicted larger size of B6 mice

(measured by length, as above, or by total body mass), and indeed

they are known to have nearly twice the mass of CAST mice, from

an early age through adulthood [39,40]. From the adult

locomotory-related gene set showing CAST-upregulation (found

in both the microarray and RNA-seq data, Figure 1 strain B, and

Figure 2a), we predicted higher locomotor activity in CAST,

which has indeed been observed [40,41]. In fact, one study [41]

found that daytime activity of CAST was over six times higher

than that of B6. The B6-upregulation of the memory-related gene

Table 2. Phenotype predictions and evidence.

Gene set(s) Prediction Confirmed?
Up- or down-regulated
(compared to ancestor)?

Regulation of growth Greater growth (length and mass) in B6 Yes [39,40] Up-regulated

Adult locomotory behavior Greater locomotory behavior in CAST Yes [40,41] Up-regulated

Memory Greater memory in B6 Yes [40,42] Up-regulated

Mitochondria/Mitochondrial inner
membrane/Intracellular organelle

Higher mitochondrial abundance in B6 livers Yes (this study) Not determined

We made four predictions regarding the phenotypic consequences of the cis-regulatory evolution of the GO ‘‘Biological Process’’ and ‘‘Cellular Component’’ gene sets in
Table 1 (we could not make any predictions for ‘‘Molecular Function’’ gene sets). In three cases, confirmation was from previous studies of B6 and CAST, and in one case
was demonstrated by us. The up- or down-regulation refers to the branch in which the majority of phenotypic divergence likely took place.
doi:10.1371/journal.pgen.1002023.t002
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set (Figure 2b) predicted increased memory in B6 (since knockout

of most memory-related genes results in reduced, not increased,

memory). In two studies employing the Morris Water Maze

(MWM) to measure learning and memory, B6 significantly

outperformed CAST [40,42]. In fact, CAST showed no capacity

at all for memory in this context (see Text S1). In sum, all three of

our predictions that have been addressed in previous publications

were confirmed by multiple independent studies. We did not find

any studies contradicting these predictions.

Our fourth prediction—that mitochondria would be more

abundant in B6, as a result of the B6-upregulation of many

mitochondrial genes (most notably genes related to the inner

membrane, but also mitochondrial small ribosomal subunits

[combined-tissue p = 4.561028], among others) observed in both

the microarray and RNA-seq data—has not, to our knowledge,

been tested by previous studies. Therefore we isolated nuclear and

mitochondrial genomic DNA from livers (the tissue with the

strongest B6-upregulation of mitochondrial genes) of B6 and

CAST adult mice, and measured the ratio of their mitochondrial

to nuclear genome copy number by qPCR (see Methods).

Consistent with our prediction, we found a small but highly

significant (p,0.001) difference between B6 and CAST, with B6

showing a 12.9% increase in abundance. Therefore, all four of our

predictions have been confirmed—three retrospectively and one

prospectively—underscoring the ability of our selection test to

predict phenotypic differences, and suggesting that these differ-

Figure 4. Overlap between morphological and expression QTLs. (a) QTL scan for naso-anal length of CxB females is shown in red, where the
magnitude of the log10 of the trait/genotype regression p-value is plotted for each of 1,438 genetic markers (in genomic order, starting with
chromosome 1). Positive values indicate the B6 allele is associated with longer mice, while negative values indicate the opposite (scale is to the left).
The blue and green lines are analogous, where the traits are expression of two growth-related genes, Dcaf13 and Sp3, in CxB female brain; positive
values indicate the B6 allele up-regulates expression, while negative values indicate the opposite (scale is to the right). (b) As in part (a), except for
male mice, and eQTL data are shown for another growth-related gene, Ept1 (in CxB male brain).
doi:10.1371/journal.pgen.1002023.g004

Polygenic cis-Regulatory Evolution

PLoS Genetics | www.plosgenetics.org 8 March 2011 | Volume 7 | Issue 3 | e1002023



ences may have been shaped by lineage-specific selection on cis-

regulation (though we note that other traits could also have been

affected by, or been the primary targets of, the lineage-specific

selection in these gene sets).

Inferring positive selection by polarizing the changes
To better understand the selection that has acted on these

phenotypes, we sought to determine on which lineage the majority

of changes in each trait had occurred. This can be achieved by

including an outgroup species in the analysis: for example, if a trait

value in B6 is much further from the outgroup than is the CAST

trait value, then the most parsimonious explanation is that the

majority of divergence occurred on the B6 lineage. As with all

parsimony-based methods, this indicates the most likely evolu-

tionary scenario (i.e. that requiring the fewest changes), but cannot

formally rule out any less parsimonious explanation.

To perform this analysis we searched for measurements of the

four traits in Table 2 from additional mouse strains. Mus spretus

(SPRET) is an ideal outgroup, being the species most closely

related to Mus musculus. We found published measurements from

SPRET for two of the traits, growth and memory. For growth, the

adult mass of SPRET was found to be statistically indistinguishable

from CAST [39]—and about half of that of B6—indicating that

the change in growth likely took place along the B6 lineage.

Similarly for memory, SPRET showed no evidence of recall in the

MWM [42], similar to CAST but in stark contrast to B6—again

implicating the B6 lineage as the probable source of divergence. In

fact, B6 showed significantly greater recall than all of the 12 other

strains tested [42].

Although locomotory behavior has not been measured in an

outgroup (to our knowledge), it was measured in nine strains in

addition to B6 and CAST [41], including seven wild-derived strains

that are more closely related to CAST than is B6 or other lab strains

[43]. Since CAST had over twice the daytime locomotory activity of

any other strain tested [41]—including the closely related wild

strains—the majority of divergence can be inferred to have likely

taken place on the CAST lineage, after its divergence from the other

wild strains (in this case, B6 is the outgroup). The much lower

daytime activity level of B6 was similar to most of the wild strains, as

well as another lab strain [43].

In sum, the phenotypic changes can be polarized for three of the

traits. These results rest on the logic of parsimony: that a

phenotypic change in one lineage is more likely than independent

changes in the same trait—of the same direction and magnitude—

in two lineages. Under the assumption that the phenotypic

divergence was driven by (and thus occurred on the same branch

as) the expression divergence, all three cases can be inferred

to have likely been caused by cis-upregulation of the relevant

gene sets.

As mentioned above, our test of lineage-specific selection cannot

by itself distinguish between positive selection and relaxed negative

selection (analogous to the McDonald-Kreitman test [24,25]).

However recent evidence from saturation mutagenesis studies

showing that the vast majority of random cis-regulatory mutations

cause downregulation (see Text S1) suggests that relaxed negative

selection would likewise be biased towards downregulation. If this

is indeed the case for the gene sets we have implicated, then

relaxed negative selection is unlikely to explain the upregulation of

these three traits/gene sets, leading to the conclusion that their

divergence was most likely due to the action of positive selection

for upregulation. However given the qualitative nature of this

argument, we cannot yet quantify the precise probability that

positive selection has been acting upon the cis-regulation of these

gene sets.

Discussion

Using a systematic genome-scale approach to inferring lineage-

specific selection acting on cis-regulation, we found that over 100

genes belonging to several gene sets have undergone lineage-

specific selection in mouse, which may have impacted diverse

morphological and behavioral phenotypes. This work reports the

first cases of adaptive cis-regulatory evolution in M. musculus, and

expands the classes of traits (in any species) known to be affected

by gene expression adaptation, which previously did not include

any behavioral phenotypes. Methodologically, we augment

previous work [19] by showing that adding information from an

outgroup can suggest the likely action of positive selection (as

opposed to relaxed negative selection) when that selection was for

cis-acting upregulation. Two interesting questions for future work

are how much of this selection occurred since the introduction of

these strains to the lab, and for selection that occurred on the wild

B6 ancestors, how much occurred in Mus musculus domesticus (the

primary ancestor of B6 [26]) as opposed to Mus musculus musculus.

Interestingly, wild M. m. domesticus tend to be larger than wild M. m.

castaneus when reared in a common laboratory environment (C.

Pfeifle, personal communication), suggesting that this adaptation

was likely to have occurred in the wild. Another question raised by

these findings is what are the relevant ‘‘units of selection’’ [44] for

these polygenic adaptations; though regardless of the answer, our

conclusions regarding the extent of selection on cis-regulation will

not be affected.

Because the RNA-seq version of this approach can be applied

rapidly and inexpensively to hybrids between any two diverged

lineages (including outbred lineages), we expect it will find use in a

wide range of taxa. In fact, it can be applied to any ASE data from

a hybrid between diverged lineages. Published ASE data sets from

a variety of species (e.g. [45,46]) can now be similarly re-analyzed

for cis-regulatory selection. This approach can also be applied to

any of the numerous published eQTL data sets involving crosses

between diverged parental lines.

Our approach is quite different from all previous studies of

metazoan cis-regulatory adaptation [1–4], which have identified

single genes with extremely strong effects on phenotypes such as

pigmentation (e.g. [21,47,48]) or skeletal structure (e.g. [49]). Our

results reveal several important insights that could not have been

found at this single-gene level. For example, the only previously

known case of pathway-level gene expression adaptation was from

our work on the ergosterol biosynthesis pathway in S. cerevisiae,

where six genes clustered in the pathway have undergone selection

for down-regulation [18]. Our present results extend this

considerably, demonstrating that polygenic cis-regulatory adapta-

tion can operate in parallel on dozens of genes within a single

functional group or pathway, and that this has occurred in

multiple gene sets during recent mouse evolution. Although each

gene under such coordinate selection may be expected to have a

less extreme phenotypic effect than those previously reported

[1,2,21,47–49], the sum of their effects could be quite strong. One

important question that can now start to be addressed is how often

cis-regulatory adaptation proceeds via dramatic changes in single

genes, as opposed to more subtle changes distributed across an

entire gene set [3]. Much of the answer may ultimately depend on

factors such as the strength/duration of selection (with intense/

short-term selection pressure likely favoring extreme single-locus

changes) and the genetic architecture of the trait in question.

A second open question is how often cis-regulatory adaptation

occurs by upregulation versus downregulation of genes; our results

suggest that the majority of the adaptation we discovered was due

to upregulation, in contrast to most previous (single-locus) studies,
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which have predominantly identified cases of trait loss via

downregulation [2]. Interestingly, we previously observed a

preponderance of upregulation in a genome-wide study of gene

expression adaptation in S. cerevisiae [18], suggesting that this

pattern may be widespread. Again, which of these is more

common in a particular species may depend on the nature of the

selective pressure and the underlying genetic architecture.

Third, it has been proposed that gene expression adaptation

may be responsible for most morphological adaptations in part

because it offers a solution to the issue of pleiotropy. For a gene

expressed in many tissues or stages of development, an amino acid

change (in a constitutive exon) will affect the protein produced in

all of these different contexts. Even if this change is adaptive in one

or two of them, it has been argued that it would be highly unlikely

to be advantageous in all of them [1]. In contrast, the modular

nature of cis-regulation allows for a change in expression in just

one tissue or stage, without affecting any other; thus pleiotropic

constraints should not be as severe, and adaptation should be able

to proceed [1]. Predictions from this are that genes expressed more

broadly will be more likely to adapt via cis-regulation, and that

these adaptations will only affect a small part of the genes’

expression patterns. Two recent studies attempted to test this idea.

In one of these [50], genes near noncoding elements with

accelerated evolution in the human lineage were proposed to

have undergone human-specific selection on cis-regulation (though

the authors acknowledged that such acceleration need not indicate

positive selection); however no enrichment was found for these

genes to be expressed in more tissues than average. In the other

[51], genes were classified as either ‘‘morphogenes’’ or ‘‘physio-

genes’’ based on their mouse knockout phenotypes; morphogenes

(which tend to be expressed in fewer tissues) had higher dN/dS (an

indicator of selection on protein-coding regions), while physio-

genes had a higher magnitude of expression change between

human and mouse, consistent with the prediction of greater

adaptive expression change in broadly expressed genes. However

this study did not distinguish between adaptive versus non-adaptive

change, or cis versus trans regulation, or tissue-specific versus non-

specific expression changes, so the relevance to theories of tissue-

specific adaptive cis-regulatory evolution is not clear. Our results

suggest that although most of the genes in our most significant

gene sets are broadly expressed (not shown), their expression in all

three tissues was affected by the recent selection on cis-regulation

we detected (Table S2; all gene sets from Table 1 were significant

in all three tissues, except for the JAK/STAT pathway); thus these

adaptations were not tissue-specific, so do not support pleiotropy-

based arguments for the expected prevalence of tissue-specific

gene expression adaptation (we note that while the adaptations did

not result in tissue-specific expression changes, the selection may

have acted to change expression in just one tissue, with the rest

changing as a side-effect). Of course, since we have only examined

three tissues in two mouse strains, much more work is required to

determine how general this conclusion is.

Finally, because of its genome-scale perspective, our approach

may eventually help to address many other fundamental questions

that cannot be addressed by single-locus studies [3], such as what

fraction of gene expression divergence is adaptive, and what

fraction of evolutionary adaptation occurs at the level of cis-

regulation.

Materials and Methods

Data production
Ethics statement: All mouse work was conducted according to

Institutional Animal Care and Use Committee regulations.

C57BL/6J (B6) mice were intercrossed with M. m. castaneus

(CAST/EiJ) mice to generate 442 F2 progeny (276 females, 166

males). All mice were maintained on a 12 h light–12 h dark cycle

and fed ad libitum. Mice were fed Purina Chow until 10 wk of

age, and then fed western diet (Teklad 88137, Harlan Teklad) for

the subsequent 8 wk. Mice were fasted overnight before they were

killed. Their tissues were collected, flash frozen in liquid nitrogen,

and stored in 280uC prior to RNA isolation.

RNA preparation and array hybridizations were performed at

Rosetta Inpharmatics. The custom ink-jet microarrays used were

manufactured by Agilent Technologies. The array used consisted

of 2,186 control probes and 23,574 non-control oligonucleotides

extracted from mouse Unigene clusters and combined with

RefSeq sequences and RIKEN full-length cDNA clones.

Mouse tissues were homogenized, and total RNA extracted

using Trizol reagent (Invitrogen) according to manufacturer’s

protocol. Three micrograms of total RNA was reverse transcribed

and labeled with either Cy3 or Cy5 fluorochrome. Labeled

complementary RNA (cRNA) from each F2 animal was

hybridized against a cross-specific pool of labeled cRNAs

constructed from equal aliquots of RNA from 150 F2 animals

and parental mouse strains for each of the three tissues. The

hybridizations were performed to single arrays (individuals F2

samples labeled with Cy5 and reference pools labeled with Cy3

fluorochromes) for 24 h in a hybridization chamber, washed, and

scanned using a confocal laser scanner. Arrays were quantified on

the basis of spot intensity relative to background, adjusted for

experimental variation between arrays using average intensity over

multiple channels, and fitted to a previously described error model

to determine significance (type I error) [52]. All microarray data

are available at NCBI GEO (GSE16227).

Genomic DNA was isolated from tail sections using standard

methods and genotyping was performed by Affymetrix (Santa

Clara, CA) using the Affymetrix GeneChip Mouse Mapping 5K

Panel.

The RNA-seq data were described previously [30]. All data are

available at the NCBI SRA (accession SRA008621.10).

Data analysis
eQTL scans were performed by linear regression of expression

log ratios against genotypes (coded as 0, 1, and 2), separately in

each tissue for each of the four cohorts (CxB females, CxB males,

BxC females, and BxC males). eQTL were designated as ‘‘local’’

(and likely cis-acting) if the regression between the expression level

of a gene and a genetic marker within 1 megabase of the

transcription start site was significant (where significance was

defined as the cutoff resulting in 2,500 eQTLs in each direction;

see below). Testing for dominance (comparing the average

heterozygote value to the average of the two average homozygote

values) revealed evidence for non-additivity at only a small fraction

of local eQTLs (as expected for cis-eQTLs, which typically act

additively), so dominance effects were not included in our eQTL

mapping.

We implemented the following strategy to isolate local eQTL

effects in the presence of unlinked marker correlations. First the

strongest local eQTL was identified, and expression of the target

gene was then corrected for its effects by taking the residuals of

expression when regressed against the eQTL genotype. The

corrected expression level was then subjected to a whole-genome

eQTL scan to identify the strongest trans-eQTL. Once this trans-

eQTL was identified, its effects were regressed out of the original

expression levels for the gene. These trans-corrected expression

levels were then regressed against all local genetic markers once

again, to identify the strength and direction of effect for the cis-eQTL.
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This process allows us to achieve a more accurate estimate of local

eQTL effect sizes, even in the presence of unlinked trans-eQTLs or

correlations between unlinked genetic markers (we note that

removing trans effects is not necessary for our test, though we have

found it to improve our ability to estimate cis effects). More generally,

our focus on local eQTLs allows us to isolate the effect of the local

polymorphism(s) on gene expression, regardless of other effects (e.g.

environmental effects, trans-eQTL not captured in our regression

approach, epistatic interactions, feedback, etc.); of course such effects

are widespread, but they will only weaken the correlation between a

genetic marker’s genotype and a nearby gene expression level,

potentially causing us to miss some local eQTLs, but not resulting in

false-positive results.

A total of 5,000 genes with the strongest cis-eQTLs (2,500 in

each direction) in each tissue/cohort combination were analyzed.

The decision to use an equal number of eQTLs in each direction

does not reflect any biological aspects or assumptions, but instead

is merely an arbitrary choice. Whether the total ‘‘true’’ numbers of

cis-eQTLs in each direction are actually equal is not addressed

here (nor is it directly relevant for interpreting our test’s results).

Altering the proportion of eQTLs in each direction by up to 10%

(a 60/40 ratio) in either direction did not have any impact on our

results (i.e. the gene sets in Table 1 were not affected, although

FDRs were changed slightly).

FDRs for each tissue/cohort combination were estimated by

randomization. We first shuffled genotype labels so that one

individual’s entire set of genotypes was paired with another

individual’s expression levels. Then the entire eQTL detection

procedure was carried out, and the number of cis-eQTLs above

the cutoffs associated with the top 5,000 eQTLs in the real data

were counted. Randomizations were repeated at least 1,000 times.

The estimated FDR equals the average number of significant

eQTLs in the randomized data divided by 5,000 (the number in

the real data). This procedure yielded a maximum FDR of 9.7% in

the smaller cohorts (BxC), and an FDR of ,2% in the larger (CxB)

ones. An equal number of eQTLs were used in each cohort so that

results between cohorts would be directly comparable. We note

that 5,000 eQTLs represents an average of ,3.5 eQTLs per

genetic marker, which is not surprising given that linkage

disequilibrium extends for many megabases in a mouse F2 cross,

so a single marker captures many polymorphisms.

Gene ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) classifications were tabulated for each gene on

the microarray. Only the 531 GO gene sets (from all levels of the

GO hierarchy and all three GO branches: Biological Process,

Molecular Function, and Cellular Component) and 75 KEGG gene

sets containing at least 50 genes on our microarray were tested, since

small gene sets have little statistical power in our test. If multiple

genes from a gene set had cis-eQTLs and were located within 2 mb

of each other in the genome, all but one in the cluster were

discarded from the analysis, to ensure that the eQTLs being tested

are all independent (the 2 mb cutoff was chosen since the most

distant known cis-regulation is an enhancer ,1 mb from its target

gene; so allowing 1 mb from a cis-regulatory mutation in each

direction yields 2 mb). All of the cases of clustered eQTLs within a

gene set showed the same direction of effect (either up-regulated by

the B6 allele, or by the CAST allele, but not a mixture of both), so

the choice of which gene(s) to exclude had no effect on the test’s

results. Relaxing our distance cutoff results in a small increase in the

sample size and gene set enrichment significance. Likewise,

increasing the distance cutoff excludes a small fraction of genes,

marginally decreasing the enrichment significance.

The effect directions for the cis-eQTLs of a gene set were then

tested for departure from the expected 1:1 ratio of +/– alleles by

comparing to the hypergeometric expectation. The results are

similar to testing using the binomial expectation, but the

hypergeometric takes into account the fact that if many + alleles

have already been observed in a gene set, further genes in that set

are actually slightly less likely to have + alleles by chance (since the

total number of + and – alleles included in our list is equal).

Coexpression modules were constructed for each tissue as

previously described [53]. A total of 41 modules containing at least

50 genes were tested (10 in brain, 14 in liver, and 17 in muscle).

Hypergeometric p-values for each gene set in each tissue/cohort

were then combined across cohorts by Fisher’s method, to yield

the single-tissue p-values for each gene set. The FDR was

estimated in two ways. In the first approach, genotype labels

were permuted as described above, and the entire eQTL detection

and directionality test procedure was carried out. This yielded zero

false positives even over many thousands of randomizations.

However this randomization strategy does not account for the fact

that a gene with a B6-upregulating cis-eQTL in one cohort is likely

to have B6-upregulating alleles in other cohorts as well. In order to

capture this effect in our permutations, we carried out a second

randomization procedure. We used the cis-eQTL results from the

real data, but randomly shuffled the gene set assignments for each

gene. In this test, the consistency of eQTL directions across tissues

and cohorts is perfectly preserved, and only the effect of the gene

set assignments is randomized. With this procedure, false positives

were found at all cutoffs tested; FDRs were estimated at several

cutoffs, and are shown in Table 1. We note that although the data

from different tissues are not entirely independent, since they come

from the same mice, this does not present a problem for estimating

FDRs because we combined the p-values in the same way for both

real and permuted data. In addition, the non-independence of

gene sets is not a problem, since this overlap is perfectly captured

by our randomization procedure.

For the multi-tissue analysis, the three single-tissue p-values for

each gene set were combined by Fisher’s method, both for real and

randomized data. This was expected to increase power because it

decreases false-positive eQTLs, though it is also possible that the

non-tissue-specific eQTLs this procedure enriches are more likely

to be the result of recent selection. FDRs were estimated as

described above for the single-tissue analysis. We also tested

combining only results from mice of each gender, but did not find

any sex-specific gene set enrichments.

The RNA-seq data were analyzed as follows. Sequence reads

overlapping heterozygous SNPs were assigned to alleles as

described [30]. All reads from each allele of each RefSeq gene

were then summed to generate the total number of reads from

each allele. Distinct transcripts from the same gene cannot be

discerned with this approach (as with the vast majority of

microarrays), so each gene was treated as if it produced a single

transcript (we note that since GO annotations are typically for

genes, and not individual transcripts, having transcript-specific

data would not substantially affect our results). SNPs with no reads

from one allele were discarded, since these are likely to reflect SNP

annotation errors. Binomial p-values were calculated for each

gene, using the expected 1:1 ratio of reads from each allele. The

most extreme 25% of genes with allele-specific information (2,037

genes) in each direction were retained for GO analysis. The GO

analysis was carried out with the hypergeometric test as described

above, except that no p-values were combined because only a

single tissue/cohort was used. Randomizations were performed by

replacing the cis-eQTL target genes with randomly chosen genes,

and repeating the hypergeometric test.

The probability of QTLs for naso-anal length overlapping with

eQTLs for the growth regulator gene set was calculated as follows.
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The peaks for all three eQTLs shown in Figure 4 were within the

0.5 LOD support interval of the top three length QTLs (one in

males, two in females). Across all 3,834 eQTLs at this strength

(r2.0.2), only 0.6% were within this interval of the male length

QTL and 0.3% for each female length QTL. Since these

are independent, and 27 eQTLs from the growth gene set

reached this cutoff, the chance of all three overlaps is

2760.00662660.00362560.003 = 0.00095. Interestingly, the

eQTL overlapping the strongest length QTL in each gender were

both in the top 12 strongest growth eQTL (r 2.0.5), so even just

the overlap of those two is significant at p = 0.002. Testing the

overlap with the three length QTLs in random groups of 27

eQTLs supported these calculations. In males there is one length

QTL where the CAST allele is associated with greater length, but

this was not included in our overlap analysis because we only posit

that the alleles increasing B6 growth have been under positive

selection and are present in the list of growth genes with B6-

upregulating cis-eQTL. eQTL scans shown in Figure 4 were

performed using CxB brain; brain was chosen because it is the

tissue with the strongest growth gene eQTL direction bias, and

CxB was chosen because it is the larger of the two cohorts.

Expression levels were from CxB female brains in Figure 4a, and

CxB male brains in Figure 4b, to match genders with the length

QTL shown.

qPCR
We performed quantitative PCR with SYBR green, amplifying

both nuclear and mitochondrial DNA from B6 and CAST liver

tissue. The ratio of mitochondrial/nuclear DNA gives an estimate

of the mitochondrial abundance in each strain, and the ratio of

these ratios indicates their relative levels. The following primer

sequences were used: nuclear, CCTTGGACATTAGCACATGG

and AACTGTCTCCCCTGACCAAC; mitochondrial, ACAAT-

GTTAGGGCCTTTTCG and GTTCCCAGAGGTTCAAA-

TCC. No off-target effects were observed for either primer pair.

Each reaction was repeated 48 times to ensure consistency. The

99% confidence interval for the B6:CAST ratio of mitochondrial/

genomic DNA (a ratio of ratios) was 1.06 – 1.20, and the 99.9%

confidence interval was 1.04 – 1.23.

Supporting Information

Table S1 Genes from Figure 2, and their GO annotations.

Columns are: Gene ID; source of gene ID; GO Biological Process;

GO Molecular Function; GO Cellular Component. Note the

number of genes do not match the numbers shown in Figure 2

because these lists include genes within 2 mb in the genome, which

were removed for Figure 2 and all other analyses (see Methods).

(XLSX)

Table S2 All GO categories tested for bias in cis-eQTL

directionality, with the hypergeometric p-values based on the bias

for each category in each tissue. For further details see the

Methods section.

(TXT)

Text S1 Supporting information.

(DOC)
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